首页 > 最新文献

Computational Toxicology最新文献

英文 中文
Interactions of coumarin and amine ligands with six cytochrome P450 2D6 allelic variants: Molecular docking 香豆素和胺配体与6种细胞色素P450 2D6等位基因变异的相互作用:分子对接
Q2 TOXICOLOGY Pub Date : 2023-08-01 DOI: 10.1016/j.comtox.2023.100284
Amelia Nathania Dong , Nafees Ahemad , Yan Pan , Uma Devi Palanisamy , Chin Eng Ong

Human CYP2D6 contributes extensively to the biotransformation of important therapeutic drugs. CYP2D6 substrate and inhibitor specificity may be affected by genetic polymorphism. This study aimed to characterize interactions of three typical ligands, 3-cyano-7-ethoxycoumarin, fluoxetine and terbinafine with six CYP2D6 variants using molecular docking simulations. The compounds were docked individually to the CYP2D6 models based on published crystal structure (PDB code: 3TBG). All ligands bound within the active site pocket near the heme. Binding involved residues found in critical secondary structures that formed the active site boundary: B-C loop, F helix, F-G loop, β-1 strands and I helix. Twenty-five amino acids were involved in the binding, and all were located in the known substrate recognition sites. Hydrophobic bonds involving phenylalanine (Phe120, Phe384) dominated CEC binding whereas electrostatic bonds between the protonated nitrogen with acidic residues (Glu216, Glu222, Asp301) dominated in binding of fluoxetine and terbinafine. Collectively, the subtle structural changes in the active site and substrate access channels induced by the mutations in the variants contributed to differential ligand docking poses. This study has provided insights into important molecular properties for CYP2D6 catalysis and inhibition, and formed basis for further exploration of structural determinants for potency and specificity of CYP2D6 ligands.

人类CYP2D6在重要治疗药物的生物转化中起着广泛的作用。CYP2D6底物和抑制剂的特异性可能受到基因多态性的影响。本研究旨在通过分子对接模拟表征3-氰-7-乙氧基香豆素、氟西汀和特比萘芬三种典型配体与6种CYP2D6变体的相互作用。根据已发表的晶体结构(PDB代码:3TBG),这些化合物分别与CYP2D6模型对接。所有的配体都结合在靠近血红素的活性位点口袋内。结合涉及在形成活性位点边界的关键二级结构中发现的残基:B-C环、F螺旋、F- g环、β-1链和I螺旋。25个氨基酸参与了这种结合,它们都位于已知的底物识别位点上。涉及苯丙氨酸的疏水性键(Phe120, Phe384)主导了CEC结合,而质子化氮与酸性残基(Glu216, Glu222, Asp301)之间的静电键主导了氟西汀和特比萘芬的结合。总的来说,变异突变引起的活性位点和底物通路的细微结构变化导致了配体对接姿势的差异。本研究揭示了CYP2D6催化和抑制的重要分子特性,为进一步探索CYP2D6配体效力和特异性的结构决定因素奠定了基础。
{"title":"Interactions of coumarin and amine ligands with six cytochrome P450 2D6 allelic variants: Molecular docking","authors":"Amelia Nathania Dong ,&nbsp;Nafees Ahemad ,&nbsp;Yan Pan ,&nbsp;Uma Devi Palanisamy ,&nbsp;Chin Eng Ong","doi":"10.1016/j.comtox.2023.100284","DOIUrl":"10.1016/j.comtox.2023.100284","url":null,"abstract":"<div><p>Human CYP2D6 contributes extensively to the biotransformation of important therapeutic drugs. CYP2D6 substrate and inhibitor specificity may be affected by genetic polymorphism. This study aimed to characterize interactions of three typical ligands, 3-cyano-7-ethoxycoumarin, fluoxetine and terbinafine with six CYP2D6 variants using molecular docking simulations. The compounds were docked individually to the CYP2D6 models based on published crystal structure (PDB code: 3TBG). All ligands bound within the active site pocket near the heme. Binding involved residues found in critical secondary structures that formed the active site boundary: B-C loop, F helix, F-G loop, β-1 strands and I helix. Twenty-five amino acids were involved in the binding, and all were located in the known substrate recognition sites. Hydrophobic bonds involving phenylalanine (Phe120, Phe384) dominated CEC binding whereas electrostatic bonds between the protonated nitrogen with acidic residues (Glu216, Glu222, Asp301) dominated in binding of fluoxetine and terbinafine. Collectively, the subtle structural changes in the active site and substrate access channels induced by the mutations in the variants contributed to differential ligand docking poses. This study has provided insights into important molecular properties for CYP2D6 catalysis and inhibition, and formed basis for further exploration of structural determinants for potency and specificity of CYP2D6 ligands.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"27 ","pages":"Article 100284"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46273574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential inhibitors of extra-synaptic NMDAR/TRPM4 interaction: Screening, molecular docking, and structure-activity analysis 突触外NMDAR/TRPM4相互作用的潜在抑制剂:筛选、分子对接和结构活性分析
Q2 TOXICOLOGY Pub Date : 2023-08-01 DOI: 10.1016/j.comtox.2023.100279
Elif Deniz , Fuat Karakuş , Burak Kuzu

Over-activation of extra-synaptic NMDARs by excessive glutamate is known to cause excitotoxicity. The molecular mechanism of how this excitotoxicity occurs was revealed recently. This paper presents the results of in silico studies aimed at finding potential small-molecule inhibitors that can block this mechanism, namely the extra-synaptic NMDAR/TRPM4 interaction. We screened for small molecules according to 2D (at least Tanimoto threshold was 90%) and/or 3D similarity, molecular weight, lipophilicity using control compounds (C8 and C19) targeting this interaction. We then pre-filtered these molecules according to their drug-likeness and toxicity profiles. After pre-filtering, we performed a docking study against the extra-synaptic NMDAR/TRPM4 interaction with the remaining 26 compounds. In addition, we determined that selected compounds exhibit low affinity for classical NMDAR ligand binding sites. Ultimately, we identified four novel compounds (C8-12, C8-15, C19-3, C19-4) that could block the extra-synaptic NMDAR/TRPM4 interaction without inhibiting the normal function of synaptic NMDARs.

过量谷氨酸导致突触外NMDARs的过度激活可引起兴奋性毒性。这种兴奋性毒性发生的分子机制最近才被揭示出来。本文介绍了旨在寻找潜在的小分子抑制剂的计算机研究结果,这些小分子抑制剂可以阻断这种机制,即突触外NMDAR/TRPM4相互作用。我们根据2D(至少谷本阈值为90%)和/或3D相似性、分子量、亲脂性筛选小分子,使用对照化合物(C8和C19)靶向这种相互作用。然后,我们根据它们的药物相似性和毒性特征对这些分子进行预过滤。预过滤后,我们对其余26个化合物的突触外NMDAR/TRPM4相互作用进行对接研究。此外,我们确定所选化合物对经典NMDAR配体结合位点具有低亲和力。最终,我们发现了四种新的化合物(C8-12, C8-15, C19-3, C19-4),它们可以阻断突触外NMDAR/TRPM4的相互作用,而不会抑制突触NMDAR的正常功能。
{"title":"Potential inhibitors of extra-synaptic NMDAR/TRPM4 interaction: Screening, molecular docking, and structure-activity analysis","authors":"Elif Deniz ,&nbsp;Fuat Karakuş ,&nbsp;Burak Kuzu","doi":"10.1016/j.comtox.2023.100279","DOIUrl":"10.1016/j.comtox.2023.100279","url":null,"abstract":"<div><p>Over-activation of extra-synaptic NMDARs by excessive glutamate is known to cause excitotoxicity. The molecular mechanism of how this excitotoxicity occurs was revealed recently. This paper presents the results of <em>in silico</em> studies aimed at finding potential small-molecule inhibitors that can block this mechanism, namely the extra-synaptic NMDAR/TRPM4 interaction. We screened for small molecules according to 2D (at least Tanimoto threshold was 90%) and/or 3D similarity, molecular weight, lipophilicity using control compounds (C8 and C19) targeting this interaction. We then pre-filtered these molecules according to their drug-likeness and toxicity profiles. After pre-filtering, we performed a docking study against the extra-synaptic NMDAR/TRPM4 interaction with the remaining 26 compounds. In addition, we determined that selected compounds exhibit low affinity for classical NMDAR ligand binding sites. Ultimately, we identified four novel compounds (C8-12, C8-15, C19-3, C19-4) that could block the extra-synaptic NMDAR/TRPM4 interaction without inhibiting the normal function of synaptic NMDARs.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"27 ","pages":"Article 100279"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44586766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using life expectancy as a risk assessment metric: The case of respirable crystalline silica 使用预期寿命作为风险评估指标:可吸入结晶二氧化硅的案例
Q2 TOXICOLOGY Pub Date : 2023-08-01 DOI: 10.1016/j.comtox.2023.100285
Andrey A. Korchevskiy , Arseniy Korchevskiy

The change in age-related mortality patterns is an important characteristic of the population that can be used as a metric of risk by comparing exposed and non-exposed populations.

In this paper, the mortality parameters were predicted for populations exposed to crystalline silica, a proven lung carcinogen.

Seven hazard functions were tested for a dose–response relationship between lung cancer and characteristics of exposure. Life tables were calculated, along with parameters of the Gompertz-Makeham model for the force of mortality.

It was demonstrated, in particular, that exposure to crystalline silica in the range from 0.03 to 0.3 mg/m3 for 40 years starting at age 20 causes a predicted drop in average life expectancy in the range of from 0.15 to 1.38 years.

It was demonstrated that the lost life expectancy linearly correlates with relative risk (R = 0.995, R2 = 0.989, p< 0.00001). The probability of the life expectancy increasing while relative risk decreases was as low as 0.01.

It was found that exponential parameter α of the Gompertz-Makeham equation increases with crystalline silica exposure, while the two linear parameters A and R (which are negatively correlated between each other) increase or decrease with exposure depending on the duration and onset age. Modal age of death in the cohort decreases with cumulative exposure with R = -0.977, R2 = 0.954, p < 0.0001.

Based on several different approaches, it was suggested that the threshold of cumulative crystalline silica exposure concentration causing statistically significant change in the cohort life tables can be found in the range from 1.81 to 2.50 mg/m3-years. The change of average age of death in exposed male population does not exceed 1% below cumulative exposure of 3.5 mg/m3-years, and does not exceed 5% at cumulative exposure less than 9.8 mg/m3-years. It shows that no significant acceleration of death rate with age is happening even at the high levels of exposure to crystalline silica.

The study demonstrated the value and advantages of the use of life expectancy and other lifetable characteristics as a tool for quantitative risk assessment.

与年龄有关的死亡率模式的变化是人口的一个重要特征,可以通过比较受辐射人群和未受辐射人群来作为风险度量标准。在本文中,死亡率参数预测人群暴露于结晶二氧化硅,一个已证实的肺癌物质。对肺癌与暴露特征之间的剂量-反应关系进行了七种危害函数测试。计算了生命表,以及Gompertz-Makeham死亡率模型的参数。研究特别证明,从20岁开始连续40年暴露于0.03至0.3 mg/m3范围内的结晶二氧化硅可导致预期平均寿命下降0.15至1.38年。结果表明,预期寿命损失与相对危险度呈线性相关(R = 0.995, R2 = 0.989, p<0.00001)。预期寿命增加而相对风险降低的概率低至0.01。结果表明,Gompertz-Makeham方程的指数参数α随暴露时间的增加而增加,而两个线性参数A和R则随暴露时间的延长和年龄的增加而增加或减少。队列中死亡模态年龄随累积暴露而降低,R = -0.977, R2 = 0.954, p <0.0001.基于几种不同的方法,建议在1.81至2.50 mg/m3-年范围内发现累积结晶二氧化硅暴露浓度导致队列生命表发生统计学显著变化的阈值。在累计暴露3.5 mg/m3年以下,暴露男性人群平均死亡年龄变化不超过1%;在累计暴露低于9.8 mg/m3年时,暴露男性人群平均死亡年龄变化不超过5%。它表明,即使在高水平接触结晶二氧化硅的情况下,死亡率也没有随着年龄的增长而显著加速。该研究证明了使用预期寿命和其他生命周期特征作为定量风险评估工具的价值和优势。
{"title":"Using life expectancy as a risk assessment metric: The case of respirable crystalline silica","authors":"Andrey A. Korchevskiy ,&nbsp;Arseniy Korchevskiy","doi":"10.1016/j.comtox.2023.100285","DOIUrl":"10.1016/j.comtox.2023.100285","url":null,"abstract":"<div><p>The change in age-related mortality patterns is an important characteristic of the population that can be used as a metric of risk by comparing exposed and non-exposed populations.</p><p>In this paper, the mortality parameters were predicted for populations exposed to crystalline silica, a proven lung carcinogen.</p><p>Seven hazard functions were tested for a dose–response relationship between lung cancer and characteristics of exposure. Life tables were calculated, along with parameters of the Gompertz-Makeham model for the force of mortality.</p><p>It was demonstrated, in particular, that exposure to crystalline silica in the range from 0.03 to 0.3 mg/m<sup>3</sup> for 40 years starting at age 20 causes a predicted drop in average life expectancy in the range of from 0.15 to 1.38 years.</p><p>It was demonstrated that the lost life expectancy linearly correlates with relative risk (R = 0.995, R<sup>2</sup><span> = 0.989, p&lt; 0.00001). The probability of the life expectancy increasing while relative risk decreases was as low as 0.01.</span></p><p><span>It was found that exponential parameter α of the Gompertz-Makeham equation increases with crystalline silica exposure, while the two linear parameters A and R (which are negatively correlated between each other) increase or decrease with exposure depending on the duration and onset age. Modal age of death in the cohort decreases with cumulative exposure with R = -0.977, R</span><sup>2</sup> = 0.954, p &lt; 0.0001.</p><p>Based on several different approaches, it was suggested that the threshold of cumulative crystalline silica exposure concentration causing statistically significant change in the cohort life tables can be found in the range from 1.81 to 2.50 mg/m<sup>3</sup>-years. The change of average age of death in exposed male population does not exceed 1% below cumulative exposure of 3.5 mg/m<sup>3</sup>-years, and does not exceed 5% at cumulative exposure less than 9.8 mg/m<sup>3</sup>-years. It shows that no significant acceleration of death rate with age is happening even at the high levels of exposure to crystalline silica.</p><p>The study demonstrated the value and advantages of the use of life expectancy and other lifetable characteristics as a tool for quantitative risk assessment.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"27 ","pages":"Article 100285"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49403398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiologically-based toxicokinetic model of botulinum neurotoxin biodistribution in mice and rats 基于生理学的肉毒毒素在小鼠和大鼠体内生物分布的毒代动力学模型
Q2 TOXICOLOGY Pub Date : 2023-08-01 DOI: 10.1016/j.comtox.2023.100278
Bradford Gutting , Joseph Gillard , Gabriel Intano

Botulinum neurotoxin (BoNT) is a highly toxic protein and a Tier 1 Biodefense Select Agent and Toxin. BoNT is also a widely used therapeutic and cosmetic. Despite the toxicological and pharmacological interest, little is known about its biodistribution in the body. The objective herein was to develop a dose-dependent, species-specific physiologically-based toxicokinetic (PBTK) model of BoNT biodistribution in rodents following a single intravenous dose. The PBTK model was based on published physiologically-based pharmacokinetic (PBPK) models of therapeutic monoclonal antibody (mAb) biodistribution because the size and charge of BoNT is nearly identical to a typical IgG4 mAb and size/charge are main factors governing protein biodistribution. Physiological compartments included the circulation, lymphatics and tissues grouped by capillary pore characteristics. Host species-specific parameters included weight, plasma volume, lymph volume/flow, and tissue interstitial fluid parameters. BoNT parameters included extravasation from blood to tissues, charge, binding to internal lamella or cholinergic neuron receptors. Parameter values were obtained from the literature or estimated using an Approximate Bayesian Computation-Sequential Monte Carlo algorithm, to fit the model to published mouse BoNT low-dose, time-course plasma concentration data. Fits captured the low-dose mouse data well and parameter estimates appeared biologically plausible. The fully-parameterized model was then used to simulate mouse high-dose IV data. Model results compared well with published data. Finally, the model was re-parameterized to reflect rat physiology. Model toxicokinetics agreed well with published rat BoNT intravenous data for two different sized rats with different intravenous doses (an a priori cross-species extrapolation). These results suggested the BoNT model predicted dose-dependent biodistribution in rodents, and for rats, without any BoNT-specific data from rats. To our knowledge, this represented a first-in-kind physiologically-based model for a large protein toxin. Results are discussed in general and in the context of human simulations to support BoNT risk assessment and therapeutic research objectives.

肉毒杆菌神经毒素(BoNT)是一种高毒性蛋白质,是一级生物防御选择剂和毒素。BoNT也是一种广泛使用的治疗和化妆品。尽管具有毒理学和药理学意义,但人们对其在体内的生物分布知之甚少。本研究的目的是建立单次静脉给药后BoNT在啮齿动物体内生物分布的剂量依赖性、物种特异性生理毒性动力学(PBTK)模型。PBTK模型基于已发表的治疗性单克隆抗体(mAb)生物分布的基于生理的药代动力学(PBPK)模型,因为BoNT的大小和电荷几乎与典型的IgG4 mAb相同,并且大小/电荷是控制蛋白质生物分布的主要因素。生理区室包括循环、淋巴管和按毛细孔特征分组的组织。宿主物种特异性参数包括体重、血浆体积、淋巴体积/流量和组织间质液参数。BoNT参数包括从血液到组织的外渗、电荷、与内部片层或胆碱能神经元受体的结合。参数值从文献中获得或使用近似贝叶斯计算-序列蒙特卡罗算法估计,以使模型与已发表的小鼠BoNT低剂量时程血浆浓度数据拟合。拟合很好地捕获了低剂量小鼠数据,参数估计在生物学上似乎是合理的。采用全参数化模型模拟小鼠大剂量静脉注射数据。模型结果与已发表的数据比较良好。最后,重新参数化模型以反映大鼠生理。两种不同大小的大鼠注射不同剂量BoNT的模型毒性动力学与已发表的大鼠静脉注射数据很好地吻合(先验的跨物种外推)。这些结果表明,BoNT模型预测了啮齿动物和大鼠的剂量依赖性生物分布,而没有来自大鼠的任何BoNT特异性数据。据我们所知,这代表了一种基于生理学的大型蛋白质毒素模型。结果在一般和人类模拟的背景下进行讨论,以支持BoNT风险评估和治疗研究目标。
{"title":"Physiologically-based toxicokinetic model of botulinum neurotoxin biodistribution in mice and rats","authors":"Bradford Gutting ,&nbsp;Joseph Gillard ,&nbsp;Gabriel Intano","doi":"10.1016/j.comtox.2023.100278","DOIUrl":"10.1016/j.comtox.2023.100278","url":null,"abstract":"<div><p>Botulinum neurotoxin (BoNT) is a highly toxic protein and a Tier 1 Biodefense Select Agent and Toxin. BoNT is also a widely used therapeutic and cosmetic. Despite the toxicological and pharmacological interest, little is known about its biodistribution in the body. The objective herein was to develop a dose-dependent, species-specific physiologically-based toxicokinetic (PBTK) model of BoNT biodistribution in rodents following a single intravenous dose. The PBTK model was based on published physiologically-based pharmacokinetic (PBPK) models of therapeutic monoclonal antibody (mAb) biodistribution because the size and charge of BoNT is nearly identical to a typical IgG<sub>4</sub> mAb and size/charge are main factors governing protein biodistribution. Physiological compartments included the circulation, lymphatics and tissues grouped by capillary pore characteristics. Host species-specific parameters included weight, plasma volume, lymph volume/flow, and tissue interstitial fluid parameters. BoNT parameters included extravasation from blood to tissues, charge, binding to internal lamella or cholinergic neuron receptors. Parameter values were obtained from the literature or estimated using an Approximate Bayesian Computation-Sequential Monte Carlo algorithm, to fit the model to published mouse BoNT low-dose, time-course plasma concentration data. Fits captured the low-dose mouse data well and parameter estimates appeared biologically plausible. The fully-parameterized model was then used to simulate mouse high-dose IV data. Model results compared well with published data. Finally, the model was re-parameterized to reflect rat physiology. Model toxicokinetics agreed well with published rat BoNT intravenous data for two different sized rats with different intravenous doses (an <em>a priori</em> cross-species extrapolation). These results suggested the BoNT model predicted dose-dependent biodistribution in rodents, and for rats, without any BoNT-specific data from rats. To our knowledge, this represented a first-in-kind physiologically-based model for a large protein toxin. Results are discussed in general and in the context of human simulations to support BoNT risk assessment and therapeutic research objectives.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"27 ","pages":"Article 100278"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43794927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pregnancy-PBPK models: How are biochemical and physiological processes integrated? 妊娠- pbpk模型:生化和生理过程是如何整合的?
Q2 TOXICOLOGY Pub Date : 2023-08-01 DOI: 10.1016/j.comtox.2023.100282
E. Thépaut , C. Brochot , K. Chardon , S. Personne , F.A. Zeman

Physiologically based pharmacokinetic (PBPK) modeling is used to predict the pharmacokinetic behavior of xenobiotics in humans. During pregnancy, anatomical and physiological parameters are modified leading to toxicokinetics’ changes of substances in the body. Considering these physiological parameters change in the building processes of pregnancy PBPK (p-PBPK) model is essential to have accurate estimates of tissue/organ concentrations for the pregnant women but also for the fetus.

The review aims to summarize which specific processes are considered in the building of p-PBPK models and may be useful at the early stages of p-PBPK modeling.

To achieve this objective, a literature search focusing on anatomical, physiological, and biochemical parameters impacted by pregnancy was conducted. Most of the time, p-PBPK models do not include all the specific processes identified but only the most impacting ones on the global kinetics, depending mainly on the substance of interest. Allometric relations were identified to be classically included in the pregnancy models to describe the modifications induced by pregnancy to overcome the lack of data usually observed for the gestation. However, more and more data are gathered for pregnancy leading to the introduction of more data-based equations in PBPK modeling.

The most common strategy for p-PBPK development is based on the development of adult PBPK models that are then adapted to specific populations such as pregnant women. The adult PBPK model structure is modified to account for the pregnancy by adding specific compartments of fetal development and also specific compartments that are impacted during the pregnancy such as fat or mammary glands. Extrapolation of pregnant rat model is the other common strategy option used more specifically for environmental substances.

Overall, further data on maternal and fetal pharmacokinetics are needed to validate the xenobiotic exposure predictions during pregnancy, using for example in vitro, in vivo or ex vivo experiments.

基于生理的药代动力学(PBPK)模型用于预测异种抗生素在人体内的药代动力学行为。在怀孕期间,解剖和生理参数发生改变,导致体内物质的毒性动力学发生变化。考虑到这些生理参数在妊娠PBPK (p-PBPK)模型建立过程中的变化,对于准确估计孕妇和胎儿的组织/器官浓度至关重要。本文旨在总结在构建p-PBPK模型时考虑的具体过程,以及在p-PBPK建模的早期阶段可能有用的过程。为了实现这一目标,我们对妊娠对解剖、生理和生化参数的影响进行了文献检索。大多数情况下,p-PBPK模型不包括所有确定的特定过程,而只包括对整体动力学影响最大的过程,主要取决于感兴趣的物质。异速生长关系被确定为典型的妊娠模型,以描述由妊娠引起的变化,以克服缺乏通常观察到的妊娠数据。然而,越来越多的妊娠数据被收集,导致PBPK建模中引入了更多基于数据的方程。最常见的p-PBPK发展策略是基于成人PBPK模型的发展,然后适应特定人群,如孕妇。通过添加胎儿发育的特定区室以及在怀孕期间受到影响的特定区室(如脂肪或乳腺),对成人PBPK模型结构进行了修改,以解释妊娠。外推怀孕大鼠模型是另一种常见的策略选择,更具体地用于环境物质。总的来说,需要进一步的母体和胎儿药代动力学数据来验证怀孕期间的外源暴露预测,例如使用体外、体内或离体实验。
{"title":"Pregnancy-PBPK models: How are biochemical and physiological processes integrated?","authors":"E. Thépaut ,&nbsp;C. Brochot ,&nbsp;K. Chardon ,&nbsp;S. Personne ,&nbsp;F.A. Zeman","doi":"10.1016/j.comtox.2023.100282","DOIUrl":"10.1016/j.comtox.2023.100282","url":null,"abstract":"<div><p>Physiologically based<!--> <!-->pharmacokinetic<!--> <!-->(PBPK) modeling is used to predict the pharmacokinetic behavior of xenobiotics in humans. During pregnancy, anatomical and physiological parameters are modified leading to toxicokinetics’ changes of substances in the body. Considering these physiological parameters change in the building processes of pregnancy PBPK (p-PBPK) model is essential to have accurate estimates of tissue/organ concentrations for the pregnant women but also for the fetus.</p><p>The review aims to summarize which specific processes are considered in the building of p-PBPK models and may be useful at the early stages of p-PBPK modeling.</p><p>To achieve this objective, a literature search focusing on anatomical, physiological, and biochemical parameters impacted by pregnancy was conducted. Most of the time, p-PBPK models do not include all the specific processes identified but only the most impacting ones on the global kinetics, depending mainly on the substance of interest. Allometric relations were identified to be classically included in the pregnancy models to describe the modifications induced by pregnancy to overcome the lack of data usually observed for the gestation. However, more and more data are gathered for pregnancy leading to the introduction of more data-based equations in PBPK modeling.</p><p>The most common strategy for p-PBPK development is based on the development of adult PBPK models that are then adapted to specific populations such as pregnant women. The adult PBPK model structure is modified to account for the pregnancy by adding specific compartments of fetal development and also specific compartments that are impacted during the pregnancy such as fat or mammary glands. Extrapolation of pregnant rat model is the other common strategy option used more specifically for environmental substances.</p><p>Overall, further data on maternal and fetal pharmacokinetics are needed to validate the xenobiotic exposure predictions during pregnancy, using for example <em>in vitro</em>, <em>in vivo</em> or <em>ex vivo</em> experiments.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"27 ","pages":"Article 100282"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42075520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
New insights into binary mixture toxicology: 2. Effects of reactive oxygen species generated by some carboxylic diesters on marine and freshwater organisms (VIII) 对二元混合物毒理学的新认识;某些羧基二酯产生的活性氧对海洋和淡水生物的影响(VIII)
Q2 TOXICOLOGY Pub Date : 2023-08-01 DOI: 10.1016/j.comtox.2023.100283
Sergiu Adrian Chicu

This paper presents the development of toxicity of some saturated and phthalate carboxylic diesters (CDE) quantified by experimentally measured (Mes) and calculated (C) values using the Hydractinia echinata (invertebrate) Toxicity Screening Test System (HeTSTS) and the Köln Model (KM) algorithm. The validity of the investigation model is confirmed by the results for three other aquatic organisms: the ciliate protozoan Tetrahymena pyriformis, the freshwater fish Pimephales promelas and the freshwater crustacean Daphnia magna test systems have shown that the evolution of effectiveness is similar, although the absolute values are different. CDE undergoes rapid, irreversible, selective and abiotic –OH nucleophilic catalyzed monohydrolysis with the formation of the substrate amphiphilic carboxylate monoester (CME), saturated or phthalate and alcohol (AL) as a xenobiotic (SbX) binary mixture in stoichiometric proportion. The Mes represents the inverse of the logarithm of the diester concentration (molL-1), which determines the 50% reduction in metamorphosis of H. echinata from larva to polyp and is influenced by the saturated carbon atom (Cs) of the molecular substructure involved in monohydrolysis. According to the KM algorithm, Cs is the Elementary Specific Interaction Parameter (ESIP) with a specific and constant toxicity value – identical in different substances – depending on the nature of the organism that allows the calculation of toxicity predictions in C. AL is the fingerprint of the mixture (FP) because it influences the diffusion of CMEs through the cell membrane to cellular receptors (CRs). Generally, the Mes and C, are the predicted ECOSAR and calculated C* values form the Class Regulated Increased Toxicity (CRIT) and Class Regulated Decreased Toxicities (CRDT) series. The use of H. echinata in toxicity determinations is an alternative for the study of the relevant ecological impact of chemical oxidative stress on aquatic organisms and, consequently, on human health.

本文介绍了利用无脊椎动物水螅虫(Hydractinia echinata)毒性筛选试验系统(HeTSTS)和Köln模型(KM)算法,通过实验测量(Mes)和计算(C)值对某些饱和和邻苯二甲酸酯(CDE)的毒性进行量化的进展。另外三种水生生物的实验结果证实了调查模型的有效性:纤毛虫原生动物四膜虫(Tetrahymena pyriformis)、淡水鱼(Pimephales promelas)和淡水甲壳类水蚤(Daphnia magna)测试系统表明,尽管绝对值不同,但有效性的进化是相似的。CDE经过快速、不可逆、选择性和非生物- oh亲核催化单水解,形成底物两亲性羧酸酯单酯(CME)、饱和或邻苯二甲酸酯和醇(AL)作为异生物(SbX)二元混合物,按化学计量比例。Mes是二酯浓度(mol -1)的对数的倒数,二酯浓度决定了棘刺从幼虫到息肉的蜕变减少50%,并且受单水解分子亚结构的饱和碳原子(Cs)的影响。根据KM算法,Cs是基本特异性相互作用参数(ESIP),具有特定和恒定的毒性值-在不同物质中相同-取决于允许计算c中毒性预测的生物体的性质。AL是混合物的指纹(FP),因为它影响cme通过细胞膜向细胞受体(cr)的扩散。一般来说,Mes和C是预测的ECOSAR值和计算的C*值,来自受管制的毒性增加(CRIT)和受管制的毒性减少(CRDT)系列。在毒性测定中使用棘刺草是研究化学氧化应激对水生生物的相关生态影响,从而对人类健康的一种替代方法。
{"title":"New insights into binary mixture toxicology: 2. Effects of reactive oxygen species generated by some carboxylic diesters on marine and freshwater organisms (VIII)","authors":"Sergiu Adrian Chicu","doi":"10.1016/j.comtox.2023.100283","DOIUrl":"10.1016/j.comtox.2023.100283","url":null,"abstract":"<div><p>This paper presents the development of toxicity of some saturated and phthalate carboxylic diesters (CDE) quantified by experimentally measured (Mes) and calculated (C) values using the <em>Hydractinia echinata</em> (invertebrate) Toxicity Screening Test System (<em>He</em>TSTS) and the Köln Model (KM) algorithm. The validity of the investigation model is confirmed by the results for three other aquatic organisms: the ciliate protozoan <em>Tetrahymena pyriformis,</em> the freshwater fish <em>Pimephales promelas</em> and the freshwater crustacean <em>Daphnia magna</em> test systems have shown that the evolution of effectiveness is similar, although the absolute values are different. CDE undergoes rapid, irreversible, selective and abiotic –OH<sup>–</sup><span> nucleophilic<span> catalyzed monohydrolysis with the formation of the substrate amphiphilic carboxylate monoester (CME), saturated or phthalate and alcohol (AL) as a xenobiotic (SbX) binary mixture in stoichiometric proportion. The Mes represents the inverse of the logarithm of the diester concentration (molL</span></span><sup>-1</sup>), which determines the 50% reduction in metamorphosis of <em>H. echinata</em> from larva to polyp and is influenced by the saturated carbon atom (Cs) of the molecular substructure involved in monohydrolysis. According to the KM algorithm, Cs is the Elementary Specific Interaction Parameter (ESIP) with a specific and constant toxicity value – identical in different substances – depending on the nature of the organism that allows the calculation of toxicity predictions in C. AL is the fingerprint of the mixture (FP) because it influences the diffusion of CMEs through the cell membrane to cellular receptors (CRs). Generally, the Mes and C, are the predicted ECOSAR and calculated C* values form the Class Regulated Increased Toxicity (CRIT) and Class Regulated Decreased Toxicities (CRDT) series. The use of <em>H. echinata</em> in toxicity determinations is an alternative for the study of the relevant ecological impact of chemical oxidative stress on aquatic organisms and, consequently, on human health.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"27 ","pages":"Article 100283"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41690253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dihydroartemisinin binds human PI3K-β affinity pocket and forces flat conformation in P-loop MET783: A molecular dynamics study 双氢青蒿素结合人PI3K-β亲和口袋并迫使P-loop MET783形成扁平构象:分子动力学研究
Q2 TOXICOLOGY Pub Date : 2023-08-01 DOI: 10.1016/j.comtox.2023.100281
Idowu Olaposi Omotuyi Prof , Oyekanmi Nash Prof , Samuel Damilohun Metibemu Dr. , G. Chiamaka Iwegbulam , Olusina M. Olatunji , Emmanuel Agbebi , C. Olufunke Falade

Artemisinin and its semi-synthetic derivatives are not only indicated for malaria but also cancer, inflammatory and autoimmune diseases. Its inflammatory and immunosuppressive target is PI3K/AKT pathways. The structural and kinetic aspect of the PI3K inhibition was investigated in the current study using computational approaches. Binding energies of dihydroartemisinin (DHA) to p110-PI3K-β was computed using the MMPBSA method in comparison with the standard inhibitor (GD9). Kinetic parameter (Kon/Koff) was also evaluated for the complexes using adaptive sampling protocols and Markov state model analysis. p110-PI3K- β dynamics and community network analysis were also performed following conventional Molecular dynamics simulation. The results showed −63.99 ± 1.53 and −74.14 ± 3.47 (Kj/mol) binding energies for DHA and GD9 respectively. Kon/Koff estimates for DHA and GD9 are 12.4, and 2.13 (M−1) respectively. Analysis of the trajectories showed that DHA selectively partitions into p110-PI3K- β affinity pocket, forces open conformation, and kept catalytic pocket-M783 in a flat conformation whilst forcing large displacement around the C2-domain. In conclusion, DHA is a high affinity (slow-binding, slow-dissociating), flat-conformation p110-PI3K- β inhibitor.

青蒿素及其半合成衍生物不仅适用于疟疾,还适用于癌症、炎症和自身免疫性疾病。其炎症和免疫抑制靶点是PI3K/AKT通路。在当前的研究中,使用计算方法研究了PI3K抑制的结构和动力学方面。使用MMPBSA方法计算双氢青蒿素(DHA)与p110-PI3K-β的结合能,并与标准抑制剂(GD9)进行比较。还使用自适应采样协议和马尔可夫状态模型分析对复合物的动力学参数(Kon/Koff)进行了评估。p110-PI3K-β动力学和群落网络分析也按照常规分子动力学模拟进行。结果显示,DHA和GD9的结合能分别为−63.99±1.53和−74.14±3.47(Kj/mol)。DHA和GD9的Kon/Koff估计值分别为12.4和2.13(M−1)。轨迹分析表明,DHA选择性地分配到p110-PI3K-β亲和口袋中,迫使构象打开,并使催化口袋-M783保持平坦构象,同时迫使C2结构域周围发生大位移。总之,DHA是一种高亲和力(缓慢结合、缓慢解离)、平坦构象的p110-PI3K-β抑制剂。
{"title":"Dihydroartemisinin binds human PI3K-β affinity pocket and forces flat conformation in P-loop MET783: A molecular dynamics study","authors":"Idowu Olaposi Omotuyi Prof ,&nbsp;Oyekanmi Nash Prof ,&nbsp;Samuel Damilohun Metibemu Dr. ,&nbsp;G. Chiamaka Iwegbulam ,&nbsp;Olusina M. Olatunji ,&nbsp;Emmanuel Agbebi ,&nbsp;C. Olufunke Falade","doi":"10.1016/j.comtox.2023.100281","DOIUrl":"https://doi.org/10.1016/j.comtox.2023.100281","url":null,"abstract":"<div><p><span>Artemisinin and its semi-synthetic derivatives are not only indicated for malaria but also cancer, inflammatory and autoimmune diseases. Its inflammatory and immunosuppressive target is PI3K/AKT pathways. The structural and kinetic aspect of the PI3K inhibition was investigated in the current study using computational approaches. Binding energies of dihydroartemisinin (DHA) to p</span><sup>110</sup>-PI3K-β was computed using the MMPBSA method in comparison with the standard inhibitor (GD9). Kinetic parameter (<em>K<sub>on</sub>/K<sub>off</sub></em>) was also evaluated for the complexes using adaptive sampling protocols and Markov state model analysis. p<sup>110</sup>-PI3K- β dynamics and community network analysis were also performed following conventional Molecular dynamics simulation. The results showed −63.99 ± 1.53 and −74.14 ± 3.47 (<em>Kj/mol</em>) binding energies for DHA and GD9 respectively. <em>K<sub>on</sub>/K<sub>off</sub></em> estimates for DHA and GD9 are 12.4, and 2.13 (<em>M<sup>−1</sup></em>) respectively. Analysis of the trajectories showed that DHA selectively partitions into p<sup>110</sup>-PI3K- β affinity pocket, forces open conformation, and kept catalytic pocket-M783 in a flat conformation whilst forcing large displacement around the C2-domain. In conclusion, DHA is a high affinity (slow-binding, slow-dissociating), flat-conformation p<sup>110</sup>-PI3K- β inhibitor.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"27 ","pages":"Article 100281"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49740145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From modeling dose-response relationships to improved performance of decision-tree classifiers for predictive toxicology of nanomaterials 从模拟剂量-反应关系到改进决策树分类器的性能,用于预测纳米材料的毒理学
Q2 TOXICOLOGY Pub Date : 2023-08-01 DOI: 10.1016/j.comtox.2023.100277
Roni Romano, Alexander Barbul, Rafi Korenstein

The development and application of predictive models towards toxicity of engineered nanomaterials is still far from being satisfactory. One promising contribution to confront this challenge is to effectively augment the performance of machine learning classifiers by progressing the approach towards balancing experimental toxicity data. We propose an improved balancing methodology by fitting the in-vitro toxicological dose-response datasets of engineered nanomaterials to three, four, and five, free parameter dose-response models. The four-free parameter model displays the best fit (in terms of adjusted R2) for most of the examined data. The fitted curve yields, in each case, a continuous sequence of data points, which extends the restricted experimental data and generates additional fitted data points for the minority class, leading to the formation of balanced data for predicting the nanoparticle’s toxicology by decision tree classifiers. The ability to best predict the experimental toxicity data, by applying the decision tree model, was tested by forming three versions of the same experimental data: the imbalanced raw experimental data, the balanced data by applying the common Synthetic Minority Oversampling Technique, and by using the approach of Balanced Fitted Dose-Response method, introduced in the present study. We demonstrate that our approach provides improved performance of decision trees in predicting nanoparticles’ toxicity, a method that pertains also to chemical toxicity, central in health and environmental research.

工程纳米材料毒性预测模型的发展和应用还远远不能令人满意。面对这一挑战的一个有希望的贡献是通过推进平衡实验毒性数据的方法来有效地增强机器学习分类器的性能。我们提出了一种改进的平衡方法,将工程纳米材料的体外毒理学剂量-反应数据集拟合到3、4和5个自由参数剂量-反应模型中。四自由参数模型显示了大多数检验数据的最佳拟合(根据调整后的R2)。在每种情况下,拟合曲线产生一个连续的数据点序列,这扩展了有限的实验数据,并为少数类生成额外的拟合数据点,从而形成平衡数据,用于通过决策树分类器预测纳米颗粒的毒理学。应用决策树模型对实验毒性数据进行最佳预测的能力,通过形成相同实验数据的三个版本进行测试:不平衡原始实验数据,使用常见的合成少数过采样技术获得平衡数据,以及使用本研究中引入的平衡拟合剂量-反应方法。我们证明,我们的方法在预测纳米颗粒毒性方面提供了改进的决策树性能,这种方法也适用于化学毒性,是健康和环境研究的核心。
{"title":"From modeling dose-response relationships to improved performance of decision-tree classifiers for predictive toxicology of nanomaterials","authors":"Roni Romano,&nbsp;Alexander Barbul,&nbsp;Rafi Korenstein","doi":"10.1016/j.comtox.2023.100277","DOIUrl":"10.1016/j.comtox.2023.100277","url":null,"abstract":"<div><p><span><span>The development and application of predictive models towards toxicity of engineered </span>nanomaterials<span> is still far from being satisfactory. One promising contribution to confront this challenge is to effectively augment the performance of machine learning classifiers by progressing the approach towards balancing experimental toxicity data. We propose an improved balancing methodology by fitting the in-vitro toxicological dose-response datasets of engineered nanomaterials to three, four, and five, free parameter dose-response models. The four-free parameter model displays the best fit (in terms of adjusted R</span></span><sup>2</sup><span><span>) for most of the examined data. The fitted curve yields, in each case, a continuous sequence of data points, which extends the restricted experimental data and generates additional fitted data points for the minority class, leading to the formation of balanced data for predicting the nanoparticle’s toxicology by decision tree classifiers. The ability to best predict the experimental toxicity data, by applying the decision tree model, was tested by forming three versions of the same experimental data: the imbalanced raw experimental data, the balanced data by applying the common Synthetic Minority Oversampling Technique, and by using the approach of Balanced Fitted Dose-Response method, introduced in the present study. We demonstrate that our approach provides improved performance of decision trees in predicting nanoparticles’ toxicity, a method that pertains also to </span>chemical toxicity, central in health and environmental research.</span></p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"27 ","pages":"Article 100277"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44822186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An in silico workflow for assessing the sensitisation potential of extractables and leachables 评估可提取物和可浸出物致敏潜力的计算机工作流程
Q2 TOXICOLOGY Pub Date : 2023-08-01 DOI: 10.1016/j.comtox.2023.100275
Martyn L. Chilton, Mukesh Patel, Antonio Anax F. de Oliveira

As part of a wider toxicological risk assessment to ensure patient safety, extractables and leachables (E&Ls) which are observed above the relevant qualification threshold need to be assessed for their sensitisation potential. This study sought to investigate whether in silico toxicity models could be used to predict the sensitisation hazard and potency potential of E&Ls. An extensive dataset of relevant chemicals was collated by combining and standardising two lists of E&Ls previously published by ELSIE and the PQRI, resulting in a dataset of 790 unique materials. Sensitisation data was then located where possible, resulting in 290 chemicals being associated with dermal sensitisation hazard information, 106 chemicals with dermal sensitisation potency information, and 47 chemicals with respiratory sensitisation information. Existing expert knowledge, in the form of structural alerts within Derek Nexus, was able to accurately predict both the dermal and respiratory sensitisation potential of the E&Ls. 75 different statistical models were also built, using several algorithms and descriptors, and trained on the available dermal sensitisation data. A number of these models proved able to accurately predict the sensitisation potential of the E&Ls, which were found to occupy the same chemical space as the training sets. Finally, hybrid approaches combining expert knowledge and statistical models were investigated, including a tiered system where the skin sensitisation alerts in Derek Nexus provided a hazard prediction, followed by a potency prediction resulting from an alert-based k-nearest neighbours model. The inclusion of the Dermal Sensitisation Thresholds as default, worst-case scenario predictions in cases where similar chemicals were lacking ensured that a prediction was provided for every chemical. It is hoped that this novel workflow, which combines expert knowledge, a statistical model and existing toxicity thresholds, will aid toxicologists when assessing the sensitisation potential of E&Ls administered by any route of administration.

作为确保患者安全的更广泛毒理学风险评估的一部分,需要评估高于相关资格阈值的可提取物和可浸出物(E&Ls)的致敏潜力。本研究旨在探讨是否可以使用硅毒性模型来预测E&Ls的致敏危害和效力潜力。通过合并和标准化ELSIE和PQRI先前发布的两个E& l列表,整理了一个广泛的相关化学品数据集,形成了790种独特材料的数据集。然后尽可能定位致敏数据,得出290种化学物质与皮肤致敏危害信息相关,106种化学物质与皮肤致敏效力信息相关,47种化学物质与呼吸致敏信息相关。现有的专家知识,以Derek Nexus内部结构警报的形式,能够准确预测E&Ls的皮肤和呼吸致敏潜力。还使用几种算法和描述符建立了75种不同的统计模型,并对可用的皮肤致敏数据进行了训练。许多这样的模型被证明能够准确地预测E& l的敏化电位,它们被发现占据与训练集相同的化学空间。最后,研究了结合专家知识和统计模型的混合方法,包括一个分层系统,其中Derek Nexus的皮肤致敏警报提供了危害预测,然后是基于警报的k近邻模型的效价预测。将皮肤致敏阈值作为默认值,在缺乏类似化学物质的情况下进行最坏情况预测,确保为每种化学物质提供预测。希望这种结合了专家知识、统计模型和现有毒性阈值的新工作流程将有助于毒理学家评估通过任何给药途径给药的E&Ls的致敏潜力。
{"title":"An in silico workflow for assessing the sensitisation potential of extractables and leachables","authors":"Martyn L. Chilton,&nbsp;Mukesh Patel,&nbsp;Antonio Anax F. de Oliveira","doi":"10.1016/j.comtox.2023.100275","DOIUrl":"10.1016/j.comtox.2023.100275","url":null,"abstract":"<div><p>As part of a wider toxicological risk assessment to ensure patient safety, extractables and leachables (E&amp;Ls) which are observed above the relevant qualification threshold need to be assessed for their sensitisation potential. This study sought to investigate whether <em>in silico</em> toxicity models could be used to predict the sensitisation hazard and potency potential of E&amp;Ls. An extensive dataset of relevant chemicals was collated by combining and standardising two lists of E&amp;Ls previously published by ELSIE and the PQRI, resulting in a dataset of 790 unique materials. Sensitisation data was then located where possible, resulting in 290 chemicals being associated with dermal sensitisation hazard information, 106 chemicals with dermal sensitisation potency information, and 47 chemicals with respiratory sensitisation information. Existing expert knowledge, in the form of structural alerts within Derek Nexus, was able to accurately predict both the dermal and respiratory sensitisation potential of the E&amp;Ls. 75 different statistical models were also built, using several algorithms and descriptors, and trained on the available dermal sensitisation data. A number of these models proved able to accurately predict the sensitisation potential of the E&amp;Ls, which were found to occupy the same chemical space as the training sets. Finally, hybrid approaches combining expert knowledge and statistical models were investigated, including a tiered system where the skin sensitisation alerts in Derek Nexus provided a hazard prediction, followed by a potency prediction resulting from an alert-based k-nearest neighbours model. The inclusion of the Dermal Sensitisation Thresholds as default, worst-case scenario predictions in cases where similar chemicals were lacking ensured that a prediction was provided for every chemical. It is hoped that this novel workflow, which combines expert knowledge, a statistical model and existing toxicity thresholds, will aid toxicologists when assessing the sensitisation potential of E&amp;Ls administered by any route of administration.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"27 ","pages":"Article 100275"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42292887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dihydroartemisinin Binds Human PI3K-Affinity Pocket and Forces Flat Conformation In P-loop MET: A Molecular Dynamics Study 双氢青蒿素结合人PI3K亲和口袋并在P-环MET中强制平面构象的分子动力学研究
Q2 TOXICOLOGY Pub Date : 2023-06-01 DOI: 10.1016/j.comtox.2023.100281
Omotuyi I. Olaposi, N. Oyekanmi, Metibemu D. Samuel, Iwegbulam G. Chiamaka, O. M. Olatunji, E. Agbebi, Falade C. Olufunke
{"title":"Dihydroartemisinin Binds Human PI3K-Affinity Pocket and Forces Flat Conformation In P-loop MET: A Molecular Dynamics Study","authors":"Omotuyi I. Olaposi, N. Oyekanmi, Metibemu D. Samuel, Iwegbulam G. Chiamaka, O. M. Olatunji, E. Agbebi, Falade C. Olufunke","doi":"10.1016/j.comtox.2023.100281","DOIUrl":"https://doi.org/10.1016/j.comtox.2023.100281","url":null,"abstract":"","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45604144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computational Toxicology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1