Pub Date : 2022-03-31DOI: 10.1186/s40317-022-00284-0
C. Freitas, M. Freitas, S. Andrzejaczek, J. Dale, Wayne Whippen, B. Block
{"title":"First insights into the movements and vertical habitat use of blue marlin (Makaira nigricans) in the eastern North Atlantic","authors":"C. Freitas, M. Freitas, S. Andrzejaczek, J. Dale, Wayne Whippen, B. Block","doi":"10.1186/s40317-022-00284-0","DOIUrl":"https://doi.org/10.1186/s40317-022-00284-0","url":null,"abstract":"","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":"10 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65849962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-04DOI: 10.1186/s40317-022-00280-4
P. Verhelst, K. Aarestrup, G. Hellström, N. Jepsen, A. Koed, J. Reubens, N. Sjöberg, J. Svendsen, M. L. Kristensen
{"title":"The effect of externally attached archival data loggers on the short-term dispersal behaviour and migration speed of European eel (Anguilla anguilla L.)","authors":"P. Verhelst, K. Aarestrup, G. Hellström, N. Jepsen, A. Koed, J. Reubens, N. Sjöberg, J. Svendsen, M. L. Kristensen","doi":"10.1186/s40317-022-00280-4","DOIUrl":"https://doi.org/10.1186/s40317-022-00280-4","url":null,"abstract":"","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":"10 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65849384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-03DOI: 10.1186/s40317-022-00281-3
C. Mulvenna, N. Marks, R. Wilson, L. Halsey, D. Scantlebury
{"title":"Can metrics of acceleration provide accurate estimates of energy costs of locomotion on uneven terrain? Using domestic sheep (Ovis aries) as an example","authors":"C. Mulvenna, N. Marks, R. Wilson, L. Halsey, D. Scantlebury","doi":"10.1186/s40317-022-00281-3","DOIUrl":"https://doi.org/10.1186/s40317-022-00281-3","url":null,"abstract":"","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":"10 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65849883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-10-11DOI: 10.1186/s40317-022-00302-1
David Bolduc, Dominique Fauteux, Éric Bharucha, Jean-Marie Trudeau, Pierre Legagneux
Background: Studying the anti-predatory behavior of mammals represents an important challenge, especially for fossorial small mammals that hide in burrows. In the Arctic, such behaviors are critical to the survival of lemmings considering that predation risks are high every summer. Because detailed information about how lemmings use burrows as hideouts is still lacking, we developed a 1.59 g photosensitive collar to record any event of a small mammal moving between a dark area (e.g., burrow) and a bright area (e.g., outside the burrow). Tests of how collars affected lemming behavior were conducted in captivity in Cambridge Bay, Nunavut, Canada, in November 2019 and field tests were conducted on Bylot Island, Nunavut, Canada, in August 2021.
Results: The device was made of two chemical batteries and a printed circuit board (PCB) equipped with a photosensor and a real-time clock that recorded amplitude transient thresholds of light (lux) continuously. In accordance with ethical use of such devices, we verified that no abnormal loss of body mass was observed in captive or free-ranging lemmings, and no difference in recapture rates were observed between those with and without a collar, though we could not test this for periods longer than 108 h. Measurements of light intensities revealed consistent patterns with high lux levels at mid-day and lowest during the night. Lemmings showed clearly defined behavioral patterns alternating between periods outside and inside burrows. Despite 24-h daylight in the middle of the summer, August nighttime (i.e., 11 PM to 4 AM) lux levels were insufficient for amplitude transient thresholds to be reached.
Conclusion: By taking advantage of the long periods of daylight in the Arctic, such technology is very promising as it sets new bases for passive recording of behavioral parameters and builds on the prospect of further miniaturization of batteries and PCBs.
{"title":"Ultra-light photosensor collars to monitor Arctic lemming activity.","authors":"David Bolduc, Dominique Fauteux, Éric Bharucha, Jean-Marie Trudeau, Pierre Legagneux","doi":"10.1186/s40317-022-00302-1","DOIUrl":"10.1186/s40317-022-00302-1","url":null,"abstract":"<p><strong>Background: </strong>Studying the anti-predatory behavior of mammals represents an important challenge, especially for fossorial small mammals that hide in burrows. In the Arctic, such behaviors are critical to the survival of lemmings considering that predation risks are high every summer. Because detailed information about how lemmings use burrows as hideouts is still lacking, we developed a 1.59 g photosensitive collar to record any event of a small mammal moving between a dark area (e.g., burrow) and a bright area (e.g., outside the burrow). Tests of how collars affected lemming behavior were conducted in captivity in Cambridge Bay, Nunavut, Canada, in November 2019 and field tests were conducted on Bylot Island, Nunavut, Canada, in August 2021.</p><p><strong>Results: </strong>The device was made of two chemical batteries and a printed circuit board (PCB) equipped with a photosensor and a real-time clock that recorded amplitude transient thresholds of light (lux) continuously. In accordance with ethical use of such devices, we verified that no abnormal loss of body mass was observed in captive or free-ranging lemmings, and no difference in recapture rates were observed between those with and without a collar, though we could not test this for periods longer than 108 h. Measurements of light intensities revealed consistent patterns with high lux levels at mid-day and lowest during the night. Lemmings showed clearly defined behavioral patterns alternating between periods outside and inside burrows. Despite 24-h daylight in the middle of the summer, August nighttime (i.e., 11 PM to 4 AM) lux levels were insufficient for amplitude transient thresholds to be reached.</p><p><strong>Conclusion: </strong>By taking advantage of the long periods of daylight in the Arctic, such technology is very promising as it sets new bases for passive recording of behavioral parameters and builds on the prospect of further miniaturization of batteries and PCBs.</p>","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":"10 1","pages":"31"},"PeriodicalIF":2.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9910727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01Epub Date: 2022-03-10DOI: 10.1186/s40317-022-00282-2
E A Magowan, I E Maguire, S Smith, S Redpath, N J Marks, R P Wilson, F Menzies, M O'Hagan, D M Scantlebury
Background: Recent developments in both hardware and software of animal-borne data loggers now enable large amounts of data to be collected on both animal movement and behaviour. In particular, the combined use of tri-axial accelerometers, tri-axial magnetometers and GPS loggers enables animal tracks to be elucidated using a procedure of 'dead-reckoning'. Although this approach was first suggested 30 years ago by Wilson et al. (1991), surprisingly few measurements have been made in free-ranging terrestrial animals. The current study examines movements, interactions with habitat features, and home-ranges calculated from just GPS data and also from dead-reckoned data in a model terrestrial mammal, the European badger (Meles meles).
Methods: Research was undertaken in farmland in Northern Ireland. Two badgers (one male, one female) were live-trapped and fitted with a GPS logger, a tri-axial accelerometer, and a tri-axial magnetometer. Thereafter, the badgers' movement paths over 2 weeks were elucidated using just GPS data and GPS-enabled dead-reckoned data, respectively.
Results: Badgers travelled further using data from dead-reckoned calculations than using the data from only GPS data. Whilst once-hourly GPS data could only be represented by straight-line movements between sequential points, the sub-second resolution dead-reckoned tracks were more tortuous. Although there were no differences in Minimum Convex Polygon determinations between GPS- and dead-reckoned data, Kernel Utilisation Distribution determinations of home-range size were larger using the former method. This was because dead-reckoned data more accurately described the particular parts of landscape constituting most-visited core areas, effectively narrowing the calculation of habitat use. Finally, the dead-reckoned data showed badgers spent more time near to field margins and hedges than simple GPS data would suggest.
Conclusion: Significant differences emerge when analyses of habitat use and movements are compared between calculations made using just GPS data or GPS-enabled dead-reckoned data. In particular, use of dead-reckoned data showed that animals moved 2.2 times farther, had better-defined use of the habitat (revealing clear core areas), and made more use of certain habitats (field margins, hedges). Use of dead-reckoning to provide detailed accounts of animal movement and highlight the minutiae of interactions with the environment should be considered an important technique in the ecologist's toolkit.
{"title":"Dead-reckoning elucidates fine-scale habitat use by European badgers <i>Meles meles</i>.","authors":"E A Magowan, I E Maguire, S Smith, S Redpath, N J Marks, R P Wilson, F Menzies, M O'Hagan, D M Scantlebury","doi":"10.1186/s40317-022-00282-2","DOIUrl":"10.1186/s40317-022-00282-2","url":null,"abstract":"<p><strong>Background: </strong>Recent developments in both hardware and software of animal-borne data loggers now enable large amounts of data to be collected on both animal movement and behaviour. In particular, the combined use of tri-axial accelerometers, tri-axial magnetometers and GPS loggers enables animal tracks to be elucidated using a procedure of 'dead-reckoning'. Although this approach was first suggested 30 years ago by Wilson et al<i>.</i> (1991), surprisingly few measurements have been made in free-ranging terrestrial animals. The current study examines movements, interactions with habitat features, and home-ranges calculated from just GPS data and also from dead-reckoned data in a model terrestrial mammal, the European badger (<i>Meles meles</i>).</p><p><strong>Methods: </strong>Research was undertaken in farmland in Northern Ireland. Two badgers (one male, one female) were live-trapped and fitted with a GPS logger, a tri-axial accelerometer, and a tri-axial magnetometer. Thereafter, the badgers' movement paths over 2 weeks were elucidated using just GPS data and GPS-enabled dead-reckoned data, respectively.</p><p><strong>Results: </strong>Badgers travelled further using data from dead-reckoned calculations than using the data from only GPS data. Whilst once-hourly GPS data could only be represented by straight-line movements between sequential points, the sub-second resolution dead-reckoned tracks were more tortuous. Although there were no differences in Minimum Convex Polygon determinations between GPS- and dead-reckoned data, Kernel Utilisation Distribution determinations of home-range size were larger using the former method. This was because dead-reckoned data more accurately described the particular parts of landscape constituting most-visited core areas, effectively narrowing the calculation of habitat use. Finally, the dead-reckoned data showed badgers spent more time near to field margins and hedges than simple GPS data would suggest.</p><p><strong>Conclusion: </strong>Significant differences emerge when analyses of habitat use and movements are compared between calculations made using just GPS data or GPS-enabled dead-reckoned data. In particular, use of dead-reckoned data showed that animals moved 2.2 times farther, had better-defined use of the habitat (revealing clear core areas), and made more use of certain habitats (field margins, hedges). Use of dead-reckoning to provide detailed accounts of animal movement and highlight the minutiae of interactions with the environment should be considered an important technique in the ecologist's toolkit.</p>","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":"10 1","pages":"10"},"PeriodicalIF":2.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9973685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1186/s40317-021-00271-x
C. Gallagher, Luke Storrie, Michael B. Courtney, K. Howland, E. V. Lea, S. MacPhee, L. Loseto
{"title":"Predation of archival tagged Dolly Varden, Salvelinus malma, reveals predator avoidance behaviour and tracks feeding events by presumed beluga whale, Delphinapterus leucas, in the Beaufort Sea","authors":"C. Gallagher, Luke Storrie, Michael B. Courtney, K. Howland, E. V. Lea, S. MacPhee, L. Loseto","doi":"10.1186/s40317-021-00271-x","DOIUrl":"https://doi.org/10.1186/s40317-021-00271-x","url":null,"abstract":"","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41473941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-25DOI: 10.1186/s40317-021-00270-y
Yulong Kuai, N. Klinard, A. Fisk, T. Johnson, E. Halfyard, D. Webber, Stephanie J. Smedbol, M. Wells
{"title":"Strong thermal stratification reduces detection efficiency and range of acoustic telemetry in a large freshwater lake","authors":"Yulong Kuai, N. Klinard, A. Fisk, T. Johnson, E. Halfyard, D. Webber, Stephanie J. Smedbol, M. Wells","doi":"10.1186/s40317-021-00270-y","DOIUrl":"https://doi.org/10.1186/s40317-021-00270-y","url":null,"abstract":"","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49392813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-15DOI: 10.1186/s40317-022-00300-3
R. Fontana, L. Calabrese, Ambrogio Lanzi, E. Armaroli, E. Raganella Pelliccioni
{"title":"Spatial behavior of red deer (Cervus elaphus) in Northern Apennines: are we managing them correctly?","authors":"R. Fontana, L. Calabrese, Ambrogio Lanzi, E. Armaroli, E. Raganella Pelliccioni","doi":"10.1186/s40317-022-00300-3","DOIUrl":"https://doi.org/10.1186/s40317-022-00300-3","url":null,"abstract":"","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":"97 4","pages":"1-12"},"PeriodicalIF":2.7,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41282188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-10DOI: 10.1101/2021.11.08.467683
A. Bijleveld, Frank van Maarseveen, Bas Denissen, Anne Dekinga, Emma Penning, Selin Ersoy, P. Gupte, L. D. De Monte, Job ten Horn, R. Bom, Sivan Toledo, Ran Nathan, Christine E. Beardsworth
Tracking animal movement is important for understanding how animals interact with their (changing) environment, and crucial for predicting and explaining how animals are affected by anthropogenic activities. The Wadden Sea is a UNESCO World Heritage Site and a region of global importance for millions of shorebirds. Due to climate change and anthropogenic activity, understanding and predicting movement and space-use in areas like the Wadden Sea is increasingly important. Monitoring and predicting animal movement, however, requires high-resolution tracking of many individuals. While high-resolution tracking has been made possible through GPS, trade-offs between tag weight and battery life limit its use to larger species. Here, we introduce WATLAS (the Wadden Sea deployment of the ATLAS tracking system) capable of monitoring the movements of hundreds of (small) birds simultaneously in the Dutch Wadden Sea. WATLAS employs an array of receiver stations that can detect and localize small, low-cost tags at fine spatial (metres) and temporal resolution (seconds). From 2017 to 2021, we tracked red knots, sanderlings, bar-tailed godwits, and common terns. We use parts of these data to give four use-cases revealing its performance and demonstrating how WATLAS can be used to study numerous aspects of animal behaviour, such as, space-use (both intra- and inter-specific), among-individual variation, and social networks across levels of organization: from individuals, to species, to populations, and even communities. After describing the WATLAS system, we first illustrate space-use of red knots across the study area and how the tidal environment affects their movement. Secondly, we show large among-individual differences in distances travelled per day, and thirdly illustrate how high-throughput WATLAS data allows calculating a proximity-based social network. Finally, we demonstrate that using WATLAS to monitor multiple species can reveal differential space use. For example, despite sanderlings and red knots roosting together, they foraged in different areas of the mudflats. The high-resolution tracking data collected by WATLAS offers many possibilities for research into the drivers of bird movement in the Wadden Sea. WATLAS could provide a tool for impact assessment, and thus aid nature conservation and management of the globally important Wadden Sea ecosystem.
{"title":"WATLAS: high-throughput and real-time tracking of many small birds in the Dutch Wadden Sea","authors":"A. Bijleveld, Frank van Maarseveen, Bas Denissen, Anne Dekinga, Emma Penning, Selin Ersoy, P. Gupte, L. D. De Monte, Job ten Horn, R. Bom, Sivan Toledo, Ran Nathan, Christine E. Beardsworth","doi":"10.1101/2021.11.08.467683","DOIUrl":"https://doi.org/10.1101/2021.11.08.467683","url":null,"abstract":"Tracking animal movement is important for understanding how animals interact with their (changing) environment, and crucial for predicting and explaining how animals are affected by anthropogenic activities. The Wadden Sea is a UNESCO World Heritage Site and a region of global importance for millions of shorebirds. Due to climate change and anthropogenic activity, understanding and predicting movement and space-use in areas like the Wadden Sea is increasingly important. Monitoring and predicting animal movement, however, requires high-resolution tracking of many individuals. While high-resolution tracking has been made possible through GPS, trade-offs between tag weight and battery life limit its use to larger species. Here, we introduce WATLAS (the Wadden Sea deployment of the ATLAS tracking system) capable of monitoring the movements of hundreds of (small) birds simultaneously in the Dutch Wadden Sea. WATLAS employs an array of receiver stations that can detect and localize small, low-cost tags at fine spatial (metres) and temporal resolution (seconds). From 2017 to 2021, we tracked red knots, sanderlings, bar-tailed godwits, and common terns. We use parts of these data to give four use-cases revealing its performance and demonstrating how WATLAS can be used to study numerous aspects of animal behaviour, such as, space-use (both intra- and inter-specific), among-individual variation, and social networks across levels of organization: from individuals, to species, to populations, and even communities. After describing the WATLAS system, we first illustrate space-use of red knots across the study area and how the tidal environment affects their movement. Secondly, we show large among-individual differences in distances travelled per day, and thirdly illustrate how high-throughput WATLAS data allows calculating a proximity-based social network. Finally, we demonstrate that using WATLAS to monitor multiple species can reveal differential space use. For example, despite sanderlings and red knots roosting together, they foraged in different areas of the mudflats. The high-resolution tracking data collected by WATLAS offers many possibilities for research into the drivers of bird movement in the Wadden Sea. WATLAS could provide a tool for impact assessment, and thus aid nature conservation and management of the globally important Wadden Sea ecosystem.","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":"10 1","pages":"1-17"},"PeriodicalIF":2.7,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44641748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-25DOI: 10.21203/rs.3.rs-991320/v1
R. Buchanan, S. Whitlock
Background Acoustic telemetry is a powerful tool for studying fish behavior and survival that relies on the assumption that tag detection reflects the presence of live study subjects. This assumption is violated when tag signals continue to be recorded after consumption by predators. When such tag predation is possible, it is necessary for researchers to diagnose and remove these non-representative detections. Past studies have employed a variety of data-filtering techniques to address the issue, ranging from rule-based algorithms that rely on expert judgements of behavior and movement capabilities of study subjects and their predators to automated pattern-recognition techniques using multivariate analyses. We compare four approaches for flagging suspicious tracks or detection events: two rule-based expert-opinion approaches of differing complexity and two unsupervised pattern-recognition approaches with and without data from deliberately tagged predators. We compare alternative approaches by applying these four filters to a case study of survival estimation of acoustic-tagged juvenile Chinook salmon ( Oncorhynchus tshawytscha ) in the San Joaquin River, California, United States. Results Filtering approaches differed in the number and composition of tags suspected of being consumed by predators; the largest differences occurred between the two broad categories, rule-based versus pattern recognition. All methods required some investigator judgement and all flagged a small subset (5%) of suspicious tags that had exceptionally long residence times and evidence of upstream transitions; 27% of tags showed evidence of predation based on at least one filter. The complex rule-based filter deemed the most tags suspicious (21%) and the simpler pattern-recognition method the fewest (10%). Reach-specific survival estimates from the four filters were mostly within 2% of the unfiltered estimates, but differences up to 11% were observed. Conclusions Sensitivity of survival results to tag predation and predator filtering depends on the study setting, spatiotemporal scale of inference, and habitat use of predators. Choice of filtering technique depends on the data available and knowledge of the study system. We recommend that survival studies include clear documentation of filtering methods and report on robustness of results to the filtering approach selected.
{"title":"Diagnosing predated tags in telemetry survival studies of migratory fishes in river systems","authors":"R. Buchanan, S. Whitlock","doi":"10.21203/rs.3.rs-991320/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-991320/v1","url":null,"abstract":"Background Acoustic telemetry is a powerful tool for studying fish behavior and survival that relies on the assumption that tag detection reflects the presence of live study subjects. This assumption is violated when tag signals continue to be recorded after consumption by predators. When such tag predation is possible, it is necessary for researchers to diagnose and remove these non-representative detections. Past studies have employed a variety of data-filtering techniques to address the issue, ranging from rule-based algorithms that rely on expert judgements of behavior and movement capabilities of study subjects and their predators to automated pattern-recognition techniques using multivariate analyses. We compare four approaches for flagging suspicious tracks or detection events: two rule-based expert-opinion approaches of differing complexity and two unsupervised pattern-recognition approaches with and without data from deliberately tagged predators. We compare alternative approaches by applying these four filters to a case study of survival estimation of acoustic-tagged juvenile Chinook salmon ( Oncorhynchus tshawytscha ) in the San Joaquin River, California, United States. Results Filtering approaches differed in the number and composition of tags suspected of being consumed by predators; the largest differences occurred between the two broad categories, rule-based versus pattern recognition. All methods required some investigator judgement and all flagged a small subset (5%) of suspicious tags that had exceptionally long residence times and evidence of upstream transitions; 27% of tags showed evidence of predation based on at least one filter. The complex rule-based filter deemed the most tags suspicious (21%) and the simpler pattern-recognition method the fewest (10%). Reach-specific survival estimates from the four filters were mostly within 2% of the unfiltered estimates, but differences up to 11% were observed. Conclusions Sensitivity of survival results to tag predation and predator filtering depends on the study setting, spatiotemporal scale of inference, and habitat use of predators. Choice of filtering technique depends on the data available and knowledge of the study system. We recommend that survival studies include clear documentation of filtering methods and report on robustness of results to the filtering approach selected.","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":"10 1","pages":"1-23"},"PeriodicalIF":2.7,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47255316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}