首页 > 最新文献

Herald of Advanced Information Technology最新文献

英文 中文
FEATURES OF USING DIVERSIFIERS OF HACKATHON-CONTESTS IN CANVAS-ORIENTED APPROACH TO GAME DESIGN 在面向画布的游戏设计方法中使用各种黑客马拉松竞赛的特点
Pub Date : 2019-02-20 DOI: 10.15276/HAIT.02.2019.6
O. Blazhko, Tetiana Luhova, Yuliia Troianovska
Tetiana A. Luhova, Candidate of Art Sciences, Associate Professor, Associate Professor of the Information Activity and Media Communications Department, E-mail: lug2308@gmail.com, ORCID: 0000-0002-3573-9978 Oleksandr A. Blazhko, Candidate of Technical Sciences, Associate Professor, Associate Professor of the System Software Department, E-mail: blazhko@ieee.org , ORCID: 0000-0001-7413-275X Yuliia L. Troianovska, Senior Lecturer of the Information System Department, E-mail: troyanovskaja@gmail.com, ORCID: 0000-0002-6716-9391 Odessa National Polytechnic University, Shevchenko av, 1, Odessa, Ukraine, 65044
Tetiana A. Luhova,艺术科学候选人,副教授,信息活动与媒体传播系副教授,E-mail: lug2308@gmail.com, ORCID: 0000-0002-3573-9978 Oleksandr A. Blazhko,技术科学候选人,副教授,系统软件系副教授,E-mail: blazhko@ieee.org, ORCID: 0000-0001-7413-275X Yuliia L. Troianovska,信息系统系高级讲师,E-mail:troyanovskaja@gmail.com, ORCID: 0000-0002-6716-9391敖德萨国立理工大学,舍甫琴科1,乌克兰敖德萨65044
{"title":"FEATURES OF USING DIVERSIFIERS OF HACKATHON-CONTESTS IN CANVAS-ORIENTED APPROACH TO GAME DESIGN","authors":"O. Blazhko, Tetiana Luhova, Yuliia Troianovska","doi":"10.15276/HAIT.02.2019.6","DOIUrl":"https://doi.org/10.15276/HAIT.02.2019.6","url":null,"abstract":"Tetiana A. Luhova, Candidate of Art Sciences, Associate Professor, Associate Professor of the Information Activity and Media Communications Department, E-mail: lug2308@gmail.com, ORCID: 0000-0002-3573-9978 Oleksandr A. Blazhko, Candidate of Technical Sciences, Associate Professor, Associate Professor of the System Software Department, E-mail: blazhko@ieee.org , ORCID: 0000-0001-7413-275X Yuliia L. Troianovska, Senior Lecturer of the Information System Department, E-mail: troyanovskaja@gmail.com, ORCID: 0000-0002-6716-9391 Odessa National Polytechnic University, Shevchenko av, 1, Odessa, Ukraine, 65044","PeriodicalId":375628,"journal":{"name":"Herald of Advanced Information Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133349018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VOLTERRA NEURAL NETWORK CONSTRUCTION IN THE NONLINEAR DYNAMIC SYSTEMS MODELING PROBLEM Volterra神经网络在非线性动态系统建模中的构造问题
Pub Date : 2019-02-12 DOI: 10.15276/hait.01.2019.2
O. Ruban, Олександр Дмитрович Рубан, Александр Дмитриевич Рубан
The features of using the theory of Volterra series and neural networks in problems of nonlinear dynamic systems modeling are considered. A comparative analysis of methods for constructing models of nonlinear dynamic systems based on the theory of Volterra series and neural networks is carried out; areas of effective application of each method are indicated. The problem statement is formulated, consisting in the creation of a mathematical apparatus for transforming models of nonlinear dynamic systems derived from the Volterra series apparatus into an artificial neural network of a certain structure. The three-layer structure of a direct signal propagation neural network has been substantiated and investigated for represent nonlinear dynamic systems. It is outlined a class of systems that can be efficiently approximated by this network. The dependence of the Volterra kernels coefficients and the weighting coefficients of the hidden layer of the three-layer forward-propagation neural network is established. An algorithm for constructing an artificial neural network based on the Volterra series is given. The results of computer simulation of nonlinear dynamic systems using the Volterra neural network and direct signal propagation neural network are presented. The analysis of experimental data confirms the effectiveness of using Volterra neural networks in problems of modeling nonlinear dynamic systems. Conclusions and recommendations on the effective use of Volterra neural networks for modeling nonlinear dynamic systems are made.
考虑了在非线性动态系统建模问题中应用Volterra级数理论和神经网络的特点。对比分析了基于Volterra级数理论和神经网络理论的非线性动力系统模型构建方法;指出了每种方法的有效应用领域。问题陈述是公式化的,包括创建一个数学装置,用于将从Volterra系列装置导出的非线性动力系统模型转换为具有一定结构的人工神经网络。对非线性动态系统的直接信号传播神经网络的三层结构进行了验证和研究。概述了一类可以用该网络有效逼近的系统。建立了三层前向传播神经网络的Volterra核系数与隐层权重系数的依赖关系。给出了一种基于Volterra级数的人工神经网络构造算法。给出了用Volterra神经网络和直接信号传播神经网络对非线性动态系统进行计算机仿真的结果。实验数据的分析证实了Volterra神经网络在非线性动态系统建模问题中的有效性。对Volterra神经网络在非线性动态系统建模中的有效应用提出了结论和建议。
{"title":"VOLTERRA NEURAL NETWORK CONSTRUCTION IN THE NONLINEAR DYNAMIC SYSTEMS MODELING PROBLEM","authors":"O. Ruban, Олександр Дмитрович Рубан, Александр Дмитриевич Рубан","doi":"10.15276/hait.01.2019.2","DOIUrl":"https://doi.org/10.15276/hait.01.2019.2","url":null,"abstract":"The features of using the theory of Volterra series and neural networks in problems of nonlinear dynamic systems modeling are considered. A comparative analysis of methods for constructing models of nonlinear dynamic systems based on the theory of Volterra series and neural networks is carried out; areas of effective application of each method are indicated. The problem statement is formulated, consisting in the creation of a mathematical apparatus for transforming models of nonlinear dynamic systems derived from the Volterra series apparatus into an artificial neural network of a certain structure. The three-layer structure of a direct signal propagation neural network has been substantiated and investigated for represent nonlinear dynamic systems. It is outlined a class of systems that can be efficiently approximated by this network. The dependence of the Volterra kernels coefficients and the weighting coefficients of the hidden layer of the three-layer forward-propagation neural network is established. An algorithm for constructing an artificial neural network based on the Volterra series is given. The results of computer simulation of nonlinear dynamic systems using the Volterra neural network and direct signal propagation neural network are presented. The analysis of experimental data confirms the effectiveness of using Volterra neural networks in problems of modeling nonlinear dynamic systems. Conclusions and recommendations on the effective use of Volterra neural networks for modeling nonlinear dynamic systems are made.","PeriodicalId":375628,"journal":{"name":"Herald of Advanced Information Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121846524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ON THE CONSTRUCTION OF A SOFTWARE ARCHITECTURE FOR NUCLEAR SYSTEMS ON A CRYSTAL 晶体核系统软件体系结构的构建
Pub Date : 2019-02-10 DOI: 10.15276/HAIT.01.2019.1
V. Vychuzhanin, Владимир Викторович Вычужанин, Володимир Викторович Вичужанін
{"title":"ON THE CONSTRUCTION OF A SOFTWARE ARCHITECTURE FOR NUCLEAR SYSTEMS ON A CRYSTAL","authors":"V. Vychuzhanin, Владимир Викторович Вычужанин, Володимир Викторович Вичужанін","doi":"10.15276/HAIT.01.2019.1","DOIUrl":"https://doi.org/10.15276/HAIT.01.2019.1","url":null,"abstract":"","PeriodicalId":375628,"journal":{"name":"Herald of Advanced Information Technology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125675390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MODELING THE MOTION OF A SOLID BODY UNDER THE ACTION OF THE MOMENT OF LIGHT PRESSURE IN THE MEDIUM WITH RESISTANCE 模拟固体在具有阻力的介质中受光压力矩作用下的运动
Pub Date : 2019-02-10 DOI: 10.15276/hait.01.2019.5
A. Rachinskaya
{"title":"MODELING THE MOTION OF A SOLID BODY UNDER THE ACTION OF THE MOMENT OF LIGHT PRESSURE IN THE MEDIUM WITH RESISTANCE","authors":"A. Rachinskaya","doi":"10.15276/hait.01.2019.5","DOIUrl":"https://doi.org/10.15276/hait.01.2019.5","url":null,"abstract":"","PeriodicalId":375628,"journal":{"name":"Herald of Advanced Information Technology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115353880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CLASSIFYING MIXED PATTERNS OF PROTEINS IN MICROSCOPIC IMAGES WITH DEEP NEURAL NETWORKS 用深度神经网络对显微图像中蛋白质混合模式进行分类
Pub Date : 2019-01-17 DOI: 10.15276/hait.01.2019.3
B. Tymchenko, Anhelina Hramatik, Heorhii Tulchiy, S. Antoshchuk, Борис Ігорович Тимченко, Ангеліна Антоліївна Граматік, Георгій Петрович Tульчий, Світлана Григорівна Антощук, Борис Игоревич Тимченко, Ангелина Анатольевна Граматик, Георгий Петрович Тульчий, Светлана Григорьевна Антощук
Nowadays, accurate diagnosis of diseases, their treatment and prognosis is a very acute problem of modern medicine. By studying information about human proteins, you can identify differentially expressed proteins. These proteins are potentially interesting biomarkers that can be used for an accurate diagnosis, prognosis, or selection of individual treatments, especially for cancer. A surprising finding from this research is that we have relatively few proteins that are tissue specific. Almost half of all proteins are categorized as housekeeping proteins, expressed in all cells. Only 2,300 proteins in the human body have been identified as tissue enriched, meaning they have elevated expression levels in certain tissues. Thanks to advances in high-throughput microscopy, images are generated too quickly for manual evaluation. Consequently, the need for automating the analysis of biomedical images is as great as ever to speed up the understanding of human cells and diseases. Historically, the classification of proteins was limited to individual patterns in one or more cell types, but in order to fully understand the complexity of a human cell, models must classify mixed patterns according to a number of different human cells. The article formulates the problem of image classification in medical research. In this area, classification methods using deep convolutional neural networks are actively used. Presented article gives a brief overview of the various approaches and methods of similar research. As a dataset was taken “The Human Protein Atlas”, that presents a tissue-based map of the human proteome, completed in 2014 after 11 years of research. All protein expression profiling data is publicly accessible in an interactive database, enabling tissue-based exploration of the human proteome. It was done an analysis of the work and the methods that were used during the research. To solve this problem, the deep neural network model is proposed taking into account the characteristics of the domain and the sample under study. The neural network model is based on Inception-v3 architecture. Optimization procedure contains combination of several tweaks for fast convergence: stochastic gradient descent with warm restarts (learning rate schedule for exploring different local minima), progressive image resizing (training starts from small resolution and sequentially increases each cycle of SGDR). We propose new method for threshold selection for F1 measure. Developed model can be used to create an instrument integrated into the medical system of intellectual microscopy to determine the location of the protein from a high-performance image.
疾病的准确诊断、治疗和预后是现代医学亟待解决的问题。通过研究人类蛋白质的信息,你可以识别差异表达的蛋白质。这些蛋白质是潜在的有趣的生物标志物,可用于准确诊断、预后或选择个体治疗,特别是癌症。这项研究的一个令人惊讶的发现是,我们只有相对较少的组织特异性蛋白质。几乎一半的蛋白质被归类为管家蛋白,在所有细胞中表达。人体中只有2300种蛋白质被确定为组织富集蛋白,这意味着它们在某些组织中的表达水平升高。由于高通量显微镜技术的进步,图像生成速度太快,无法进行人工评估。因此,自动化生物医学图像分析的需求与以往一样大,以加快对人类细胞和疾病的理解。从历史上看,蛋白质的分类仅限于一种或多种细胞类型中的单个模式,但为了充分了解人类细胞的复杂性,模型必须根据许多不同的人类细胞对混合模式进行分类。阐述了医学研究中的图像分类问题。在这一领域,使用深度卷积神经网络的分类方法被积极使用。本文简要概述了类似研究的各种途径和方法。作为一个数据集,“人类蛋白质图谱”呈现了人类蛋白质组的组织图,经过11年的研究,于2014年完成。所有蛋白质表达谱数据都可以在交互式数据库中公开访问,从而实现基于组织的人类蛋白质组探索。对研究中所做的工作和使用的方法进行了分析。为了解决这一问题,提出了考虑域和待研究样本特征的深度神经网络模型。神经网络模型基于Inception-v3架构。优化过程包含几个快速收敛的调整组合:随机梯度下降与热重启(学习率计划探索不同的局部最小值),渐进图像调整大小(训练从小分辨率开始,依次增加每个SGDR周期)。提出了一种新的F1测度阈值选择方法。开发的模型可用于创建集成到智能显微镜医疗系统的仪器,以从高性能图像中确定蛋白质的位置。
{"title":"CLASSIFYING MIXED PATTERNS OF PROTEINS IN MICROSCOPIC IMAGES WITH DEEP NEURAL NETWORKS","authors":"B. Tymchenko, Anhelina Hramatik, Heorhii Tulchiy, S. Antoshchuk, Борис Ігорович Тимченко, Ангеліна Антоліївна Граматік, Георгій Петрович Tульчий, Світлана Григорівна Антощук, Борис Игоревич Тимченко, Ангелина Анатольевна Граматик, Георгий Петрович Тульчий, Светлана Григорьевна Антощук","doi":"10.15276/hait.01.2019.3","DOIUrl":"https://doi.org/10.15276/hait.01.2019.3","url":null,"abstract":"Nowadays, accurate diagnosis of diseases, their treatment and prognosis is a very acute problem of modern medicine. By studying information about human proteins, you can identify differentially expressed proteins. These proteins are potentially interesting biomarkers that can be used for an accurate diagnosis, prognosis, or selection of individual treatments, especially for cancer. A surprising finding from this research is that we have relatively few proteins that are tissue specific. Almost half of all proteins are categorized as housekeeping proteins, expressed in all cells. Only 2,300 proteins in the human body have been identified as tissue enriched, meaning they have elevated expression levels in certain tissues. Thanks to advances in high-throughput microscopy, images are generated too quickly for manual evaluation. Consequently, the need for automating the analysis of biomedical images is as great as ever to speed up the understanding of human cells and diseases. Historically, the classification of proteins was limited to individual patterns in one or more cell types, but in order to fully understand the complexity of a human cell, models must classify mixed patterns according to a number of different human cells. The article formulates the problem of image classification in medical research. In this area, classification methods using deep convolutional neural networks are actively used. Presented article gives a brief overview of the various approaches and methods of similar research. As a dataset was taken “The Human Protein Atlas”, that presents a tissue-based map of the human proteome, completed in 2014 after 11 years of research. All protein expression profiling data is publicly accessible in an interactive database, enabling tissue-based exploration of the human proteome. It was done an analysis of the work and the methods that were used during the research. To solve this problem, the deep neural network model is proposed taking into account the characteristics of the domain and the sample under study. The neural network model is based on Inception-v3 architecture. Optimization procedure contains combination of several tweaks for fast convergence: stochastic gradient descent with warm restarts (learning rate schedule for exploring different local minima), progressive image resizing (training starts from small resolution and sequentially increases each cycle of SGDR). We propose new method for threshold selection for F1 measure. Developed model can be used to create an instrument integrated into the medical system of intellectual microscopy to determine the location of the protein from a high-performance image.","PeriodicalId":375628,"journal":{"name":"Herald of Advanced Information Technology","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134282938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ORGANIZATION OF COMPUTATIONS IN CLUSTERS USING TRANSPARENT PARALLELIZING PRINCIPLES 使用透明并行化原则在集群中组织计算
Pub Date : 2019-01-15 DOI: 10.15276/hait.01.2019.6
V. Pavlenko, S. Pavlenko, Віталій Данилович Павленко, Сергій Віталійович Павлєнко, Віталій Данилович Павленко, Сергей Витальевич Павленко
{"title":"ORGANIZATION OF COMPUTATIONS IN CLUSTERS USING TRANSPARENT PARALLELIZING PRINCIPLES","authors":"V. Pavlenko, S. Pavlenko, Віталій Данилович Павленко, Сергій Віталійович Павлєнко, Віталій Данилович Павленко, Сергей Витальевич Павленко","doi":"10.15276/hait.01.2019.6","DOIUrl":"https://doi.org/10.15276/hait.01.2019.6","url":null,"abstract":"","PeriodicalId":375628,"journal":{"name":"Herald of Advanced Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114649688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
DESIGN OF AUTOMATED INFORMATION SUPPORT SYSTEM FOR MARINE AGENT IN SERVICE ERGATIC SYSTEMS 船舶代理服务系统自动化信息支持系统设计
Pub Date : 2018-11-28 DOI: 10.15276/hait.01.2018.4
I. Petrov, N. Rudnichenko, Denis Shibaev, Natalia Shibaeva, V. Vychuzhanin
{"title":"DESIGN OF AUTOMATED INFORMATION SUPPORT SYSTEM FOR MARINE AGENT IN SERVICE ERGATIC SYSTEMS","authors":"I. Petrov, N. Rudnichenko, Denis Shibaev, Natalia Shibaeva, V. Vychuzhanin","doi":"10.15276/hait.01.2018.4","DOIUrl":"https://doi.org/10.15276/hait.01.2018.4","url":null,"abstract":"","PeriodicalId":375628,"journal":{"name":"Herald of Advanced Information Technology","volume":" 32","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132094832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
INTEGRATION OF THE PROCESS OF COMPUTER GAME DEVELOPMENT WITH AUGMENTED REALITY IN STREAM-EDUCATION COMPONENTS 在流教育组件中集成计算机游戏开发过程与增强现实
Pub Date : 2018-11-28 DOI: 10.15276/hait.01.2018.5
T. Gumennykova, Tetiana Luhova, Oksana Riashchenko, Yuliia Troianovska
{"title":"INTEGRATION OF THE PROCESS OF COMPUTER GAME DEVELOPMENT WITH AUGMENTED REALITY IN STREAM-EDUCATION COMPONENTS","authors":"T. Gumennykova, Tetiana Luhova, Oksana Riashchenko, Yuliia Troianovska","doi":"10.15276/hait.01.2018.5","DOIUrl":"https://doi.org/10.15276/hait.01.2018.5","url":null,"abstract":"","PeriodicalId":375628,"journal":{"name":"Herald of Advanced Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128995280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
METHOD OF THE SENSOR NETWORK RESOURCES ALLOCATION IN THE CONDITIONS OF EDGE COMPUTING 边缘计算条件下的传感器网络资源分配方法
Pub Date : 2018-11-28 DOI: 10.15276/hait.01.2018.3
S. Antoshchuk, Ivan Lobachev, Roman Maleryk
{"title":"METHOD OF THE SENSOR NETWORK RESOURCES ALLOCATION IN THE CONDITIONS OF EDGE COMPUTING","authors":"S. Antoshchuk, Ivan Lobachev, Roman Maleryk","doi":"10.15276/hait.01.2018.3","DOIUrl":"https://doi.org/10.15276/hait.01.2018.3","url":null,"abstract":"","PeriodicalId":375628,"journal":{"name":"Herald of Advanced Information Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125947743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AUTOMATION OF THE PREPARATION PROCESS WEAKLY-STRUCTURED MULTI-DIMENSIONAL DATA OF SOCIOLOGICAL SURVEYS IN THE DATA MINING SYSTEM 数据挖掘系统中弱结构化多维社会学调查数据编制过程的自动化
Pub Date : 2018-11-28 DOI: 10.15276/hait.01.2018.1
Olena Arsirii, Oksana Babilunha, Olga Manikaeva, Oleksii Rudenko
{"title":"AUTOMATION OF THE PREPARATION PROCESS WEAKLY-STRUCTURED MULTI-DIMENSIONAL DATA OF SOCIOLOGICAL SURVEYS IN THE DATA MINING SYSTEM","authors":"Olena Arsirii, Oksana Babilunha, Olga Manikaeva, Oleksii Rudenko","doi":"10.15276/hait.01.2018.1","DOIUrl":"https://doi.org/10.15276/hait.01.2018.1","url":null,"abstract":"","PeriodicalId":375628,"journal":{"name":"Herald of Advanced Information Technology","volume":"103 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134524436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Herald of Advanced Information Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1