Pub Date : 2016-01-01Epub Date: 2016-03-16DOI: 10.1155/2016/7169172
Karina Villalba, Jessy G Dévieux, Rhonda Rosenberg, Jean Lud Cadet
HIV-infected individuals continue to experience neurocognitive deterioration despite virologically successful treatments. While the cause remains unclear, evidence suggests that HIV-associated neurocognitive disorders (HAND) may be associated with neurobehavioral dysfunction. Genetic variants have been explored to identify risk markers to determine neuropathogenesis of neurocognitive deterioration. Memory deficits and executive dysfunction are highly prevalent among HIV-infected adults. These conditions can affect their quality of life and HIV risk-taking behaviors. Single nucleotide polymorphisms in the SLC6A4, TPH2, and GALM genes may affect the activity of serotonin and increase the risk of HAND. The present study explored the relationship between SLC6A4, TPH2, and GALM genes and neurocognitive impairment in HIV-infected alcohol abusers. A total of 267 individuals were genotyped for polymorphisms in SLC6A4 5-HTTLPR, TPH2 rs4570625, and GALM rs6741892. To assess neurocognitive functions, the Short Category and the Auditory Verbal Learning Tests were used. TPH2 SNP rs4570625 showed a significant association with executive function in African American males (odds ratio 4.8, 95% CI, 1.5-14.8; P = 0.005). Similarly, GALM SNP rs6741892 showed an increased risk with African American males (odds ratio 2.4, 95% CI, 1.2-4.9; P = 0.02). This study suggests that TPH2 rs4570625 and GALM rs6741892 polymorphisms may be risk factors for HAND.
尽管病毒学治疗取得了成功,但艾滋病毒感染者的神经认知能力继续恶化。虽然病因尚不清楚,但有证据表明,hiv相关的神经认知障碍(HAND)可能与神经行为功能障碍有关。遗传变异已被探索以确定神经认知退化的神经发病机制的风险标记。记忆缺陷和执行功能障碍在感染艾滋病毒的成年人中非常普遍。这些情况会影响他们的生活质量和艾滋病毒风险行为。SLC6A4、TPH2和GALM基因的单核苷酸多态性可能影响血清素的活性,增加HAND的风险。本研究探讨了SLC6A4、TPH2和GALM基因与hiv感染的酒精滥用者神经认知障碍的关系。对267个个体进行SLC6A4 5-HTTLPR、TPH2 rs4570625和GALM rs6741892多态性基因分型。为了评估神经认知功能,使用了短类别和听觉语言学习测试。TPH2 SNP rs4570625与非裔美国男性的执行功能显著相关(优势比4.8,95% CI, 1.5-14.8;P = 0.005)。同样,GALM SNP rs6741892显示非裔美国男性的风险增加(优势比2.4,95% CI, 1.2-4.9;P = 0.02)。本研究提示TPH2 rs4570625和GALM rs6741892多态性可能是HAND的危险因素。
{"title":"Serotonin-Related Gene Polymorphisms and Asymptomatic Neurocognitive Impairment in HIV-Infected Alcohol Abusers.","authors":"Karina Villalba, Jessy G Dévieux, Rhonda Rosenberg, Jean Lud Cadet","doi":"10.1155/2016/7169172","DOIUrl":"https://doi.org/10.1155/2016/7169172","url":null,"abstract":"<p><p>HIV-infected individuals continue to experience neurocognitive deterioration despite virologically successful treatments. While the cause remains unclear, evidence suggests that HIV-associated neurocognitive disorders (HAND) may be associated with neurobehavioral dysfunction. Genetic variants have been explored to identify risk markers to determine neuropathogenesis of neurocognitive deterioration. Memory deficits and executive dysfunction are highly prevalent among HIV-infected adults. These conditions can affect their quality of life and HIV risk-taking behaviors. Single nucleotide polymorphisms in the SLC6A4, TPH2, and GALM genes may affect the activity of serotonin and increase the risk of HAND. The present study explored the relationship between SLC6A4, TPH2, and GALM genes and neurocognitive impairment in HIV-infected alcohol abusers. A total of 267 individuals were genotyped for polymorphisms in SLC6A4 5-HTTLPR, TPH2 rs4570625, and GALM rs6741892. To assess neurocognitive functions, the Short Category and the Auditory Verbal Learning Tests were used. TPH2 SNP rs4570625 showed a significant association with executive function in African American males (odds ratio 4.8, 95% CI, 1.5-14.8; P = 0.005). Similarly, GALM SNP rs6741892 showed an increased risk with African American males (odds ratio 2.4, 95% CI, 1.2-4.9; P = 0.02). This study suggests that TPH2 rs4570625 and GALM rs6741892 polymorphisms may be risk factors for HAND. </p>","PeriodicalId":37545,"journal":{"name":"Genetics Research International","volume":"2016 ","pages":"7169172"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/7169172","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34394807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01Epub Date: 2016-04-06DOI: 10.1155/2016/4973242
Lili Zhou, Keith C Summa, Christopher Olker, Martha H Vitaterna, Fred W Turek
Disruption of circadian rhythms results in metabolic dysfunction. Casein kinase 1 epsilon (CK1ε) is a canonical circadian clock gene. Null and tau mutations in CK1ε show distinct effects on circadian period. To investigate the role of CK1ε in body weight regulation under both regular chow (RC) and high fat (HF) diet conditions, we examined body weight on both RC and HF diets in CK1ε (-/-) and CK1ε (tau/tau) mice on a standard 24 hr light-dark (LD) cycle. Given the abnormal entrainment of CK1ε (tau/tau) mice on a 24 hr LD cycle, a separate set of CK1ε (tau/tau) mice were tested under both diet conditions on a 20 hr LD cycle, which more closely matches their endogenous period length. On the RC diet, both CK1ε (-/-) and CK1ε (tau/tau) mutants on a 24 hr LD cycle and CK1ε (tau/tau) mice on a 20 hr LD cycle exhibited significantly lower body weights, despite similar overall food intake and activity levels. On the HF diet, CK1ε (tau/tau) mice on a 20 hr LD cycle were protected against the development of HF diet-induced excess weight gain. These results provide additional evidence supporting a link between circadian rhythms and energy regulation at the genetic level, particularly highlighting CK1ε involved in the integration of circadian biology and metabolic physiology.
{"title":"Altered Body Weight Regulation in CK1ε Null and tau Mutant Mice on Regular Chow and High Fat Diets.","authors":"Lili Zhou, Keith C Summa, Christopher Olker, Martha H Vitaterna, Fred W Turek","doi":"10.1155/2016/4973242","DOIUrl":"https://doi.org/10.1155/2016/4973242","url":null,"abstract":"<p><p>Disruption of circadian rhythms results in metabolic dysfunction. Casein kinase 1 epsilon (CK1ε) is a canonical circadian clock gene. Null and tau mutations in CK1ε show distinct effects on circadian period. To investigate the role of CK1ε in body weight regulation under both regular chow (RC) and high fat (HF) diet conditions, we examined body weight on both RC and HF diets in CK1ε (-/-) and CK1ε (tau/tau) mice on a standard 24 hr light-dark (LD) cycle. Given the abnormal entrainment of CK1ε (tau/tau) mice on a 24 hr LD cycle, a separate set of CK1ε (tau/tau) mice were tested under both diet conditions on a 20 hr LD cycle, which more closely matches their endogenous period length. On the RC diet, both CK1ε (-/-) and CK1ε (tau/tau) mutants on a 24 hr LD cycle and CK1ε (tau/tau) mice on a 20 hr LD cycle exhibited significantly lower body weights, despite similar overall food intake and activity levels. On the HF diet, CK1ε (tau/tau) mice on a 20 hr LD cycle were protected against the development of HF diet-induced excess weight gain. These results provide additional evidence supporting a link between circadian rhythms and energy regulation at the genetic level, particularly highlighting CK1ε involved in the integration of circadian biology and metabolic physiology. </p>","PeriodicalId":37545,"journal":{"name":"Genetics Research International","volume":"2016 ","pages":"4973242"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/4973242","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34517739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01Epub Date: 2016-06-01DOI: 10.1155/2016/7052323
Shamshad Ul Haq, Pradeep Kumar, R K Singh, Kumar Sambhav Verma, Ritika Bhatt, Meenakshi Sharma, Sumita Kachhwaha, S L Kothari
Expressed sequence tags (ESTs) are important resource for gene discovery, gene expression and its regulation, molecular marker development, and comparative genomics. We procured 10000 ESTs and analyzed 267 EST-SSRs markers through computational approach. The average density was one SSR/10.45 kb or 6.4% frequency, wherein trinucleotide repeats (66.74%) were the most abundant followed by di- (26.10%), tetra- (4.67%), penta- (1.5%), and hexanucleotide (1.2%) repeats. Functional annotations were done and after-effect newly developed 63 EST-SSRs were used for cross transferability, genetic diversity, and bulk segregation analysis (BSA). Out of 63 EST-SSRs, 42 markers were identified owing to their expansion genetics across 20 different plants which amplified 519 alleles at 180 loci with an average of 2.88 alleles/locus and the polymorphic information content (PIC) ranged from 0.51 to 0.93 with an average of 0.83. The cross transferability ranged from 25% for wheat to 97.22% for Schlerostachya, with an average of 55.86%, and genetic relationships were established based on diversification among them. Moreover, 10 EST-SSRs were recognized as important markers between bulks of pooled DNA of sugarcane cultivars through BSA. This study highlights the employability of the markers in transferability, genetic diversity in grass species, and distinguished sugarcane bulks.
{"title":"Assessment of Functional EST-SSR Markers (Sugarcane) in Cross-Species Transferability, Genetic Diversity among Poaceae Plants, and Bulk Segregation Analysis.","authors":"Shamshad Ul Haq, Pradeep Kumar, R K Singh, Kumar Sambhav Verma, Ritika Bhatt, Meenakshi Sharma, Sumita Kachhwaha, S L Kothari","doi":"10.1155/2016/7052323","DOIUrl":"https://doi.org/10.1155/2016/7052323","url":null,"abstract":"<p><p>Expressed sequence tags (ESTs) are important resource for gene discovery, gene expression and its regulation, molecular marker development, and comparative genomics. We procured 10000 ESTs and analyzed 267 EST-SSRs markers through computational approach. The average density was one SSR/10.45 kb or 6.4% frequency, wherein trinucleotide repeats (66.74%) were the most abundant followed by di- (26.10%), tetra- (4.67%), penta- (1.5%), and hexanucleotide (1.2%) repeats. Functional annotations were done and after-effect newly developed 63 EST-SSRs were used for cross transferability, genetic diversity, and bulk segregation analysis (BSA). Out of 63 EST-SSRs, 42 markers were identified owing to their expansion genetics across 20 different plants which amplified 519 alleles at 180 loci with an average of 2.88 alleles/locus and the polymorphic information content (PIC) ranged from 0.51 to 0.93 with an average of 0.83. The cross transferability ranged from 25% for wheat to 97.22% for Schlerostachya, with an average of 55.86%, and genetic relationships were established based on diversification among them. Moreover, 10 EST-SSRs were recognized as important markers between bulks of pooled DNA of sugarcane cultivars through BSA. This study highlights the employability of the markers in transferability, genetic diversity in grass species, and distinguished sugarcane bulks. </p>","PeriodicalId":37545,"journal":{"name":"Genetics Research International","volume":"2016 ","pages":"7052323"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/7052323","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34606505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01Epub Date: 2016-04-17DOI: 10.1155/2016/3787268
K Nithya, T Angeline, W Isabel, A J Asirvatham
Superoxide dismutase is an antioxidant enzyme that is involved in defence mechanisms against oxidative stress. Cu/Zn SOD is a variant that is located in exon3/intron3 boundary. The aim of the present study was to investigate whether the Cu/Zn SOD (+35A/C) gene polymorphism is associated with the susceptibility to type 2 diabetes mellitus among south Indian population. The study included patients with type 2 diabetes mellitus (n = 100) and healthy controls (n = 75). DNA was isolated from the blood and genotyping of Cu/Zn SOD gene polymorphism was done by polymerase chain reaction based restriction fragment length polymorphism method. Occurrence of different genotypes and normal (A) and mutant (C) allele frequencies were determined. The frequency of the three genotypes of the total subjects was as follows: homozygous wild-type A/A (95%), heterozygous genotype A/C (3%), and homozygous mutant C/C (2%). The mutant (C) allele and the mutant genotypes (AC/CC) were found to be completely absent among the patients with type 2 diabetes mellitus. Absence of mutant genotype (CC) shows that the Cu/Zn SOD gene polymorphism may not be associated with the susceptibility to type 2 diabetes mellitus among south Indian population.
{"title":"SOD1 Gene +35A/C (exon3/intron3) Polymorphism in Type 2 Diabetes Mellitus among South Indian Population.","authors":"K Nithya, T Angeline, W Isabel, A J Asirvatham","doi":"10.1155/2016/3787268","DOIUrl":"10.1155/2016/3787268","url":null,"abstract":"<p><p>Superoxide dismutase is an antioxidant enzyme that is involved in defence mechanisms against oxidative stress. Cu/Zn SOD is a variant that is located in exon3/intron3 boundary. The aim of the present study was to investigate whether the Cu/Zn SOD (+35A/C) gene polymorphism is associated with the susceptibility to type 2 diabetes mellitus among south Indian population. The study included patients with type 2 diabetes mellitus (n = 100) and healthy controls (n = 75). DNA was isolated from the blood and genotyping of Cu/Zn SOD gene polymorphism was done by polymerase chain reaction based restriction fragment length polymorphism method. Occurrence of different genotypes and normal (A) and mutant (C) allele frequencies were determined. The frequency of the three genotypes of the total subjects was as follows: homozygous wild-type A/A (95%), heterozygous genotype A/C (3%), and homozygous mutant C/C (2%). The mutant (C) allele and the mutant genotypes (AC/CC) were found to be completely absent among the patients with type 2 diabetes mellitus. Absence of mutant genotype (CC) shows that the Cu/Zn SOD gene polymorphism may not be associated with the susceptibility to type 2 diabetes mellitus among south Indian population. </p>","PeriodicalId":37545,"journal":{"name":"Genetics Research International","volume":"2016 ","pages":"3787268"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852105/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34401658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Reddy, Amrutlal K. Patel, Krishna M. Singh, D. Patil, P. Parikh, D. N. Kelawala, P. Koringa, V. Bhatt, M. V. Rao, C. Joshi
We performed transcriptome sequencing of canine retinal tissue by 454 GS-FLX and Ion Torrent PGM platforms. RNA-Seq analysis by CLC Genomics Workbench mapped expression of 10,360 genes. Gene ontology analysis of retinal transcriptome revealed abundance of transcripts known to be involved in vision associated processes. The de novo assembly of the sequences using CAP3 generated 29,683 contigs with mean length of 560.9 and N50 of 619 bases. Further analysis of contigs predicted 3,827 full-length cDNAs and 29,481 (99%) open reading frames (ORFs). In addition, 3,782 contigs were assigned to 316 KEGG pathways which included melanogenesis, phototransduction, and retinol metabolism with 33, 15, and 11 contigs, respectively. Among the identified microsatellites, dinucleotide repeats were 68.84%, followed by trinucleotides, tetranucleotides, pentanucleotides, and hexanucleotides in proportions of 25.76, 9.40, 2.52, and 0.96%, respectively. This study will serve as a valuable resource for understanding the biology and function of canine retina.
{"title":"De Novo Assembly and Transcriptome Characterization of Canine Retina Using High-Throughput Sequencing","authors":"B. Reddy, Amrutlal K. Patel, Krishna M. Singh, D. Patil, P. Parikh, D. N. Kelawala, P. Koringa, V. Bhatt, M. V. Rao, C. Joshi","doi":"10.1155/2015/638679","DOIUrl":"https://doi.org/10.1155/2015/638679","url":null,"abstract":"We performed transcriptome sequencing of canine retinal tissue by 454 GS-FLX and Ion Torrent PGM platforms. RNA-Seq analysis by CLC Genomics Workbench mapped expression of 10,360 genes. Gene ontology analysis of retinal transcriptome revealed abundance of transcripts known to be involved in vision associated processes. The de novo assembly of the sequences using CAP3 generated 29,683 contigs with mean length of 560.9 and N50 of 619 bases. Further analysis of contigs predicted 3,827 full-length cDNAs and 29,481 (99%) open reading frames (ORFs). In addition, 3,782 contigs were assigned to 316 KEGG pathways which included melanogenesis, phototransduction, and retinol metabolism with 33, 15, and 11 contigs, respectively. Among the identified microsatellites, dinucleotide repeats were 68.84%, followed by trinucleotides, tetranucleotides, pentanucleotides, and hexanucleotides in proportions of 25.76, 9.40, 2.52, and 0.96%, respectively. This study will serve as a valuable resource for understanding the biology and function of canine retina.","PeriodicalId":37545,"journal":{"name":"Genetics Research International","volume":"1 3-4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/638679","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72447881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sabir Ali, Syed Rizwan Hussain, Ajai Pratap Singh, Vineet Kumar, S. Walliullah, N. Rizvi, M. Yadav, M. Ahmad, A. Mahdi
Background. Many factors are responsible for this impaired healing, especially in long bones, but a possible genetic predisposition for the development of this complication remains unknown till now. In the present study, we aim to examine the CYR61 gene polymorphism in fracture nonunion patients and the correlation with clinical findings. Materials and Methods. We performed SNP analysis of the CYR61 gene in 250 fracture nonunion patients and 250 healthy subjects were genotyped in this hospital-based case control study, and 56 cases were further evaluated for mRNA expression of CYR61 by real-time quantitative reverse-transcription PCR. Results. CYR61 gene TT, TG, and GG genotype frequencies of total fracture nonunion cases were 41.6%, 49.2%, and 9.20% and 54.4%, 39.2%, and 6.40% in healthy controls. Heterozygous TG genotype was found statistically significant in fracture nonunion cases compared with that in controls, whereas homozygous mutant GG genotype was not found significant. Moreover, we found that TG + GG genotypes were significantly different in serum expression of CYR61 mRNA when compared with cases (TT genotypes). Conclusions. Our result signifies that genotype of CYR61 affects the mRNA expression and acts as a risk factor that could synergistically increase the susceptibility of a patient to develop fracture nonunion.
{"title":"Study of Cysteine-Rich Protein 61 Genetic Polymorphism in Predisposition to Fracture Nonunion: A Case Control","authors":"Sabir Ali, Syed Rizwan Hussain, Ajai Pratap Singh, Vineet Kumar, S. Walliullah, N. Rizvi, M. Yadav, M. Ahmad, A. Mahdi","doi":"10.1155/2015/754872","DOIUrl":"https://doi.org/10.1155/2015/754872","url":null,"abstract":"Background. Many factors are responsible for this impaired healing, especially in long bones, but a possible genetic predisposition for the development of this complication remains unknown till now. In the present study, we aim to examine the CYR61 gene polymorphism in fracture nonunion patients and the correlation with clinical findings. Materials and Methods. We performed SNP analysis of the CYR61 gene in 250 fracture nonunion patients and 250 healthy subjects were genotyped in this hospital-based case control study, and 56 cases were further evaluated for mRNA expression of CYR61 by real-time quantitative reverse-transcription PCR. Results. CYR61 gene TT, TG, and GG genotype frequencies of total fracture nonunion cases were 41.6%, 49.2%, and 9.20% and 54.4%, 39.2%, and 6.40% in healthy controls. Heterozygous TG genotype was found statistically significant in fracture nonunion cases compared with that in controls, whereas homozygous mutant GG genotype was not found significant. Moreover, we found that TG + GG genotypes were significantly different in serum expression of CYR61 mRNA when compared with cases (TT genotypes). Conclusions. Our result signifies that genotype of CYR61 affects the mRNA expression and acts as a risk factor that could synergistically increase the susceptibility of a patient to develop fracture nonunion.","PeriodicalId":37545,"journal":{"name":"Genetics Research International","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91164144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genetic polymorphism in Mannose Binding Lectin-2 (MBL-2) and Vitamin D Receptor (VDR) is known to influence the susceptibility to tuberculosis. The objective of the present study was to evaluate the frequency distribution of the MBL-2 promoter and structural polymorphism (−550 H/L, −221 Y/X, and +4 P/Q; R52C, G54D, and G57F) and VDR polymorphism (FokI, BsmI, TaqI, and ApaI) in healthy individuals of Indian population and comparative analysis with the global population. In Indian population, the frequency of VDR mutant alleles “f” for FokI, “b” for BsmI, “t” for TaqI, and “a” for ApaI was 25%, 54%, 30%, and 61%, respectively. The allelic frequency of MBL-2 promoter polymorphism −550 H/L was H versus L: 32% versus 68%, −221 Y/X was Y versus X: 68% versus 32%, and +4 P/Q was P versus Q: 78% versus 22%. Mutant allelic frequencies of the MBL-2 exon 1 D, B, and C allele were 6%, 11%, and 3%, respectively. Comparative analysis with global populations showed a noteworthy difference for MBL-2 and VDR polymorphism frequency distribution, indicating the ethnic variability of Indians. The study signifies the differential distribution of susceptibility genes in Indian population, which can influence the understanding of the pathophysiology of tuberculosis in Indian population.
{"title":"Frequency Distribution of Mannose Binding Lectin-2 and Vitamin D Receptor Gene Variants: Putative Markers for Tuberculosis","authors":"Anuroopa Gupta, H. Padh","doi":"10.1155/2015/264120","DOIUrl":"https://doi.org/10.1155/2015/264120","url":null,"abstract":"Genetic polymorphism in Mannose Binding Lectin-2 (MBL-2) and Vitamin D Receptor (VDR) is known to influence the susceptibility to tuberculosis. The objective of the present study was to evaluate the frequency distribution of the MBL-2 promoter and structural polymorphism (−550 H/L, −221 Y/X, and +4 P/Q; R52C, G54D, and G57F) and VDR polymorphism (FokI, BsmI, TaqI, and ApaI) in healthy individuals of Indian population and comparative analysis with the global population. In Indian population, the frequency of VDR mutant alleles “f” for FokI, “b” for BsmI, “t” for TaqI, and “a” for ApaI was 25%, 54%, 30%, and 61%, respectively. The allelic frequency of MBL-2 promoter polymorphism −550 H/L was H versus L: 32% versus 68%, −221 Y/X was Y versus X: 68% versus 32%, and +4 P/Q was P versus Q: 78% versus 22%. Mutant allelic frequencies of the MBL-2 exon 1 D, B, and C allele were 6%, 11%, and 3%, respectively. Comparative analysis with global populations showed a noteworthy difference for MBL-2 and VDR polymorphism frequency distribution, indicating the ethnic variability of Indians. The study signifies the differential distribution of susceptibility genes in Indian population, which can influence the understanding of the pathophysiology of tuberculosis in Indian population.","PeriodicalId":37545,"journal":{"name":"Genetics Research International","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88461939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Priya, A. Yadav, Neeraj Kumar, Sachin Gulati, N. Aggarwal, Ranjan Gupta
This study investigated genetic damage in paint workers mainly exposed to toluene as it is a major solvent used in paint thinners. Sister chromatid exchange (SCE) assay was used as biomarker of genotoxicity. Blood samples were collected from 30 paint workers and 30 control subjects matched with respect to age and other confounding factors except for exposure to toluene. SCE frequency was found to be significantly higher in paint workers (4.81 ± 0.92) as compared to control individuals (1.73 ± 0.54) (p < 0.05). We also investigated influence of polymorphisms of CYP2E1 and CYP1A1m2 genes on SCE frequency. Our results showed that there was significant increase in frequencies of SCE among the mutant genotypes of CYP2E1 and CYP1A1m2 as compared to wild genotypes. Our study indicated that long term exposure of toluene can increase genotoxic risk in paint workers.
{"title":"Association of Polymorphisms of Phase I Metabolizing Genes with Sister Chromatid Exchanges in Occupational Workers Exposed to Toluene Used in Paint Thinners","authors":"K. Priya, A. Yadav, Neeraj Kumar, Sachin Gulati, N. Aggarwal, Ranjan Gupta","doi":"10.1155/2015/630296","DOIUrl":"https://doi.org/10.1155/2015/630296","url":null,"abstract":"This study investigated genetic damage in paint workers mainly exposed to toluene as it is a major solvent used in paint thinners. Sister chromatid exchange (SCE) assay was used as biomarker of genotoxicity. Blood samples were collected from 30 paint workers and 30 control subjects matched with respect to age and other confounding factors except for exposure to toluene. SCE frequency was found to be significantly higher in paint workers (4.81 ± 0.92) as compared to control individuals (1.73 ± 0.54) (p < 0.05). We also investigated influence of polymorphisms of CYP2E1 and CYP1A1m2 genes on SCE frequency. Our results showed that there was significant increase in frequencies of SCE among the mutant genotypes of CYP2E1 and CYP1A1m2 as compared to wild genotypes. Our study indicated that long term exposure of toluene can increase genotoxic risk in paint workers.","PeriodicalId":37545,"journal":{"name":"Genetics Research International","volume":"75 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86093737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Sedghi, H. Abdali, M. Memarzadeh, Mansoor Salehi, N. Nouri, M. Hosseinzadeh, N. Nouri
Misalignments of low-copy repeats (LCRs) located in chromosome 22, particularly band 22q11.2, predispose to rearrangements. A variety of phenotypic features are associated with 22q11.2 microduplication syndrome which makes it challenging for the genetic counselors to recommend appropriate genetic assessment and counseling for the patients. In this study, multiplex ligation probe dependent amplification (MLPA) analysis was performed on 378 patients with cleft lip and/or palate to characterize rearrangements in patients suspected of 22q11.2 microduplication and microdeletion syndromes. Of 378 cases, 15 were diagnosed with a microdeletion with various sizes and 3 with duplications. For the first time in this study an atypical 0.6 Mb duplication is reported. Illustration of the phenotypes associated with the microduplications increases the knowledge of phenotypes reported in the literature.
{"title":"Identification of Proximal and Distal 22q11.2 Microduplications among Patients with Cleft Lip and/or Palate: A Novel Inherited Atypical 0.6 Mb Duplication","authors":"M. Sedghi, H. Abdali, M. Memarzadeh, Mansoor Salehi, N. Nouri, M. Hosseinzadeh, N. Nouri","doi":"10.1155/2015/398063","DOIUrl":"https://doi.org/10.1155/2015/398063","url":null,"abstract":"Misalignments of low-copy repeats (LCRs) located in chromosome 22, particularly band 22q11.2, predispose to rearrangements. A variety of phenotypic features are associated with 22q11.2 microduplication syndrome which makes it challenging for the genetic counselors to recommend appropriate genetic assessment and counseling for the patients. In this study, multiplex ligation probe dependent amplification (MLPA) analysis was performed on 378 patients with cleft lip and/or palate to characterize rearrangements in patients suspected of 22q11.2 microduplication and microdeletion syndromes. Of 378 cases, 15 were diagnosed with a microdeletion with various sizes and 3 with duplications. For the first time in this study an atypical 0.6 Mb duplication is reported. Illustration of the phenotypes associated with the microduplications increases the knowledge of phenotypes reported in the literature.","PeriodicalId":37545,"journal":{"name":"Genetics Research International","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88208854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-01-01Epub Date: 2015-03-19DOI: 10.1155/2015/431487
M Govindaraj, M Vetriventhan, M Srinivasan
The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable. The pros and cons of the basic and advanced statistical tools available for measuring genetic diversity are briefly discussed and their source links (mostly) were provided to get easy access; thus, it improves the understanding of tools and its practical applicability to the researchers.
{"title":"Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives.","authors":"M Govindaraj, M Vetriventhan, M Srinivasan","doi":"10.1155/2015/431487","DOIUrl":"10.1155/2015/431487","url":null,"abstract":"<p><p>The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable. The pros and cons of the basic and advanced statistical tools available for measuring genetic diversity are briefly discussed and their source links (mostly) were provided to get easy access; thus, it improves the understanding of tools and its practical applicability to the researchers. </p>","PeriodicalId":37545,"journal":{"name":"Genetics Research International","volume":"2015 ","pages":"431487"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383386/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33216200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}