Pub Date : 2024-01-04eCollection Date: 2024-01-01DOI: 10.1080/23723556.2023.2299046
Hussah Abdullah Alshwyeh, Warqaa Muhammed Shariff Al-Sheikh, Abdullah Rasedee, Sulaiman Mohammed Alnasser, Mothanna Sadiq Al-Qubaisi, Wisam Nabeel Ibrahim
In this study, we investigated the effects of an ethanolic extract of Mangifera indica L. kernel on the viability and proliferation of human lung cancer cells. We utilized MTT and BrdU cell proliferation assays, morphological assessments, cell cycle analyses, and apoptosis assays to investigate the extract's effects on lung cancer (A549 and NCI-H292) and normal lung (MRC-5) cells. The extract demonstrated a toxicity toward cancer cells compared to normal cells with dose-dependent anti-proliferative effect on lung cancer cells. The extract also caused differential effects on the cell cycle, inducing G0/G1 arrest and increasing the Sub-G1 population in both lung cancer and normal lung cells. Notably, the extract induced loss of membrane integrity, shrinkage, membrane blebbing, and apoptosis in lung cancer cells, while normal cells exhibited only early apoptosis. Furthermore, the extract exhibited higher toxicity towards NCI-H292 cells, followed by A549 and normal MRC-5 cells in decreasing order of potency. Our results suggest that the ethanolic extract of M. indica L. kernel has significant potential as a novel therapeutic agent for treating lung cancer cells, given its ability to induce apoptosis in cancer cell lines while causing minimal harm to normal cells.
{"title":"<i>Mangifera indica L</i>. kernel ethanol extract inhibits cell viability and proliferation with induction of cell cycle arrest and apoptosis in lung cancer cells.","authors":"Hussah Abdullah Alshwyeh, Warqaa Muhammed Shariff Al-Sheikh, Abdullah Rasedee, Sulaiman Mohammed Alnasser, Mothanna Sadiq Al-Qubaisi, Wisam Nabeel Ibrahim","doi":"10.1080/23723556.2023.2299046","DOIUrl":"10.1080/23723556.2023.2299046","url":null,"abstract":"<p><p>In this study, we investigated the effects of an ethanolic extract of <i>Mangifera indica L.</i> kernel on the viability and proliferation of human lung cancer cells. We utilized MTT and BrdU cell proliferation assays, morphological assessments, cell cycle analyses, and apoptosis assays to investigate the extract's effects on lung cancer (A549 and NCI-H292) and normal lung (MRC-5) cells. The extract demonstrated a toxicity toward cancer cells compared to normal cells with dose-dependent anti-proliferative effect on lung cancer cells. The extract also caused differential effects on the cell cycle, inducing G0/G1 arrest and increasing the Sub-G1 population in both lung cancer and normal lung cells. Notably, the extract induced loss of membrane integrity, shrinkage, membrane blebbing, and apoptosis in lung cancer cells, while normal cells exhibited only early apoptosis. Furthermore, the extract exhibited higher toxicity towards NCI-H292 cells, followed by A549 and normal MRC-5 cells in decreasing order of potency. Our results suggest that the ethanolic extract of <i>M. indica L.</i> kernel has significant potential as a novel therapeutic agent for treating lung cancer cells, given its ability to induce apoptosis in cancer cell lines while causing minimal harm to normal cells.</p>","PeriodicalId":37292,"journal":{"name":"Molecular and Cellular Oncology","volume":"11 1","pages":"2299046"},"PeriodicalIF":2.1,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773660/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-29eCollection Date: 2023-01-01DOI: 10.1080/23723556.2023.2218147
Eric Sosa, Edward M De Robertis
Chordin (CHRD) is a secreted protein important in early development, yet a role for CHRD in human disease has not been identified. In this study we investigated CHRD in cancer and normal adult tissues using the wealth of genome-wide data available in public databases. We found that Chordin is amplified in the DNA of specific cancers such as lung squamous cell and others, although copy number variation did not strictly correlate with higher mRNA expression. In some cancers, such as renal and stomach carcinomas, increased CHRD expression significantly correlated with poor survival. In normal adult human tissues, CHRD mRNA was highest in hepatocytes. Crossveinless-2/BMPER, a component of the Chordin morphogenetic pathway expressed at the opposite side in embryos, was expressed in liver stellate cells. This raises the intriguing possibility that a BMP gradient might be established in the extracellular matrix of the space of Disse that surrounds portal sinusoid capillaries.
Chordin(CHRD)是一种对早期发育很重要的分泌蛋白,但它在人类疾病中的作用尚未确定。在这项研究中,我们利用公共数据库中丰富的全基因组数据,研究了癌症和正常成人组织中的 CHRD。我们发现,Chordin 在肺鳞癌等特定癌症的 DNA 中被扩增,尽管拷贝数变异与较高的 mRNA 表达并无严格关联。在某些癌症(如肾癌和胃癌)中,CHRD表达的增加与生存率低有显著相关性。在正常成人人体组织中,CHRD mRNA 在肝细胞中含量最高。Crossveinless-2/BMPER是Chordin形态发生途径的一个组成部分,在胚胎中表达在另一侧,但在肝星状细胞中也有表达。这就提出了一个耐人寻味的可能性,即在环绕门窦毛细血管的Disse空间的细胞外基质中可能建立了BMP梯度。
{"title":"The developmental gene Chordin is amplified and expressed in human cancers.","authors":"Eric Sosa, Edward M De Robertis","doi":"10.1080/23723556.2023.2218147","DOIUrl":"10.1080/23723556.2023.2218147","url":null,"abstract":"<p><p>Chordin (CHRD) is a secreted protein important in early development, yet a role for CHRD in human disease has not been identified. In this study we investigated CHRD in cancer and normal adult tissues using the wealth of genome-wide data available in public databases. We found that Chordin is amplified in the DNA of specific cancers such as lung squamous cell and others, although copy number variation did not strictly correlate with higher mRNA expression. In some cancers, such as renal and stomach carcinomas, increased CHRD expression significantly correlated with poor survival. In normal adult human tissues, CHRD mRNA was highest in hepatocytes. Crossveinless-2/BMPER, a component of the Chordin morphogenetic pathway expressed at the opposite side in embryos, was expressed in liver stellate cells. This raises the intriguing possibility that a BMP gradient might be established in the extracellular matrix of the space of Disse that surrounds portal sinusoid capillaries.</p>","PeriodicalId":37292,"journal":{"name":"Molecular and Cellular Oncology","volume":"10 1","pages":"2218147"},"PeriodicalIF":2.1,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/07/71/KMCO_10_2218147.PMC10228393.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10195651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1080/23723556.2023.2238873
Akshay Pratap, Andrea Qualman, Hedlund Garrett, Lindsey Westbrook, Erlinda The, Sanchayita Mitra, Mila Cordero, Kenneth Meza Monge, Juan-Pablo Idrovo, Argudit Chauhan, Linling Cheng, Mitchell Jay Cohen, Benedetto Mungo, Sachin Wani, Robert Alexander Meguid, Martin D McCarter, Xianzhong Meng
Poorly differentiated esophageal adenocarcinoma (PDEAC) has a dismal prognosis. Glypican-1(GPC-1) is known to be upregulated in several cancer types in contrast to healthy tissues, rendering it as a biomarker. Nevertheless, the potential therapeutic targeting of GPC-1 has not been explored in PDEAC. There is accumulating evidence that GPC-1, via upregulation of PI3K/Akt/ERK signaling, plays a crucial role in the progression and chemoresistance in cancer. Pictilisib, a class I pan PI3K inhibitor, has shown promising antitumor results in clinical trials, however, has not gained widespread success due to acquired drug resistance. This study investigated the role of GPC-1 in chemo-resistant PDEAC and appraises the impact of targeted silencing of GPC-1 on the antitumor effects of Pictilisib in PDEAC cell lines. Immunohistochemistry assays in PDEAC tissue specimens demonstrated a pronounced intensity of staining with GPC-1. Upregulation of GPC-1 was found to be correlated with advanced stage and poor prognosis. In-vitro studies examined the influence of GPC-1 knockdown and Pictilisib, both as individual agents and in combination, on cytotoxicity, cell cycle distribution, apoptosis, and gene expression profiles. Silencing GPC-1 alone showed significantly reduced cell viability, migration, colony formation, epithelial-mesenchymal transition, and stemness in PDEAC cells. Significantly, knockdown of GPC-1 combined with low-dose Pictilisib led to enhancement of cytotoxicity, cell cycle arrest, and apoptosis in ESO-26 and OE-33 cells. In the xenograft mouse model, the combination of Pictilisib and GPC-1 knockdown exhibited synergy. These findings suggest that GPC-1 represents a promising target to augment chemosensitivity in esophageal adenocarcinoma.
{"title":"Silencing Glypican-1 enhances the antitumor effects of Pictilisib via downregulating PI3K/Akt/ERK signaling in chemo-resistant esophageal adenocarcinoma.","authors":"Akshay Pratap, Andrea Qualman, Hedlund Garrett, Lindsey Westbrook, Erlinda The, Sanchayita Mitra, Mila Cordero, Kenneth Meza Monge, Juan-Pablo Idrovo, Argudit Chauhan, Linling Cheng, Mitchell Jay Cohen, Benedetto Mungo, Sachin Wani, Robert Alexander Meguid, Martin D McCarter, Xianzhong Meng","doi":"10.1080/23723556.2023.2238873","DOIUrl":"https://doi.org/10.1080/23723556.2023.2238873","url":null,"abstract":"<p><p>Poorly differentiated esophageal adenocarcinoma (PDEAC) has a dismal prognosis. Glypican-1(GPC-1) is known to be upregulated in several cancer types in contrast to healthy tissues, rendering it as a biomarker. Nevertheless, the potential therapeutic targeting of GPC-1 has not been explored in PDEAC. There is accumulating evidence that GPC-1, via upregulation of PI3K/Akt/ERK signaling, plays a crucial role in the progression and chemoresistance in cancer. Pictilisib, a class I pan PI3K inhibitor, has shown promising antitumor results in clinical trials, however, has not gained widespread success due to acquired drug resistance. This study investigated the role of GPC-1 in chemo-resistant PDEAC and appraises the impact of targeted silencing of GPC-1 on the antitumor effects of Pictilisib in PDEAC cell lines. Immunohistochemistry assays in PDEAC tissue specimens demonstrated a pronounced intensity of staining with GPC-1. Upregulation of GPC-1 was found to be correlated with advanced stage and poor prognosis. In-vitro studies examined the influence of GPC-1 knockdown and Pictilisib, both as individual agents and in combination, on cytotoxicity, cell cycle distribution, apoptosis, and gene expression profiles. Silencing GPC-1 alone showed significantly reduced cell viability, migration, colony formation, epithelial-mesenchymal transition, and stemness in PDEAC cells. Significantly, knockdown of GPC-1 combined with low-dose Pictilisib led to enhancement of cytotoxicity, cell cycle arrest, and apoptosis in ESO-26 and OE-33 cells. In the xenograft mouse model, the combination of Pictilisib and GPC-1 knockdown exhibited synergy. These findings suggest that GPC-1 represents a promising target to augment chemosensitivity in esophageal adenocarcinoma.</p>","PeriodicalId":37292,"journal":{"name":"Molecular and Cellular Oncology","volume":"10 1","pages":"2238873"},"PeriodicalIF":2.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464651/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10188112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1080/23723556.2023.2188858
Dalila Luciola Zanette, Karoline Brito Caetano Andrade Coelho, Eneas de Carvalho, Mateus Nobrega Aoki, Jeanine Marie Nardin, Larissa Araújo Lalli, Rafael Dos Santos Bezerra, Marta Giovanetti, Victória Simionatto Zucherato, Gabriel Montenegro de Campos, Jardelina de Souza Todão Bernardino, Vincent Louis Viala, Massimo Ciccozzi, Luiz Carlos Junior Alcantara, Sandra Coccuzzo Sampaio, Maria Carolina Elias, Simone Kashima, Dimas Tadeu Covas, Svetoslav Nanev Slavov
Growing evidence suggests that metavirome changes could be associated increased risk for malignant cell transformation. Considering Viruses have been proposed as factors for prostate cancer induction. The objective of this study was to examine the composition of the plasma metavirome of patients with prostate cancer. Blood samples were obtained from 49 male patients with primary prostate adenocarcinoma. Thirty blood donors were included as a control group. The obtained next-generation sequencing data were analyzed using a bioinformatic pipeline for virus metagenomics. Viral reads with higher abundance were assembled in contigs and analyzed taxonomically. Viral agents of interest were also confirmed by qPCR. Anelloviruses and the Human Pegivirus-1 (HPgV-1) were the most abundant component of plasma metavirome. Clinically important viruses like hepatitis C virus (HCV), cytomegalovirus and human adenovirus type C were also identified. In comparison, the blood donor virome was exclusively composed of torque teno virus types (TTV) types. The performed HPgV-1 and HCV phylogeny revealed that these viruses belong to commonly detected in Brazil genotypes. Our study sheds light on the plasma viral abundance in patients with prostatic cancer. The obtained viral diversity allowed us to separate the patients and controls, probably suggesting that malignant processes may influence virome composition. More complex and multiple approach investigations are necessary to examine the likely causal relationship between metavirome and its nvolvement in prostate cancer.
{"title":"Metagenomic insights into the plasma virome of Brazilian patients with prostate cancer.","authors":"Dalila Luciola Zanette, Karoline Brito Caetano Andrade Coelho, Eneas de Carvalho, Mateus Nobrega Aoki, Jeanine Marie Nardin, Larissa Araújo Lalli, Rafael Dos Santos Bezerra, Marta Giovanetti, Victória Simionatto Zucherato, Gabriel Montenegro de Campos, Jardelina de Souza Todão Bernardino, Vincent Louis Viala, Massimo Ciccozzi, Luiz Carlos Junior Alcantara, Sandra Coccuzzo Sampaio, Maria Carolina Elias, Simone Kashima, Dimas Tadeu Covas, Svetoslav Nanev Slavov","doi":"10.1080/23723556.2023.2188858","DOIUrl":"https://doi.org/10.1080/23723556.2023.2188858","url":null,"abstract":"<p><p>Growing evidence suggests that metavirome changes could be associated increased risk for malignant cell transformation. Considering Viruses have been proposed as factors for prostate cancer induction. The objective of this study was to examine the composition of the plasma metavirome of patients with prostate cancer. Blood samples were obtained from 49 male patients with primary prostate adenocarcinoma. Thirty blood donors were included as a control group. The obtained next-generation sequencing data were analyzed using a bioinformatic pipeline for virus metagenomics. Viral reads with higher abundance were assembled in contigs and analyzed taxonomically. Viral agents of interest were also confirmed by qPCR. Anelloviruses and the Human Pegivirus-1 (HPgV-1) were the most abundant component of plasma metavirome. Clinically important viruses like hepatitis C virus (HCV), cytomegalovirus and human adenovirus type C were also identified. In comparison, the blood donor virome was exclusively composed of torque teno virus types (TTV) types. The performed HPgV-1 and HCV phylogeny revealed that these viruses belong to commonly detected in Brazil genotypes. Our study sheds light on the plasma viral abundance in patients with prostatic cancer. The obtained viral diversity allowed us to separate the patients and controls, probably suggesting that malignant processes may influence virome composition. More complex and multiple approach investigations are necessary to examine the likely causal relationship between metavirome and its nvolvement in prostate cancer.</p>","PeriodicalId":37292,"journal":{"name":"Molecular and Cellular Oncology","volume":"10 1","pages":"2188858"},"PeriodicalIF":2.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026895/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9518643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1080/23723556.2023.2246657
Zahra Farsi, Najaf Allahyari Fard
GBM is the most common and aggressive type of brain tumor. It is classified as a grade IV tumor by the WHO, the highest grade. Prognosis is generally poor, with most patients surviving only about a year. Only 5% of patients survive longer than 5 years. Understanding the molecular mechanisms that drive GBM progression is critical for developing better diagnostic and treatment strategies. Identifying key genes involved in GBM pathogenesis is essential to fully understand the disease and develop targeted therapies. In this study two datasets, GSE108474 and GSE50161, were obtained from the Gene Expression Omnibus (GEO) to compare gene expression between GBM and normal samples. Differentially expressed genes (DEGs) were identified and analyzed. To construct a protein-protein interaction (PPI) network of the commonly up-regulated and down-regulated genes, the STRING 11.5 and Cytoscape 3.9.1 were utilized. Key genes were identified through this network analysis. The GEPIA database was used to confirm the expression levels of these key genes and their association with survival. Functional and pathway enrichment analyses on the DEGs were conducted using the Enrichr server. In total, 698 DEGs were identified, consisting of 377 up-regulated genes and 318 down-regulated genes. Within the PPI network, 11 key up-regulated genes and 13 key down-regulated genes associated with GBM were identified. NOTCH1, TOP2A, CD44, PTPRC, CDK4, HNRNPU, and PDGFRA were found to be important targets for potential drug design against GBM. Additionally, functional enrichment analysis revealed the significant impact of Epstein-Barr virus (EBV), Cell Cycle, and P53 signaling pathways on GBM.
GBM是最常见、最具侵袭性的脑肿瘤。世界卫生组织将其列为IV级肿瘤,这是最高级别的肿瘤。预后通常很差,大多数患者只能存活一年左右。只有5%的患者存活超过5年。了解驱动GBM进展的分子机制对于制定更好的诊断和治疗策略至关重要。确定参与GBM发病机制的关键基因对于充分了解该疾病并开发靶向治疗至关重要。本研究从Gene Expression Omnibus (GEO)中获得GSE108474和GSE50161两个数据集,比较GBM和正常样本的基因表达。鉴定并分析差异表达基因(DEGs)。利用STRING 11.5和Cytoscape 3.9.1构建常见上调和下调基因的蛋白-蛋白相互作用(PPI)网络。通过网络分析确定了关键基因。GEPIA数据库用于确认这些关键基因的表达水平及其与生存的关系。使用enrichment服务器对deg进行功能和途径富集分析。共鉴定出698个基因,其中上调基因377个,下调基因318个。在PPI网络中,鉴定出与GBM相关的11个关键上调基因和13个关键下调基因。NOTCH1、TOP2A、CD44、PTPRC、CDK4、HNRNPU和PDGFRA被发现是潜在的抗GBM药物设计的重要靶点。此外,功能富集分析显示eb病毒(EBV)、细胞周期和P53信号通路对GBM有显著影响。
{"title":"The identification of key genes and pathways in glioblastoma by bioinformatics analysis.","authors":"Zahra Farsi, Najaf Allahyari Fard","doi":"10.1080/23723556.2023.2246657","DOIUrl":"https://doi.org/10.1080/23723556.2023.2246657","url":null,"abstract":"<p><p>GBM is the most common and aggressive type of brain tumor. It is classified as a grade IV tumor by the WHO, the highest grade. Prognosis is generally poor, with most patients surviving only about a year. Only 5% of patients survive longer than 5 years. Understanding the molecular mechanisms that drive GBM progression is critical for developing better diagnostic and treatment strategies. Identifying key genes involved in GBM pathogenesis is essential to fully understand the disease and develop targeted therapies. In this study two datasets, GSE108474 and GSE50161, were obtained from the Gene Expression Omnibus (GEO) to compare gene expression between GBM and normal samples. Differentially expressed genes (DEGs) were identified and analyzed. To construct a protein-protein interaction (PPI) network of the commonly up-regulated and down-regulated genes, the STRING 11.5 and Cytoscape 3.9.1 were utilized. Key genes were identified through this network analysis. The GEPIA database was used to confirm the expression levels of these key genes and their association with survival. Functional and pathway enrichment analyses on the DEGs were conducted using the Enrichr server. In total, 698 DEGs were identified, consisting of 377 up-regulated genes and 318 down-regulated genes. Within the PPI network, 11 key up-regulated genes and 13 key down-regulated genes associated with GBM were identified. NOTCH1, TOP2A, CD44, PTPRC, CDK4, HNRNPU, and PDGFRA were found to be important targets for potential drug design against GBM. Additionally, functional enrichment analysis revealed the significant impact of Epstein-Barr virus (EBV), Cell Cycle, and P53 signaling pathways on GBM.</p>","PeriodicalId":37292,"journal":{"name":"Molecular and Cellular Oncology","volume":"10 1","pages":"2246657"},"PeriodicalIF":2.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10431734/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10193469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-01DOI: 10.1080/23723556.2022.2069993
Marjorie Lapouge, S. Meloche
ABSTRACT Identification of dominant, actionable oncogenic signaling pathways is key to guide the development of new targeted treatments for advanced-stage hepatocellular carcinoma (HCC). We have recently unveiled a novel YES-YAP/TAZ signaling axis involved in liver cancer development. Our study identifies the tyrosine kinase YES as a potential therapeutic target in HCC.
{"title":"YES, a novel therapeutic target in hepatocellular carcinoma","authors":"Marjorie Lapouge, S. Meloche","doi":"10.1080/23723556.2022.2069993","DOIUrl":"https://doi.org/10.1080/23723556.2022.2069993","url":null,"abstract":"ABSTRACT Identification of dominant, actionable oncogenic signaling pathways is key to guide the development of new targeted treatments for advanced-stage hepatocellular carcinoma (HCC). We have recently unveiled a novel YES-YAP/TAZ signaling axis involved in liver cancer development. Our study identifies the tyrosine kinase YES as a potential therapeutic target in HCC.","PeriodicalId":37292,"journal":{"name":"Molecular and Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45702278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-01eCollection Date: 2022-01-01DOI: 10.1080/23723556.2022.2065176
Gaurav Mendiratta, Michael K Jones, Edward C Stites
Genome sequenced samples from cancer patients helped identify roles of different mutation types and enabled targeted therapy development. However, critical questions like what are the gene mutation rates among the patients? or what genes are most commonly mutated, pan-cancer? have only been recently answered. Here, we highlight this recent advance.
{"title":"How often is each gene mutated within the cancer patient population?","authors":"Gaurav Mendiratta, Michael K Jones, Edward C Stites","doi":"10.1080/23723556.2022.2065176","DOIUrl":"10.1080/23723556.2022.2065176","url":null,"abstract":"<p><p>Genome sequenced samples from cancer patients helped identify roles of different mutation types and enabled targeted therapy development. However, critical questions like what are the gene mutation rates among the patients? or what genes are most commonly mutated, pan-cancer? have only been recently answered. Here, we highlight this recent advance.</p>","PeriodicalId":37292,"journal":{"name":"Molecular and Cellular Oncology","volume":"9 1","pages":"2065176"},"PeriodicalIF":2.6,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067461/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10226872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-27DOI: 10.1080/23723556.2022.2054652
F. Ghiringhelli
ABSTRACT Resistance to chemoimmunotherapy is a major issue for cancer care. We recently unravelled the role of mitogen-activated protein kinase (MAPK) to limit the antitumor efficacy of such combination. Inhibitor of MAPK pathway using mitogen-activated protein kinase (MEK) inhibitor in combination with chemotherapy triggers mitophagy of cancer cells, which induces the release of mitochondrial DNA that interact with Toll Like receptor 9 (TLR9) to promote the production of the chemokine CXCL10. CXCL10 could then turn cold tumor into hot tumor, thus leading to improve efficacy of chemoimmunotherapy.
{"title":"MAPK signaling regulates the efficacy of chemoimmunotherapy","authors":"F. Ghiringhelli","doi":"10.1080/23723556.2022.2054652","DOIUrl":"https://doi.org/10.1080/23723556.2022.2054652","url":null,"abstract":"ABSTRACT Resistance to chemoimmunotherapy is a major issue for cancer care. We recently unravelled the role of mitogen-activated protein kinase (MAPK) to limit the antitumor efficacy of such combination. Inhibitor of MAPK pathway using mitogen-activated protein kinase (MEK) inhibitor in combination with chemotherapy triggers mitophagy of cancer cells, which induces the release of mitochondrial DNA that interact with Toll Like receptor 9 (TLR9) to promote the production of the chemokine CXCL10. CXCL10 could then turn cold tumor into hot tumor, thus leading to improve efficacy of chemoimmunotherapy.","PeriodicalId":37292,"journal":{"name":"Molecular and Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41845068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-11DOI: 10.1080/23723556.2022.2055939
M. Beltran, F. Rossi, I. Bozzoni
ABSTRACT Circular RNAs (circRNAs) are expressed and are regulated in many biological processes but little is known about their ability to directly control mRNA homeostasis. We show that circRNA zinc finger protein 609 (circZNF609) interacts with several mRNAs increasing the final protein levels, which in the case of the cytoskeleton-associated protein 5 (CKAP5) leads to a stabilized microtubule cytoskeleton and an enhanced tumor cell proliferation.
{"title":"CircZNF609 as a prototype to elucidate the biological function of circRNA-mRNA interactions","authors":"M. Beltran, F. Rossi, I. Bozzoni","doi":"10.1080/23723556.2022.2055939","DOIUrl":"https://doi.org/10.1080/23723556.2022.2055939","url":null,"abstract":"ABSTRACT Circular RNAs (circRNAs) are expressed and are regulated in many biological processes but little is known about their ability to directly control mRNA homeostasis. We show that circRNA zinc finger protein 609 (circZNF609) interacts with several mRNAs increasing the final protein levels, which in the case of the cytoskeleton-associated protein 5 (CKAP5) leads to a stabilized microtubule cytoskeleton and an enhanced tumor cell proliferation.","PeriodicalId":37292,"journal":{"name":"Molecular and Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42748809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-09DOI: 10.1080/23723556.2022.2061297
Han Han, Alisa L. Mahieu, Lucas de Paula, Wenqi Wang
ABSTRACT Emerging studies highlight the Hippo pathway as an important player in organ size control, tissue homeostasis, regeneration, development, and diseases, but our understanding of its roles and regulations remains incomplete. Our recent work reported a functional interplay between the Hippo pathway and heavy metals, providing new insights into this key signaling pathway.
{"title":"Functional interplay between the Hippo pathway and heavy metals","authors":"Han Han, Alisa L. Mahieu, Lucas de Paula, Wenqi Wang","doi":"10.1080/23723556.2022.2061297","DOIUrl":"https://doi.org/10.1080/23723556.2022.2061297","url":null,"abstract":"ABSTRACT Emerging studies highlight the Hippo pathway as an important player in organ size control, tissue homeostasis, regeneration, development, and diseases, but our understanding of its roles and regulations remains incomplete. Our recent work reported a functional interplay between the Hippo pathway and heavy metals, providing new insights into this key signaling pathway.","PeriodicalId":37292,"journal":{"name":"Molecular and Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49257007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}