Over the past few months there have been reports of severe acute hepatitis in several hundred, otherwise healthy, immunocompetent young children. Several deaths have been recorded and a relatively large proportion of the patients have needed liver transplants. Most of the cases, so far, have been seen in the UK and in North America, but it has also been reported in many other European countries, the Middle East and Asia. Most common viruses have been ruled out as a causative agent; hepatitis A virus (HAV), hepatitis B virus (HBV) and hepatitis C virus (HCV) were not detected, nor were Epstein-Barr virus (EBV), cytomegalovirus (CMV) and human immunodeficiency virus (HIV) in many cases. A small proportion of the children had been infected with SARS-CoV-2 but these seem to be in a minority; similarly, almost none of the children had been vaccinated against COVID-19. Significantly, many of the patients were infected with adenovirus 41 (HAdV-F41). Previously, HAdV-41 had not been linked to hepatitis and is usually considered to cause gastroenteritis in both immunocompetent and immunocompromised patients. In two most recent studies, adeno-associated virus 2 (AAV2) was detected in almost all patients, together with species C and F HAdVs and human herpesvirus 6B (HHV6B). Here, I discuss the possibility that a change in tropism of HAdV-41 and changes in AAV2 may be responsible for their links to acute hepatitis.
Currently, many viruses are classified based on their genome organization and nucleotide/amino acid sequence identities of their capsid and replication-associated proteins. Although biological traits such as vector specificities and host range are also considered, this later information is scarce for the majority of recently identified viruses, characterized only from genomic sequences. Accordingly, genomic sequences and derived information are being frequently used as the major, if not only, criteria for virus classification and this calls for a full review of the process. Herein, we critically addressed current issues concerning classification of viruses in the family Betaflexiviridae in the era of high-throughput sequencing and propose an updated set of demarcation criteria based on a process involving pairwise identity analyses and phylogenetics. The proposed framework has been designed to solve the majority of current conundrums in taxonomy and to facilitate future virus classification. Finally, the analyses performed herein, alongside the proposed approaches, could be used as a blueprint for virus classification at-large.
Human cytomegalovirus is responsible for morbidity and mortality in immune compromised patients and is the leading viral cause of congenital infection. Virus-encoded microRNAs (miRNAs) represent interesting targets for novel antiviral agents. While many cellular targets that augment productive infection have been identified in recent years, regulation of viral genes such as the major viral immediate early protein 72 (IE72) by hcmv-miR-UL112-1 may contribute to both the establishment and the maintenance of latent infection. We employed photoactivated ribonucleotide-enhanced individual nucleotide resolution crosslinking (PAR-iCLIP) to identify murine cytomegalovirus (MCMV) miRNA targets during lytic infection. While the PAR-iCLIP data were of insufficient quality to obtain a comprehensive list of cellular and viral miRNA targets, the most prominent PAR-iCLIP peak in the MCMV genome mapped to the 3' untranslated region of the major viral immediate early 3 (ie3) transcript. We show that this results from two closely positioned binding sites for the abundant MCMV miRNAs miR-M23-2-3p and miR-m01-2-3p. Their pre-expression significantly impaired viral plaque formation. However, mutation of the respective binding sites did not alter viral fitness during acute or subacute infection in vivo. Furthermore, no differences in the induction of virus-specific CD8+ T cells were observed. Future studies will probably need to go beyond studying immunocompetent laboratory mice housed in pathogen-free conditions to reveal the functional relevance of viral miRNA-mediated regulation of key viral immediate early genes.
Influenza A is a contagious viral disease responsible for four pandemics in the past and a major public health concern. Being zoonotic in nature, the virus can cross the species barrier and transmit from wild aquatic bird reservoirs to humans via intermediate hosts. In this study, we have developed a computational method for the prediction of human-associated and non-human-associated influenza A virus sequences. The models were trained and validated on proteins and genome sequences of influenza A virus. Firstly, we have developed prediction models for 15 types of influenza A proteins using composition-based and one-hot-encoding features. We have achieved a highest AUC of 0.98 for HA protein on a validation dataset using dipeptide composition-based features. Of note, we obtained a maximum AUC of 0.99 using one-hot-encoding features for protein-based models on a validation dataset. Secondly, we built models using whole genome sequences which achieved an AUC of 0.98 on a validation dataset. In addition, we showed that our method outperforms a similarity-based approach (i.e., blast) on the same validation dataset. Finally, we integrated our best models into a user-friendly web server 'FluSPred' (https://webs.iiitd.edu.in/raghava/fluspred/index.html) and a standalone version (https://github.com/raghavagps/FluSPred) for the prediction of human-associated/non-human-associated influenza A virus strains.
To counteract RNA interference-mediated antiviral defence, virus genomes evolved to express proteins that inhibit this plant defence mechanism. Using six independent biological approaches, we show that orchid fleck dichorhavirus citrus strain (OFV-citrus) movement protein (MP) may act as a viral suppressor of RNA silencing (VSR). By using the alfalfa mosaic virus (AMV) RNA 3 expression vector, it was observed that the MP triggered necrosis response in transgenic tobacco leaves and increased the viral RNA (vRNA) accumulation. The use of the potato virus X (PVX) expression system revealed that the cis expression of MP increased both the severity of the PVX infection and the accumulation of PVX RNAs, further supporting that MP could act as an RNA silencing suppressor (RSS). From the analysis of the RSS-defective turnip crinkle virus (TCV), we do not find local RSS activity for MP, suggesting a link between MP suppressor activity and the prevention of systemic silencing. In the analysis of local suppressive activity using the GFP-based agroinfiltration assay in Nicotiana benthamiana (16 c line), we do not identify local RSS activity for the five OFV RNA1-encoded proteins. However, when evaluating the small interfering RNA (siRNA) accumulation, we find that the expression of MP significantly reduces the accumulation of GFP-derived siRNA. Finally, we examine whether the MP can prevent systemic silencing in 16c plants. Our findings show that MP inhibits the long-distance spread of RNA silencing, but does not affect the short-distance spread. Together, our findings indicate that MP is part of OFV's counter-defence mechanism, acting mainly in the prevention of systemic long-distance silencing. This work presents the first report of a VSR for a member of the genus Dichorhavirus.
Spinareoviridae is a large family of icosahedral viruses that are usually regarded as non-enveloped with segmented (9-12 linear segments) dsRNA genomes of 23-29 kbp. Spinareovirids have a broad host range, infecting animals, fungi and plants. Some have important pathogenic potential for humans (e.g. Colorado tick fever virus), livestock (e.g. avian orthoreoviruses), fish (e.g. aquareoviruses) and plants (e.g. rice ragged stunt virus and rice black streaked dwarf virus). This is a summary of the ICTV Report on the family Spinareoviridae, which is available at ictv.global/report/spinareoviridae.
The vaccine effectiveness (VE) of the A/H1N1pdm09 component of the 2017-18 quadrivalent live attenuated influenza vaccine (QLAIV) was improved by performing rational haemagglutinin (HA) mutagenesis. Introducing N125D, D127E, D222G and R223Q substitutions into the HA protein of A/Slovenia/2903/2015 (A/SLOV15) enhanced replicative fitness in primary human nasal epithelial cells (hNECs). This allowed A/SLOV15 to overcome inter-strain competition in QLAIV, resulting in improved VE.During strain development for the 2021-22 QLAIV formulation, A/H1N1pdm09 LAIV viruses containing wild-type (WT) HA and neuraminidase (NA) sequences were found to replicate poorly in embryonated eggs and hNECs. We aimed to enhance replicative fitness via the HA mutagenesis approach that was performed previously for A/SLOV15. Therefore, combinations of these four mutations were introduced into the HA protein of representative 6B.1A-5a.2 viruses, A/Victoria/2570/2019 and A/Victoria/1/2020 (A/VIC1). Replicative fitness of A/VIC1 V7 was improved ~30-fold in eggs and ~300-fold in hNECs relative to its parent, without compromising other critical LAIV characteristics.
The devil facial tumour disease (DFTD) has led to a massive decline in the wild Tasmanian devil (Sarcophilus harrisii) population. The disease is caused by two independent devil facial tumours (DFT1 and DFT2). These transmissible cancers have a mortality rate of nearly 100 %. An adenoviral vector-based vaccine has been proposed as a conservation strategy for the Tasmanian devil. This study aimed to determine if a human adenovirus serotype 5 could express functional transgenes in devil cells. As DFT1 cells do not constitutively express major histocompatibility complex class I (MHC-I), we developed a replication-deficient adenoviral vector that encodes devil interferon gamma (IFN-γ) fused to a fluorescent protein reporter. Our results show that adenoviral-expressed IFN-γ was able to stimulate upregulation of beta-2 microglobulin, a component of MHC-I, on DFT1, DFT2 and devil fibroblast cell lines. This work suggests that human adenoviruses can serve as a vaccine platform for devils and potentially other marsupials.

