Pub Date : 2022-01-01Epub Date: 2022-03-10DOI: 10.1186/s40317-022-00282-2
E A Magowan, I E Maguire, S Smith, S Redpath, N J Marks, R P Wilson, F Menzies, M O'Hagan, D M Scantlebury
Background: Recent developments in both hardware and software of animal-borne data loggers now enable large amounts of data to be collected on both animal movement and behaviour. In particular, the combined use of tri-axial accelerometers, tri-axial magnetometers and GPS loggers enables animal tracks to be elucidated using a procedure of 'dead-reckoning'. Although this approach was first suggested 30 years ago by Wilson et al. (1991), surprisingly few measurements have been made in free-ranging terrestrial animals. The current study examines movements, interactions with habitat features, and home-ranges calculated from just GPS data and also from dead-reckoned data in a model terrestrial mammal, the European badger (Meles meles).
Methods: Research was undertaken in farmland in Northern Ireland. Two badgers (one male, one female) were live-trapped and fitted with a GPS logger, a tri-axial accelerometer, and a tri-axial magnetometer. Thereafter, the badgers' movement paths over 2 weeks were elucidated using just GPS data and GPS-enabled dead-reckoned data, respectively.
Results: Badgers travelled further using data from dead-reckoned calculations than using the data from only GPS data. Whilst once-hourly GPS data could only be represented by straight-line movements between sequential points, the sub-second resolution dead-reckoned tracks were more tortuous. Although there were no differences in Minimum Convex Polygon determinations between GPS- and dead-reckoned data, Kernel Utilisation Distribution determinations of home-range size were larger using the former method. This was because dead-reckoned data more accurately described the particular parts of landscape constituting most-visited core areas, effectively narrowing the calculation of habitat use. Finally, the dead-reckoned data showed badgers spent more time near to field margins and hedges than simple GPS data would suggest.
Conclusion: Significant differences emerge when analyses of habitat use and movements are compared between calculations made using just GPS data or GPS-enabled dead-reckoned data. In particular, use of dead-reckoned data showed that animals moved 2.2 times farther, had better-defined use of the habitat (revealing clear core areas), and made more use of certain habitats (field margins, hedges). Use of dead-reckoning to provide detailed accounts of animal movement and highlight the minutiae of interactions with the environment should be considered an important technique in the ecologist's toolkit.
{"title":"Dead-reckoning elucidates fine-scale habitat use by European badgers <i>Meles meles</i>.","authors":"E A Magowan, I E Maguire, S Smith, S Redpath, N J Marks, R P Wilson, F Menzies, M O'Hagan, D M Scantlebury","doi":"10.1186/s40317-022-00282-2","DOIUrl":"10.1186/s40317-022-00282-2","url":null,"abstract":"<p><strong>Background: </strong>Recent developments in both hardware and software of animal-borne data loggers now enable large amounts of data to be collected on both animal movement and behaviour. In particular, the combined use of tri-axial accelerometers, tri-axial magnetometers and GPS loggers enables animal tracks to be elucidated using a procedure of 'dead-reckoning'. Although this approach was first suggested 30 years ago by Wilson et al<i>.</i> (1991), surprisingly few measurements have been made in free-ranging terrestrial animals. The current study examines movements, interactions with habitat features, and home-ranges calculated from just GPS data and also from dead-reckoned data in a model terrestrial mammal, the European badger (<i>Meles meles</i>).</p><p><strong>Methods: </strong>Research was undertaken in farmland in Northern Ireland. Two badgers (one male, one female) were live-trapped and fitted with a GPS logger, a tri-axial accelerometer, and a tri-axial magnetometer. Thereafter, the badgers' movement paths over 2 weeks were elucidated using just GPS data and GPS-enabled dead-reckoned data, respectively.</p><p><strong>Results: </strong>Badgers travelled further using data from dead-reckoned calculations than using the data from only GPS data. Whilst once-hourly GPS data could only be represented by straight-line movements between sequential points, the sub-second resolution dead-reckoned tracks were more tortuous. Although there were no differences in Minimum Convex Polygon determinations between GPS- and dead-reckoned data, Kernel Utilisation Distribution determinations of home-range size were larger using the former method. This was because dead-reckoned data more accurately described the particular parts of landscape constituting most-visited core areas, effectively narrowing the calculation of habitat use. Finally, the dead-reckoned data showed badgers spent more time near to field margins and hedges than simple GPS data would suggest.</p><p><strong>Conclusion: </strong>Significant differences emerge when analyses of habitat use and movements are compared between calculations made using just GPS data or GPS-enabled dead-reckoned data. In particular, use of dead-reckoned data showed that animals moved 2.2 times farther, had better-defined use of the habitat (revealing clear core areas), and made more use of certain habitats (field margins, hedges). Use of dead-reckoning to provide detailed accounts of animal movement and highlight the minutiae of interactions with the environment should be considered an important technique in the ecologist's toolkit.</p>","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":"10 1","pages":"10"},"PeriodicalIF":2.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9973685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1186/s40317-021-00271-x
C. Gallagher, Luke Storrie, Michael B. Courtney, K. Howland, E. V. Lea, S. MacPhee, L. Loseto
{"title":"Predation of archival tagged Dolly Varden, Salvelinus malma, reveals predator avoidance behaviour and tracks feeding events by presumed beluga whale, Delphinapterus leucas, in the Beaufort Sea","authors":"C. Gallagher, Luke Storrie, Michael B. Courtney, K. Howland, E. V. Lea, S. MacPhee, L. Loseto","doi":"10.1186/s40317-021-00271-x","DOIUrl":"https://doi.org/10.1186/s40317-021-00271-x","url":null,"abstract":"","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41473941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-25DOI: 10.1186/s40317-021-00270-y
Yulong Kuai, N. Klinard, A. Fisk, T. Johnson, E. Halfyard, D. Webber, Stephanie J. Smedbol, M. Wells
{"title":"Strong thermal stratification reduces detection efficiency and range of acoustic telemetry in a large freshwater lake","authors":"Yulong Kuai, N. Klinard, A. Fisk, T. Johnson, E. Halfyard, D. Webber, Stephanie J. Smedbol, M. Wells","doi":"10.1186/s40317-021-00270-y","DOIUrl":"https://doi.org/10.1186/s40317-021-00270-y","url":null,"abstract":"","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49392813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-15DOI: 10.1186/s40317-022-00300-3
R. Fontana, L. Calabrese, Ambrogio Lanzi, E. Armaroli, E. Raganella Pelliccioni
{"title":"Spatial behavior of red deer (Cervus elaphus) in Northern Apennines: are we managing them correctly?","authors":"R. Fontana, L. Calabrese, Ambrogio Lanzi, E. Armaroli, E. Raganella Pelliccioni","doi":"10.1186/s40317-022-00300-3","DOIUrl":"https://doi.org/10.1186/s40317-022-00300-3","url":null,"abstract":"","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":"97 4","pages":"1-12"},"PeriodicalIF":2.7,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41282188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-10DOI: 10.1101/2021.11.08.467683
A. Bijleveld, Frank van Maarseveen, Bas Denissen, Anne Dekinga, Emma Penning, Selin Ersoy, P. Gupte, L. D. De Monte, Job ten Horn, R. Bom, Sivan Toledo, Ran Nathan, Christine E. Beardsworth
Tracking animal movement is important for understanding how animals interact with their (changing) environment, and crucial for predicting and explaining how animals are affected by anthropogenic activities. The Wadden Sea is a UNESCO World Heritage Site and a region of global importance for millions of shorebirds. Due to climate change and anthropogenic activity, understanding and predicting movement and space-use in areas like the Wadden Sea is increasingly important. Monitoring and predicting animal movement, however, requires high-resolution tracking of many individuals. While high-resolution tracking has been made possible through GPS, trade-offs between tag weight and battery life limit its use to larger species. Here, we introduce WATLAS (the Wadden Sea deployment of the ATLAS tracking system) capable of monitoring the movements of hundreds of (small) birds simultaneously in the Dutch Wadden Sea. WATLAS employs an array of receiver stations that can detect and localize small, low-cost tags at fine spatial (metres) and temporal resolution (seconds). From 2017 to 2021, we tracked red knots, sanderlings, bar-tailed godwits, and common terns. We use parts of these data to give four use-cases revealing its performance and demonstrating how WATLAS can be used to study numerous aspects of animal behaviour, such as, space-use (both intra- and inter-specific), among-individual variation, and social networks across levels of organization: from individuals, to species, to populations, and even communities. After describing the WATLAS system, we first illustrate space-use of red knots across the study area and how the tidal environment affects their movement. Secondly, we show large among-individual differences in distances travelled per day, and thirdly illustrate how high-throughput WATLAS data allows calculating a proximity-based social network. Finally, we demonstrate that using WATLAS to monitor multiple species can reveal differential space use. For example, despite sanderlings and red knots roosting together, they foraged in different areas of the mudflats. The high-resolution tracking data collected by WATLAS offers many possibilities for research into the drivers of bird movement in the Wadden Sea. WATLAS could provide a tool for impact assessment, and thus aid nature conservation and management of the globally important Wadden Sea ecosystem.
{"title":"WATLAS: high-throughput and real-time tracking of many small birds in the Dutch Wadden Sea","authors":"A. Bijleveld, Frank van Maarseveen, Bas Denissen, Anne Dekinga, Emma Penning, Selin Ersoy, P. Gupte, L. D. De Monte, Job ten Horn, R. Bom, Sivan Toledo, Ran Nathan, Christine E. Beardsworth","doi":"10.1101/2021.11.08.467683","DOIUrl":"https://doi.org/10.1101/2021.11.08.467683","url":null,"abstract":"Tracking animal movement is important for understanding how animals interact with their (changing) environment, and crucial for predicting and explaining how animals are affected by anthropogenic activities. The Wadden Sea is a UNESCO World Heritage Site and a region of global importance for millions of shorebirds. Due to climate change and anthropogenic activity, understanding and predicting movement and space-use in areas like the Wadden Sea is increasingly important. Monitoring and predicting animal movement, however, requires high-resolution tracking of many individuals. While high-resolution tracking has been made possible through GPS, trade-offs between tag weight and battery life limit its use to larger species. Here, we introduce WATLAS (the Wadden Sea deployment of the ATLAS tracking system) capable of monitoring the movements of hundreds of (small) birds simultaneously in the Dutch Wadden Sea. WATLAS employs an array of receiver stations that can detect and localize small, low-cost tags at fine spatial (metres) and temporal resolution (seconds). From 2017 to 2021, we tracked red knots, sanderlings, bar-tailed godwits, and common terns. We use parts of these data to give four use-cases revealing its performance and demonstrating how WATLAS can be used to study numerous aspects of animal behaviour, such as, space-use (both intra- and inter-specific), among-individual variation, and social networks across levels of organization: from individuals, to species, to populations, and even communities. After describing the WATLAS system, we first illustrate space-use of red knots across the study area and how the tidal environment affects their movement. Secondly, we show large among-individual differences in distances travelled per day, and thirdly illustrate how high-throughput WATLAS data allows calculating a proximity-based social network. Finally, we demonstrate that using WATLAS to monitor multiple species can reveal differential space use. For example, despite sanderlings and red knots roosting together, they foraged in different areas of the mudflats. The high-resolution tracking data collected by WATLAS offers many possibilities for research into the drivers of bird movement in the Wadden Sea. WATLAS could provide a tool for impact assessment, and thus aid nature conservation and management of the globally important Wadden Sea ecosystem.","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":"10 1","pages":"1-17"},"PeriodicalIF":2.7,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44641748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-25DOI: 10.21203/rs.3.rs-991320/v1
R. Buchanan, S. Whitlock
Background Acoustic telemetry is a powerful tool for studying fish behavior and survival that relies on the assumption that tag detection reflects the presence of live study subjects. This assumption is violated when tag signals continue to be recorded after consumption by predators. When such tag predation is possible, it is necessary for researchers to diagnose and remove these non-representative detections. Past studies have employed a variety of data-filtering techniques to address the issue, ranging from rule-based algorithms that rely on expert judgements of behavior and movement capabilities of study subjects and their predators to automated pattern-recognition techniques using multivariate analyses. We compare four approaches for flagging suspicious tracks or detection events: two rule-based expert-opinion approaches of differing complexity and two unsupervised pattern-recognition approaches with and without data from deliberately tagged predators. We compare alternative approaches by applying these four filters to a case study of survival estimation of acoustic-tagged juvenile Chinook salmon ( Oncorhynchus tshawytscha ) in the San Joaquin River, California, United States. Results Filtering approaches differed in the number and composition of tags suspected of being consumed by predators; the largest differences occurred between the two broad categories, rule-based versus pattern recognition. All methods required some investigator judgement and all flagged a small subset (5%) of suspicious tags that had exceptionally long residence times and evidence of upstream transitions; 27% of tags showed evidence of predation based on at least one filter. The complex rule-based filter deemed the most tags suspicious (21%) and the simpler pattern-recognition method the fewest (10%). Reach-specific survival estimates from the four filters were mostly within 2% of the unfiltered estimates, but differences up to 11% were observed. Conclusions Sensitivity of survival results to tag predation and predator filtering depends on the study setting, spatiotemporal scale of inference, and habitat use of predators. Choice of filtering technique depends on the data available and knowledge of the study system. We recommend that survival studies include clear documentation of filtering methods and report on robustness of results to the filtering approach selected.
{"title":"Diagnosing predated tags in telemetry survival studies of migratory fishes in river systems","authors":"R. Buchanan, S. Whitlock","doi":"10.21203/rs.3.rs-991320/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-991320/v1","url":null,"abstract":"Background Acoustic telemetry is a powerful tool for studying fish behavior and survival that relies on the assumption that tag detection reflects the presence of live study subjects. This assumption is violated when tag signals continue to be recorded after consumption by predators. When such tag predation is possible, it is necessary for researchers to diagnose and remove these non-representative detections. Past studies have employed a variety of data-filtering techniques to address the issue, ranging from rule-based algorithms that rely on expert judgements of behavior and movement capabilities of study subjects and their predators to automated pattern-recognition techniques using multivariate analyses. We compare four approaches for flagging suspicious tracks or detection events: two rule-based expert-opinion approaches of differing complexity and two unsupervised pattern-recognition approaches with and without data from deliberately tagged predators. We compare alternative approaches by applying these four filters to a case study of survival estimation of acoustic-tagged juvenile Chinook salmon ( Oncorhynchus tshawytscha ) in the San Joaquin River, California, United States. Results Filtering approaches differed in the number and composition of tags suspected of being consumed by predators; the largest differences occurred between the two broad categories, rule-based versus pattern recognition. All methods required some investigator judgement and all flagged a small subset (5%) of suspicious tags that had exceptionally long residence times and evidence of upstream transitions; 27% of tags showed evidence of predation based on at least one filter. The complex rule-based filter deemed the most tags suspicious (21%) and the simpler pattern-recognition method the fewest (10%). Reach-specific survival estimates from the four filters were mostly within 2% of the unfiltered estimates, but differences up to 11% were observed. Conclusions Sensitivity of survival results to tag predation and predator filtering depends on the study setting, spatiotemporal scale of inference, and habitat use of predators. Choice of filtering technique depends on the data available and knowledge of the study system. We recommend that survival studies include clear documentation of filtering methods and report on robustness of results to the filtering approach selected.","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":"10 1","pages":"1-23"},"PeriodicalIF":2.7,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47255316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-16DOI: 10.1186/s40317-021-00265-9
Richard M Gunner, Mark D Holton, David M Scantlebury, Phil Hopkins, Emily L C Shepard, Adam J Fell, Baptiste Garde, Flavio Quintana, Agustina Gómez-Laich, Ken Yoda, Takashi Yamamoto, Holly English, Sam Ferreira, Danny Govender, Pauli Viljoen, Angela Bruns, O Louis van Schalkwyk, Nik C Cole, Vikash Tatayah, Luca Börger, James Redcliffe, Stephen H Bell, Nikki J Marks, Nigel C Bennett, Mariano H Tonini, Hannah J Williams, Carlos M Duarte, Martin C van Rooyen, Mads F Bertelsen, Craig J Tambling, Rory P Wilson
Background: Understanding what animals do in time and space is important for a range of ecological questions, however accurate estimates of how animals use space is challenging. Within the use of animal-attached tags, radio telemetry (including the Global Positioning System, 'GPS') is typically used to verify an animal's location periodically. Straight lines are typically drawn between these 'Verified Positions' ('VPs') so the interpolation of space-use is limited by the temporal and spatial resolution of the system's measurement. As such, parameters such as route-taken and distance travelled can be poorly represented when using VP systems alone. Dead-reckoning has been suggested as a technique to improve the accuracy and resolution of reconstructed movement paths, whilst maximising battery life of VP systems. This typically involves deriving travel vectors from motion sensor systems and periodically correcting path dimensions for drift with simultaneously deployed VP systems. How often paths should be corrected for drift, however, has remained unclear.
Methods and results: Here, we review the utility of dead-reckoning across four contrasting model species using different forms of locomotion (the African lion Panthera leo, the red-tailed tropicbird Phaethon rubricauda, the Magellanic penguin Spheniscus magellanicus, and the imperial cormorant Leucocarbo atriceps). Simulations were performed to examine the extent of dead-reckoning error, relative to VPs, as a function of Verified Position correction (VP correction) rate and the effect of this on estimates of distance moved. Dead-reckoning error was greatest for animals travelling within air and water. We demonstrate how sources of measurement error can arise within VP-corrected dead-reckoned tracks and propose advancements to this procedure to maximise dead-reckoning accuracy.
Conclusions: We review the utility of VP-corrected dead-reckoning according to movement type and consider a range of ecological questions that would benefit from dead-reckoning, primarily concerning animal-barrier interactions and foraging strategies.
{"title":"How often should dead-reckoned animal movement paths be corrected for drift?","authors":"Richard M Gunner, Mark D Holton, David M Scantlebury, Phil Hopkins, Emily L C Shepard, Adam J Fell, Baptiste Garde, Flavio Quintana, Agustina Gómez-Laich, Ken Yoda, Takashi Yamamoto, Holly English, Sam Ferreira, Danny Govender, Pauli Viljoen, Angela Bruns, O Louis van Schalkwyk, Nik C Cole, Vikash Tatayah, Luca Börger, James Redcliffe, Stephen H Bell, Nikki J Marks, Nigel C Bennett, Mariano H Tonini, Hannah J Williams, Carlos M Duarte, Martin C van Rooyen, Mads F Bertelsen, Craig J Tambling, Rory P Wilson","doi":"10.1186/s40317-021-00265-9","DOIUrl":"10.1186/s40317-021-00265-9","url":null,"abstract":"<p><strong>Background: </strong>Understanding what animals do in time and space is important for a range of ecological questions, however accurate estimates of how animals use space is challenging. Within the use of animal-attached tags, radio telemetry (including the Global Positioning System, 'GPS') is typically used to verify an animal's location periodically. Straight lines are typically drawn between these 'Verified Positions' ('VPs') so the interpolation of space-use is limited by the temporal and spatial resolution of the system's measurement. As such, parameters such as route-taken and distance travelled can be poorly represented when using VP systems alone. Dead-reckoning has been suggested as a technique to improve the accuracy and resolution of reconstructed movement paths, whilst maximising battery life of VP systems. This typically involves deriving travel vectors from motion sensor systems and periodically correcting path dimensions for drift with simultaneously deployed VP systems. How often paths should be corrected for drift, however, has remained unclear.</p><p><strong>Methods and results: </strong>Here, we review the utility of dead-reckoning across four contrasting model species using different forms of locomotion (the African lion <i>Panthera leo</i>, the red-tailed tropicbird <i>Phaethon rubricauda</i>, the Magellanic penguin <i>Spheniscus magellanicus</i>, and the imperial cormorant <i>Leucocarbo atriceps</i>). Simulations were performed to examine the extent of dead-reckoning error, relative to VPs, as a function of Verified Position correction (VP correction) rate and the effect of this on estimates of distance moved. Dead-reckoning error was greatest for animals travelling within air and water. We demonstrate how sources of measurement error can arise within VP-corrected dead-reckoned tracks and propose advancements to this procedure to maximise dead-reckoning accuracy.</p><p><strong>Conclusions: </strong>We review the utility of VP-corrected dead-reckoning according to movement type and consider a range of ecological questions that would benefit from dead-reckoning, primarily concerning animal-barrier interactions and foraging strategies.</p>","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":"9 ","pages":"43"},"PeriodicalIF":2.7,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39719584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-15DOI: 10.1186/s40317-021-00266-8
M. Modest, Ladd M. Irvine, V. Andrews‐Goff, William T. Gough, D. Johnston, D. Nowacek, L. Pallin, A. Read, R. T. Moore, A. Friedlaender
{"title":"First description of migratory behavior of humpback whales from an Antarctic feeding ground to a tropical calving ground","authors":"M. Modest, Ladd M. Irvine, V. Andrews‐Goff, William T. Gough, D. Johnston, D. Nowacek, L. Pallin, A. Read, R. T. Moore, A. Friedlaender","doi":"10.1186/s40317-021-00266-8","DOIUrl":"https://doi.org/10.1186/s40317-021-00266-8","url":null,"abstract":"","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41714623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-22DOI: 10.21203/RS.3.RS-910528/V1
C. Gallagher, Luke Storrie, Michael B. Courtney, K. Howland, E. V. Lea, S. MacPhee, L. Loseto
Background We report compelling evidence suggesting a predation event of a pop-up satellite archival tagged anadromous Dolly Varden ( Salvelinus malma ) by a marine mammal during summer in the Beaufort Sea based on abrupt changes in temperature and vertical movements. This observation provides insight on predator avoidance behaviour by Dolly Varden and the predator’s feeding frequency while the tag was ingested. Based on published distribution and ecology information, we presumed the predator was a beluga whale ( Delphinapterus leucas ). Supplemental satellite telemetry data from previously tagged Dolly Varden and beluga whales were used to determine the extent of spatial and vertical overlap between species in the area where predation occurred. Results Prior to the predation event, depths and temperatures occupied by the tagged Dolly Varden averaged 1.1 m and 3.1 °C, respectively. On July 7, 2020, depths remained shallow apart from a sudden dive to 12.5 m (16:45 UTC) followed by a precipitous increase in temperature from 4.4 to 27.1 °C (16:52 UTC) suggesting predation by an endotherm. Subsequent readings indicated the endotherm had a resting stomach temperature of 36.1 °C. Including the predation event, eight separate feeding events were inferred during the 20-h period the tag was ingested (before presumed regurgitation) based on subsequent declines in stomach temperatures (mean decline to 31.1 °C) that took an average of 24.1 min to return to resting temperature. The predator occupied mainly shallow depths (mean = 2.3 m), overlapping with tagged belugas that spent 76.9% of their time occupying waters ≤ 2.5 m when frequenting the area occupied by tagged Dolly Varden in the Canadian Beaufort Sea in July. Back-calculation based on tag drift and mean displacement by tagged belugas indicated the predation likely occurred west of the Mackenzie Delta. Conclusion Our findings provide new information on both anti-predator behaviour by, and marine predators of, Dolly Varden in the Beaufort Sea. We provide the first estimate of feeding frequency and stomach temperature recovery in a presumed wild beluga, and evidence for shallow foraging behaviour by belugas. Elucidating the likely predator and exploring the extent of overlap between Dolly Varden and beluga whales contributes towards knowledge on the trophic interactions in the Beaufort Sea.
{"title":"Predation of archival tagged Dolly Varden, Salvelinus malma, reveals predator avoidance behaviour and tracks feeding events by presumed beluga whale, Delphinapterus leucas, in the Beaufort Sea","authors":"C. Gallagher, Luke Storrie, Michael B. Courtney, K. Howland, E. V. Lea, S. MacPhee, L. Loseto","doi":"10.21203/RS.3.RS-910528/V1","DOIUrl":"https://doi.org/10.21203/RS.3.RS-910528/V1","url":null,"abstract":"Background We report compelling evidence suggesting a predation event of a pop-up satellite archival tagged anadromous Dolly Varden ( Salvelinus malma ) by a marine mammal during summer in the Beaufort Sea based on abrupt changes in temperature and vertical movements. This observation provides insight on predator avoidance behaviour by Dolly Varden and the predator’s feeding frequency while the tag was ingested. Based on published distribution and ecology information, we presumed the predator was a beluga whale ( Delphinapterus leucas ). Supplemental satellite telemetry data from previously tagged Dolly Varden and beluga whales were used to determine the extent of spatial and vertical overlap between species in the area where predation occurred. Results Prior to the predation event, depths and temperatures occupied by the tagged Dolly Varden averaged 1.1 m and 3.1 °C, respectively. On July 7, 2020, depths remained shallow apart from a sudden dive to 12.5 m (16:45 UTC) followed by a precipitous increase in temperature from 4.4 to 27.1 °C (16:52 UTC) suggesting predation by an endotherm. Subsequent readings indicated the endotherm had a resting stomach temperature of 36.1 °C. Including the predation event, eight separate feeding events were inferred during the 20-h period the tag was ingested (before presumed regurgitation) based on subsequent declines in stomach temperatures (mean decline to 31.1 °C) that took an average of 24.1 min to return to resting temperature. The predator occupied mainly shallow depths (mean = 2.3 m), overlapping with tagged belugas that spent 76.9% of their time occupying waters ≤ 2.5 m when frequenting the area occupied by tagged Dolly Varden in the Canadian Beaufort Sea in July. Back-calculation based on tag drift and mean displacement by tagged belugas indicated the predation likely occurred west of the Mackenzie Delta. Conclusion Our findings provide new information on both anti-predator behaviour by, and marine predators of, Dolly Varden in the Beaufort Sea. We provide the first estimate of feeding frequency and stomach temperature recovery in a presumed wild beluga, and evidence for shallow foraging behaviour by belugas. Elucidating the likely predator and exploring the extent of overlap between Dolly Varden and beluga whales contributes towards knowledge on the trophic interactions in the Beaufort Sea.","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":"9 1","pages":"1-17"},"PeriodicalIF":2.7,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41962700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-22DOI: 10.1186/s40317-021-00264-w
E. Svendsen, F. Økland, M. Føre, L. Randeberg, B. Finstad, R. Olsen, J. A. Alfredsen
{"title":"Optical measurement of tissue perfusion changes as an alternative to electrocardiography for heart rate monitoring in Atlantic salmon (Salmo salar)","authors":"E. Svendsen, F. Økland, M. Føre, L. Randeberg, B. Finstad, R. Olsen, J. A. Alfredsen","doi":"10.1186/s40317-021-00264-w","DOIUrl":"https://doi.org/10.1186/s40317-021-00264-w","url":null,"abstract":"","PeriodicalId":37711,"journal":{"name":"Animal Biotelemetry","volume":"9 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65849308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}