Pub Date : 2023-10-27DOI: 10.3390/robotics12060145
Luis D. Ortega, Erick S. Loyaga, Patricio J. Cruz, Henry P. Lema, Jackeline Abad, Esteban A. Valencia
Unmanned Aerial Vehicles (UAVs) are versatile, adapting hardware and software for research. They are vital for remote monitoring, especially in challenging settings such as volcano observation with limited access. In response, economical computer vision systems provide a remedy by processing data, boosting UAV autonomy, and assisting in maneuvering. Through the application of these technologies, researchers can effectively monitor remote areas, thus improving surveillance capabilities. Moreover, flight controllers employ onboard tools to gather data, further enhancing UAV navigation during surveillance tasks. For energy efficiency and comprehensive coverage, this paper introduces a budget-friendly prototype aiding UAV navigation, minimizing effects on endurance. The prototype prioritizes improved maneuvering via the integrated landing and obstacle avoidance system (LOAS). Employing open-source software and MAVLink communication, these systems underwent testing on a Pixhawk-equipped quadcopter. Programmed on a Raspberry Pi onboard computer, the prototype includes a distance sensor and basic camera to meet low computational and weight demands.Tests occurred in controlled environments, with systems performing well in 90% of cases. The Pixhawk and Raspberry Pi documented quad actions during evasive and landing maneuvers. Results prove the prototype’s efficacy in refining UAV navigation. Integrating this cost-effective, energy-efficient model holds promise for long-term mission enhancement—cutting costs, expanding terrain coverage, and boosting surveillance capabilities.
{"title":"Low-Cost Computer-Vision-Based Embedded Systems for UAVs","authors":"Luis D. Ortega, Erick S. Loyaga, Patricio J. Cruz, Henry P. Lema, Jackeline Abad, Esteban A. Valencia","doi":"10.3390/robotics12060145","DOIUrl":"https://doi.org/10.3390/robotics12060145","url":null,"abstract":"Unmanned Aerial Vehicles (UAVs) are versatile, adapting hardware and software for research. They are vital for remote monitoring, especially in challenging settings such as volcano observation with limited access. In response, economical computer vision systems provide a remedy by processing data, boosting UAV autonomy, and assisting in maneuvering. Through the application of these technologies, researchers can effectively monitor remote areas, thus improving surveillance capabilities. Moreover, flight controllers employ onboard tools to gather data, further enhancing UAV navigation during surveillance tasks. For energy efficiency and comprehensive coverage, this paper introduces a budget-friendly prototype aiding UAV navigation, minimizing effects on endurance. The prototype prioritizes improved maneuvering via the integrated landing and obstacle avoidance system (LOAS). Employing open-source software and MAVLink communication, these systems underwent testing on a Pixhawk-equipped quadcopter. Programmed on a Raspberry Pi onboard computer, the prototype includes a distance sensor and basic camera to meet low computational and weight demands.Tests occurred in controlled environments, with systems performing well in 90% of cases. The Pixhawk and Raspberry Pi documented quad actions during evasive and landing maneuvers. Results prove the prototype’s efficacy in refining UAV navigation. Integrating this cost-effective, energy-efficient model holds promise for long-term mission enhancement—cutting costs, expanding terrain coverage, and boosting surveillance capabilities.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"24 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136263985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-17DOI: 10.3390/robotics12050144
Pascal Hinrichs, Kathrin Seibert, Pedro Arizpe Gómez, Max Pfingsthorn, Andreas Hein
Robotic manipulators can interact with large, heavy objects through whole-arm manipulation. Combined with direct physical interaction between humans and robots, the patient can be anchored in care. However, the complexity of this scenario requires control by a caregiver. We are investigating how such a complex form of manipulation can be controlled by nurses and whether the use of such a system creates physical relief. The use case chosen was washing the back of a patient in the lateral position. The operability of the remote control from the tele-nurse’s point of view, the change in the posture of the nurse on site, the execution times, the evaluation of the cooperation between human and robot, and the evaluation of the system from the nurse’s point of view and from the patient’s point of view were evaluated. The results show that the posture of the worker improved by 11.93% on average, and by a maximum of 26.13%. Ease of use is rated as marginally high. The manipulator is considered helpful. The study shows that remote whole-arm manipulation can anchor bedridden patients in the lateral position and that this system can be operated by nurses and leads to an improvement in working posture.
{"title":"A Robotic System to Anchor a Patient in a Lateral Position and Reduce Nurses’ Physical Strain","authors":"Pascal Hinrichs, Kathrin Seibert, Pedro Arizpe Gómez, Max Pfingsthorn, Andreas Hein","doi":"10.3390/robotics12050144","DOIUrl":"https://doi.org/10.3390/robotics12050144","url":null,"abstract":"Robotic manipulators can interact with large, heavy objects through whole-arm manipulation. Combined with direct physical interaction between humans and robots, the patient can be anchored in care. However, the complexity of this scenario requires control by a caregiver. We are investigating how such a complex form of manipulation can be controlled by nurses and whether the use of such a system creates physical relief. The use case chosen was washing the back of a patient in the lateral position. The operability of the remote control from the tele-nurse’s point of view, the change in the posture of the nurse on site, the execution times, the evaluation of the cooperation between human and robot, and the evaluation of the system from the nurse’s point of view and from the patient’s point of view were evaluated. The results show that the posture of the worker improved by 11.93% on average, and by a maximum of 26.13%. Ease of use is rated as marginally high. The manipulator is considered helpful. The study shows that remote whole-arm manipulation can anchor bedridden patients in the lateral position and that this system can be operated by nurses and leads to an improvement in working posture.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135994279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-12DOI: 10.3390/robotics12050143
Paolo Righettini, Roberto Strada, Filippo Cortinovis
The ability to predict the maximal performance of an industrial robot executing non-deterministic tasks can improve process productivity through time-based planning and scheduling strategies. These strategies require the configuration and the comparison of a large number of tasks in real time for making a decision; therefore, an efficient task execution time estimation method is required. In this work, we propose the use of neural network models to approximate the task time function of a generic multi-DOF robot; the models are trained using data obtained from sophisticated motion planning algorithms that optimize the shape of the trajectory and the executed motion law, taking into account the kinematic and dynamic model of the robot. For scheduling purposes, we propose to evaluate only the neural network models, thus confining the online use of the motion planning software to the full definition of the actually scheduled task. The proposed neural network model presents a uniform interface and an implementation procedure that is easily adaptable to generic robots and tasks. The paper’s results show that the models are accurate and more efficient than the full planning pipeline, having evaluation times compatible with real-time process optimization.
{"title":"Neural Network Mapping of Industrial Robots’ Task Times for Real-Time Process Optimization","authors":"Paolo Righettini, Roberto Strada, Filippo Cortinovis","doi":"10.3390/robotics12050143","DOIUrl":"https://doi.org/10.3390/robotics12050143","url":null,"abstract":"The ability to predict the maximal performance of an industrial robot executing non-deterministic tasks can improve process productivity through time-based planning and scheduling strategies. These strategies require the configuration and the comparison of a large number of tasks in real time for making a decision; therefore, an efficient task execution time estimation method is required. In this work, we propose the use of neural network models to approximate the task time function of a generic multi-DOF robot; the models are trained using data obtained from sophisticated motion planning algorithms that optimize the shape of the trajectory and the executed motion law, taking into account the kinematic and dynamic model of the robot. For scheduling purposes, we propose to evaluate only the neural network models, thus confining the online use of the motion planning software to the full definition of the actually scheduled task. The proposed neural network model presents a uniform interface and an implementation procedure that is easily adaptable to generic robots and tasks. The paper’s results show that the models are accurate and more efficient than the full planning pipeline, having evaluation times compatible with real-time process optimization.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"120 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136014215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-09DOI: 10.3390/robotics12050142
Oscar de Groot, Laurens Valk, Tamas Keviczky
In this work, we propose two cooperative passivity-based control methods for networks of mechanical systems. By cooperatively synchronizing the end-effector coordinates of the individual agents, we achieve cooperation between systems of different types. The underlying passivity property of our control approaches ensures that cooperation is stable and robust. Neither of the two approaches rely on the modeling information of neighbors, locally, which simplifies the interconnection of applicable systems and makes the approaches modular in their use. Our first approach is a generalized cooperative Interconnection-and-Damping Assignment passivity-based control (IDA-PBC) scheme for networks of fully actuated and underactuated systems. Our approach leverages the definition of end-effector coordinates in existing single-agent IDA-PBC solutions for underactuated systems to satisfy the matching conditions, independently of the cooperative control input. Accordingly, our approach integrates a large set of existing single-agent solutions and facilitates cooperative control between these and fully actuated systems. Our second approach proposes agent outputs composed of their end-effector coordinates and velocities to guarantee cooperative stability for networks of fully actuated systems in the presence of communication delays. We validate both approaches in simulation and experiments.
{"title":"Cooperative Passivity-Based Control of Nonlinear Mechanical Systems","authors":"Oscar de Groot, Laurens Valk, Tamas Keviczky","doi":"10.3390/robotics12050142","DOIUrl":"https://doi.org/10.3390/robotics12050142","url":null,"abstract":"In this work, we propose two cooperative passivity-based control methods for networks of mechanical systems. By cooperatively synchronizing the end-effector coordinates of the individual agents, we achieve cooperation between systems of different types. The underlying passivity property of our control approaches ensures that cooperation is stable and robust. Neither of the two approaches rely on the modeling information of neighbors, locally, which simplifies the interconnection of applicable systems and makes the approaches modular in their use. Our first approach is a generalized cooperative Interconnection-and-Damping Assignment passivity-based control (IDA-PBC) scheme for networks of fully actuated and underactuated systems. Our approach leverages the definition of end-effector coordinates in existing single-agent IDA-PBC solutions for underactuated systems to satisfy the matching conditions, independently of the cooperative control input. Accordingly, our approach integrates a large set of existing single-agent solutions and facilitates cooperative control between these and fully actuated systems. Our second approach proposes agent outputs composed of their end-effector coordinates and velocities to guarantee cooperative stability for networks of fully actuated systems in the presence of communication delays. We validate both approaches in simulation and experiments.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135094014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-09DOI: 10.3390/robotics12050141
Luis Pantoja-Garcia, Vicente Parra-Vega, Rodolfo Garcia-Rodriguez, Carlos Ernesto Vázquez-García
Reinforcement learning (RL) is explored for motor control of a novel pneumatic-driven soft robot modeled after continuum media with a varying density. This model complies with closed-form Lagrangian dynamics, which fulfills the fundamental structural property of passivity, among others. Then, the question arises of how to synthesize a passivity-based RL model to control the unknown continuum soft robot dynamics to exploit its input–output energy properties advantageously throughout a reward-based neural network controller. Thus, we propose a continuous-time Actor–Critic scheme for tracking tasks of the continuum 3D soft robot subject to Lipschitz disturbances. A reward-based temporal difference leads to learning with a novel discontinuous adaptive mechanism of Critic neural weights. Finally, the reward and integral of the Bellman error approximation reinforce the adaptive mechanism of Actor neural weights. Closed-loop stability is guaranteed in the sense of Lyapunov, which leads to local exponential convergence of tracking errors based on integral sliding modes. Notably, it is assumed that dynamics are unknown, yet the control is continuous and robust. A representative simulation study shows the effectiveness of our proposal for tracking tasks.
{"title":"A Novel Actor—Critic Motor Reinforcement Learning for Continuum Soft Robots","authors":"Luis Pantoja-Garcia, Vicente Parra-Vega, Rodolfo Garcia-Rodriguez, Carlos Ernesto Vázquez-García","doi":"10.3390/robotics12050141","DOIUrl":"https://doi.org/10.3390/robotics12050141","url":null,"abstract":"Reinforcement learning (RL) is explored for motor control of a novel pneumatic-driven soft robot modeled after continuum media with a varying density. This model complies with closed-form Lagrangian dynamics, which fulfills the fundamental structural property of passivity, among others. Then, the question arises of how to synthesize a passivity-based RL model to control the unknown continuum soft robot dynamics to exploit its input–output energy properties advantageously throughout a reward-based neural network controller. Thus, we propose a continuous-time Actor–Critic scheme for tracking tasks of the continuum 3D soft robot subject to Lipschitz disturbances. A reward-based temporal difference leads to learning with a novel discontinuous adaptive mechanism of Critic neural weights. Finally, the reward and integral of the Bellman error approximation reinforce the adaptive mechanism of Actor neural weights. Closed-loop stability is guaranteed in the sense of Lyapunov, which leads to local exponential convergence of tracking errors based on integral sliding modes. Notably, it is assumed that dynamics are unknown, yet the control is continuous and robust. A representative simulation study shows the effectiveness of our proposal for tracking tasks.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135094160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-09DOI: 10.3390/robotics12050140
Jacob Gonzalez-Villagomez, Esau Gonzalez-Villagomez, Carlos Rodriguez-Donate, Eduardo Cabal-Yepez, Luis Manuel Ledesma-Carrillo, Geovanni Hernández-Gómez
Identification is considered a very important procedure, within the control area, to estimate the best-possible approximate model among different designs. Its significance comes from the fact that more than 75% of the cost associated with an advanced control project is aimed at obtaining a precise mathematical modeling. Therefore, in this work, an exhaustive analysis was carried out to determine the appropriate input stimulus for an unknown real system that must be controlled, with the aim of accurately estimating its transfer function (TF) using the empirical identification method (gray-box). The analysis was performed quantitatively by means of three tests: (i) the PID controller step response was evaluated theoretically; (ii) the controller performance was assessed in a Cartesian robot by tracking a trajectory defined through a Gaussian acceleration profile; (iii) the efficiency of the determined input stimulus with the best performance on inferring the TF for the system to be controlled was verified by assessing its operation in a real system, through repeatability tests, utilizing the integral errors.
{"title":"An Experimental Study of the Empirical Identification Method to Infer an Unknown System Transfer Function","authors":"Jacob Gonzalez-Villagomez, Esau Gonzalez-Villagomez, Carlos Rodriguez-Donate, Eduardo Cabal-Yepez, Luis Manuel Ledesma-Carrillo, Geovanni Hernández-Gómez","doi":"10.3390/robotics12050140","DOIUrl":"https://doi.org/10.3390/robotics12050140","url":null,"abstract":"Identification is considered a very important procedure, within the control area, to estimate the best-possible approximate model among different designs. Its significance comes from the fact that more than 75% of the cost associated with an advanced control project is aimed at obtaining a precise mathematical modeling. Therefore, in this work, an exhaustive analysis was carried out to determine the appropriate input stimulus for an unknown real system that must be controlled, with the aim of accurately estimating its transfer function (TF) using the empirical identification method (gray-box). The analysis was performed quantitatively by means of three tests: (i) the PID controller step response was evaluated theoretically; (ii) the controller performance was assessed in a Cartesian robot by tracking a trajectory defined through a Gaussian acceleration profile; (iii) the efficiency of the determined input stimulus with the best performance on inferring the TF for the system to be controlled was verified by assessing its operation in a real system, through repeatability tests, utilizing the integral errors.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"116 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135094239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-05DOI: 10.3390/robotics12050139
João Filipe Ferreira, David Portugal, Maria Eduarda Andrada, Pedro Machado, Rui P. Rocha, Paulo Peixoto
Artificial perception for robots operating in outdoor natural environments, including forest scenarios, has been the object of a substantial amount of research for decades. Regardless, this has proven to be one of the most difficult research areas in robotics and has yet to be robustly solved. This happens namely due to difficulties in dealing with environmental conditions (trees and relief, weather conditions, dust, smoke, etc.), the visual homogeneity of natural landscapes as opposed to the diversity of natural obstacles to be avoided, and the effect of vibrations or external forces such as wind, among other technical challenges. Consequently, we propose a new survey, describing the current state of the art in artificial perception and sensing for robots in precision forestry. Our goal is to provide a detailed literature review of the past few decades of active research in this field. With this review, we attempted to provide valuable insights into the current scientific outlook and identify necessary advancements in the area. We have found that the introduction of robotics in precision forestry imposes very significant scientific and technological problems in artificial sensing and perception, making this a particularly challenging field with an impact on economics, society, technology, and standards. Based on this analysis, we put forward a roadmap to address the outstanding challenges in its respective scientific and technological landscape, namely the lack of training data for perception models, open software frameworks, robust solutions for multi-robot teams, end-user involvement, use case scenarios, computational resource planning, management solutions to satisfy real-time operation constraints, and systematic field testing. We argue that following this roadmap will allow for robotics in precision forestry to fulfil its considerable potential.
{"title":"Sensing and Artificial Perception for Robots in Precision Forestry: A Survey","authors":"João Filipe Ferreira, David Portugal, Maria Eduarda Andrada, Pedro Machado, Rui P. Rocha, Paulo Peixoto","doi":"10.3390/robotics12050139","DOIUrl":"https://doi.org/10.3390/robotics12050139","url":null,"abstract":"Artificial perception for robots operating in outdoor natural environments, including forest scenarios, has been the object of a substantial amount of research for decades. Regardless, this has proven to be one of the most difficult research areas in robotics and has yet to be robustly solved. This happens namely due to difficulties in dealing with environmental conditions (trees and relief, weather conditions, dust, smoke, etc.), the visual homogeneity of natural landscapes as opposed to the diversity of natural obstacles to be avoided, and the effect of vibrations or external forces such as wind, among other technical challenges. Consequently, we propose a new survey, describing the current state of the art in artificial perception and sensing for robots in precision forestry. Our goal is to provide a detailed literature review of the past few decades of active research in this field. With this review, we attempted to provide valuable insights into the current scientific outlook and identify necessary advancements in the area. We have found that the introduction of robotics in precision forestry imposes very significant scientific and technological problems in artificial sensing and perception, making this a particularly challenging field with an impact on economics, society, technology, and standards. Based on this analysis, we put forward a roadmap to address the outstanding challenges in its respective scientific and technological landscape, namely the lack of training data for perception models, open software frameworks, robust solutions for multi-robot teams, end-user involvement, use case scenarios, computational resource planning, management solutions to satisfy real-time operation constraints, and systematic field testing. We argue that following this roadmap will allow for robotics in precision forestry to fulfil its considerable potential.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"159 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135482800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-05DOI: 10.3390/robotics12050138
Henrique Simas, Raffaele Di Di Gregorio, Roberto Simoni
3-XXRRU parallel manipulators (PMs) constitute a family of six-degrees-of-freedom (DOF) PMs with three limbs of type XXRRU, where R and U stand for revolute pair and universal joint, respectively, and XX indicates any actuated two-DOF mechanism that moves the axis of the first R-pair. The members of this family share the fact that they all become particular 3-RRU structures when the actuators are locked. By exploiting this feature, the present paper proposes a general approach, which holds for all the members of this family, to analyze the instantaneous kinematics, workspace, and kinetostatic performances of any 3-XXRRU PM. The results of this study include the identification of singularity conditions without reference to a specific actuation system, the proposal of two specific dimensionless performance indices ranging from 0 to 1, the determination of the optimal actuation system, and the demonstration that 3-XXRRU PMs, when appropriately sized and actuated, possess a broad singularity-free workspace that is also fully isotropic. These findings hold significance in the context of the dimensional synthesis and control of 3-XXRRU PMs. Moreover, when combined with the closed-form solutions for their positional analysis, as demonstrated in a previous publication by the same authors, 3-XXRRU PMs emerge as intriguing alternatives to other six-DOF PMs. The efficacy of the proposed approach is further illustrated through a case study.
{"title":"Instantaneous Kinematics and Free-from-Singularity Workspace of 3-XXRRU Parallel Manipulators","authors":"Henrique Simas, Raffaele Di Di Gregorio, Roberto Simoni","doi":"10.3390/robotics12050138","DOIUrl":"https://doi.org/10.3390/robotics12050138","url":null,"abstract":"3-XXRRU parallel manipulators (PMs) constitute a family of six-degrees-of-freedom (DOF) PMs with three limbs of type XXRRU, where R and U stand for revolute pair and universal joint, respectively, and XX indicates any actuated two-DOF mechanism that moves the axis of the first R-pair. The members of this family share the fact that they all become particular 3-RRU structures when the actuators are locked. By exploiting this feature, the present paper proposes a general approach, which holds for all the members of this family, to analyze the instantaneous kinematics, workspace, and kinetostatic performances of any 3-XXRRU PM. The results of this study include the identification of singularity conditions without reference to a specific actuation system, the proposal of two specific dimensionless performance indices ranging from 0 to 1, the determination of the optimal actuation system, and the demonstration that 3-XXRRU PMs, when appropriately sized and actuated, possess a broad singularity-free workspace that is also fully isotropic. These findings hold significance in the context of the dimensional synthesis and control of 3-XXRRU PMs. Moreover, when combined with the closed-form solutions for their positional analysis, as demonstrated in a previous publication by the same authors, 3-XXRRU PMs emerge as intriguing alternatives to other six-DOF PMs. The efficacy of the proposed approach is further illustrated through a case study.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135482058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-30DOI: 10.3390/robotics12050135
Anni Zhao, Arash Toudeshki, Reza Ehsani, Jian-Qiao Sun
The Delta robot is a parallel robot that is over-actuated and has a highly nonlinear dynamic model, which poses a significant challenge to its control design. The inverse kinematics that maps the motor angles to the position of the end effector is highly nonlinear and extremely important for the control design of the Delta robot. It has been experimentally shown that geometry-based inverse kinematics is not accurate enough to capture the dynamics of the Delta robot due to manufacturing component errors, measurement errors, joint flexibility, backlash, friction, etc. To address this issue, we propose a neural network model to approximate the inverse kinematics of the Delta robot with stepper motors. The neural network model is trained with randomly sampled experimental data and implemented on the hardware in an open-loop control for trajectory tracking. Extensive experimental results show that the neural network model achieves excellent performance in terms of the trajectory tracking of the Delta robot under different operation conditions, and outperforms the geometry-based inverse kinematics model. A critical numerical observation indicates that neural networks trained with the specific trajectory data fall short of anticipated performance due to a lack of data. Conversely, neural networks trained on random experimental data capture the rich dynamics of the Delta robot and are quite robust to model uncertainties compared to geometry-based inverse kinematics.
{"title":"Data-Driven Inverse Kinematics Approximation of a Delta Robot with Stepper Motors","authors":"Anni Zhao, Arash Toudeshki, Reza Ehsani, Jian-Qiao Sun","doi":"10.3390/robotics12050135","DOIUrl":"https://doi.org/10.3390/robotics12050135","url":null,"abstract":"The Delta robot is a parallel robot that is over-actuated and has a highly nonlinear dynamic model, which poses a significant challenge to its control design. The inverse kinematics that maps the motor angles to the position of the end effector is highly nonlinear and extremely important for the control design of the Delta robot. It has been experimentally shown that geometry-based inverse kinematics is not accurate enough to capture the dynamics of the Delta robot due to manufacturing component errors, measurement errors, joint flexibility, backlash, friction, etc. To address this issue, we propose a neural network model to approximate the inverse kinematics of the Delta robot with stepper motors. The neural network model is trained with randomly sampled experimental data and implemented on the hardware in an open-loop control for trajectory tracking. Extensive experimental results show that the neural network model achieves excellent performance in terms of the trajectory tracking of the Delta robot under different operation conditions, and outperforms the geometry-based inverse kinematics model. A critical numerical observation indicates that neural networks trained with the specific trajectory data fall short of anticipated performance due to a lack of data. Conversely, neural networks trained on random experimental data capture the rich dynamics of the Delta robot and are quite robust to model uncertainties compared to geometry-based inverse kinematics.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"161 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136341376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prosthetic hand systems aim at restoring lost functionality in amputees. Manipulation and grasping are the main functions of the human hand, which are provided by skin sensitivity capable of protecting the hand from damage and perceiving the external environment. The present study aims at proposing a novel control strategy which improves the ability of the prosthetic hand to interact with the external environment by fostering the interaction of tactile (forces and slipping) and thermoceptive sensory information and by using them to guarantee grasp stability and improve user safety. The control strategy is based on force control with an internal position loop and slip detection, which is able to manage temperature information thanks to the interaction with objects at different temperatures. This architecture has been tested on a prosthetic hand, i.e., the IH2 Azzurra developed by Prensilia s.r.l, in different temperature and slippage conditions. The prosthetic system successfully performed the grasping tasks by managing the tactile and thermal information simultaneously. In particular, the system is able to guarantee a stable grasp during the execution of the tasks. Additionally, in the presence of an external stimulus (thermal or slippage), the prosthetic hand is able to react and always reacts to the stimulus instantaneously (reaction times ≤ 0.04 s, comparable to the one of the human being), regardless of its nature and in accordance with the control strategy. In this way, the prosthetic device is protected from damaging temperatures, the user is alerted of a dangerous situation and the stability of the grasp is restored in the event of a slip.
{"title":"Hand Prosthesis Sensorimotor Control Inspired by the Human Somatosensory System","authors":"Enrica Stefanelli, Francesca Cordella, Cosimo Gentile, Loredana Zollo","doi":"10.3390/robotics12050136","DOIUrl":"https://doi.org/10.3390/robotics12050136","url":null,"abstract":"Prosthetic hand systems aim at restoring lost functionality in amputees. Manipulation and grasping are the main functions of the human hand, which are provided by skin sensitivity capable of protecting the hand from damage and perceiving the external environment. The present study aims at proposing a novel control strategy which improves the ability of the prosthetic hand to interact with the external environment by fostering the interaction of tactile (forces and slipping) and thermoceptive sensory information and by using them to guarantee grasp stability and improve user safety. The control strategy is based on force control with an internal position loop and slip detection, which is able to manage temperature information thanks to the interaction with objects at different temperatures. This architecture has been tested on a prosthetic hand, i.e., the IH2 Azzurra developed by Prensilia s.r.l, in different temperature and slippage conditions. The prosthetic system successfully performed the grasping tasks by managing the tactile and thermal information simultaneously. In particular, the system is able to guarantee a stable grasp during the execution of the tasks. Additionally, in the presence of an external stimulus (thermal or slippage), the prosthetic hand is able to react and always reacts to the stimulus instantaneously (reaction times ≤ 0.04 s, comparable to the one of the human being), regardless of its nature and in accordance with the control strategy. In this way, the prosthetic device is protected from damaging temperatures, the user is alerted of a dangerous situation and the stability of the grasp is restored in the event of a slip.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"161 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136343349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}