Liyan Shen, Ye Dong, Binxing Fang, Jinqiao Shi, Xuebin Wang, Shengli Pan, Ruisheng Shi
Data privacy and security issues are preventing a lot of potential on-cloud machine learning as services from happening. In the recent past, secure multi-party computation (MPC) has been used to achieve the secure neural network predictions, guaranteeing the privacy of data. However, the cost of the existing two-party solutions is expensive and they are impractical in real-world setting. In this work, we utilize the advantages of quantized neural network (QNN) and MPC to present ABNN2, a practical secure two-party framework that can realize arbitrary-bitwidth quantized neural network predictions. Concretely, we propose an efficient and novel matrix multiplication protocol based on 1-out-of-N OT extension and optimize the the protocol through a parallel scheme. In addition, we design optimized protocol for the ReLU function. The experiments demonstrate that our protocols are about 2X-36X and 1.4X--7X faster than SecureML (S&P'17) and MiniONN (CCS'17) respectively. And ABNN2 obtain comparable efficiency as state of the art QNN prediction protocol QUOTIENT (CCS'19), but the later only supports ternary neural network.
{"title":"ABNN\u0000 <sup>2</sup>","authors":"Liyan Shen, Ye Dong, Binxing Fang, Jinqiao Shi, Xuebin Wang, Shengli Pan, Ruisheng Shi","doi":"10.1145/3489517.3530680","DOIUrl":"https://doi.org/10.1145/3489517.3530680","url":null,"abstract":"Data privacy and security issues are preventing a lot of potential on-cloud machine learning as services from happening. In the recent past, secure multi-party computation (MPC) has been used to achieve the secure neural network predictions, guaranteeing the privacy of data. However, the cost of the existing two-party solutions is expensive and they are impractical in real-world setting. In this work, we utilize the advantages of quantized neural network (QNN) and MPC to present ABNN2, a practical secure two-party framework that can realize arbitrary-bitwidth quantized neural network predictions. Concretely, we propose an efficient and novel matrix multiplication protocol based on 1-out-of-N OT extension and optimize the the protocol through a parallel scheme. In addition, we design optimized protocol for the ReLU function. The experiments demonstrate that our protocols are about 2X-36X and 1.4X--7X faster than SecureML (S&P'17) and MiniONN (CCS'17) respectively. And ABNN2 obtain comparable efficiency as state of the art QNN prediction protocol QUOTIENT (CCS'19), but the later only supports ternary neural network.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116833273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}