Pub Date : 2024-06-21DOI: 10.1021/acs.estlett.4c00475
Zimin Yu, Zhanjun Li* and Eddy Y. Zeng*,
{"title":"Response to Comment on “Drinking Boiled Tap Water Reduces Human Intake of Nanoplastics and Microplastics”","authors":"Zimin Yu, Zhanjun Li* and Eddy Y. Zeng*, ","doi":"10.1021/acs.estlett.4c00475","DOIUrl":"10.1021/acs.estlett.4c00475","url":null,"abstract":"","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"764"},"PeriodicalIF":8.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1021/acs.estlett.4c00289
Shen Yang*, and , Dusan Licina,
Nanocluster aerosols (NCAs, <3 nm particles) are associated with climate feedbacks and potentially with human health. Our recent study revealed NCA formation owing to the reaction of ozone with human surfaces. However, the underlying mechanisms driving NCA emissions remain unexplored. Squalene is the most abundant compound in human skin lipids that reacts with ozone, followed by unsaturated fatty acids. This study aims to examine the contribution of the squalene–ozone reaction to NCA formation and the influence of ozone and ammonia (NH3) levels. In a climate-controlled chamber, we painted squalene and 6-hexadecenoic acid (C16:1n6) on glass plates to facilitate their reactions with ozone. The squalene–ozone reaction was further investigated at different ozone levels (15 and 90 ppb) and NH3 levels (0 and 375 ppb). The results demonstrate that the ozonolysis of human skin lipid compounds contributes to NCA formation. With a typical squalene-C16:1n6 ratio found in human skin lipids (4:1), squalene generated 40 times more NCAs than did C16:1n6 and, thus, dominated NCA formation. More NCAs were generated with increased ozone levels, whereas increased NH3 levels were associated with the stronger generation of larger NCAs but fewer of the smallest ones. This study experimentally confirms that NCAs are primarily formed from squalene–ozone reactions in ozone–human chemistry.
{"title":"Nanocluster Aerosols from Ozone–Human Chemistry Are Dominated by Squalene–Ozone Reactions","authors":"Shen Yang*, and , Dusan Licina, ","doi":"10.1021/acs.estlett.4c00289","DOIUrl":"10.1021/acs.estlett.4c00289","url":null,"abstract":"<p >Nanocluster aerosols (NCAs, <3 nm particles) are associated with climate feedbacks and potentially with human health. Our recent study revealed NCA formation owing to the reaction of ozone with human surfaces. However, the underlying mechanisms driving NCA emissions remain unexplored. Squalene is the most abundant compound in human skin lipids that reacts with ozone, followed by unsaturated fatty acids. This study aims to examine the contribution of the squalene–ozone reaction to NCA formation and the influence of ozone and ammonia (NH<sub>3</sub>) levels. In a climate-controlled chamber, we painted squalene and 6-hexadecenoic acid (C16:1n6) on glass plates to facilitate their reactions with ozone. The squalene–ozone reaction was further investigated at different ozone levels (15 and 90 ppb) and NH<sub>3</sub> levels (0 and 375 ppb). The results demonstrate that the ozonolysis of human skin lipid compounds contributes to NCA formation. With a typical squalene-C16:1n6 ratio found in human skin lipids (4:1), squalene generated 40 times more NCAs than did C16:1n6 and, thus, dominated NCA formation. More NCAs were generated with increased ozone levels, whereas increased NH<sub>3</sub> levels were associated with the stronger generation of larger NCAs but fewer of the smallest ones. This study experimentally confirms that NCAs are primarily formed from squalene–ozone reactions in ozone–human chemistry.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"716–722"},"PeriodicalIF":8.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.4c00289","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1021/acs.estlett.4c00415
Zijun Zhang, Weiqi Xu, Siqi Zeng, Yongchun Liu, Tengyu Liu, Yi Zhang, Aodong Du, Yan Li, Ning Zhang, Junfeng Wang, Eleonora Aruffo, Pengfei Han, Jie Li, Zifa Wang and Yele Sun*,
Semivolatile and intermediate volatility organic compounds (S/IVOCs) are known as crucial precursors of secondary organic aerosols (SOA), yet their specific contributions to SOA in urban areas remain unclear. Here, we investigate the real-time SOA formation from urban ambient air in summer in Beijing utilizing an oxidation flow reactor (OFR), coupled with aerosol and proton-transfer-reaction mass spectrometers. Our results show that the maximum photochemical formation of SOA in the OFR reached 2.9 μg m–3 at ∼1.5 days of photochemical age. Primary OA and less oxidized oxygenated OA experience mass loss at high photochemical ages (>3 days) in the OFR, whereas more oxidized oxygenated OA continues to show mass enhancement, indicating the role of heterogeneous processes in the formation of highly aged SOA. Closure studies demonstrate that SOA estimated from the known precursors contribute 50.0 ± 17.3% of the measured SOA. The relatively low contribution (10.3 ± 5.2%) of IVOCs emphasizes the importance of unmeasured S/IVOCs in SOA formation. Furthermore, we illustrate the impact of heat waves on ambient SOA formation by enhancing photochemical oxidation and biogenic emissions in summer.
众所周知,半挥发性和中间挥发性有机化合物(S/IVOCs)是二次有机气溶胶(SOA)的重要前体,但它们对城市地区 SOA 的具体贡献仍不清楚。在此,我们利用氧化流动反应器(OFR),结合气溶胶和质子转移反应质谱仪,研究了北京夏季城市环境空气中 SOA 的实时形成情况。我们的研究结果表明,在光化学龄期为 1.5 天时,氧化流反应器中 SOA 的最大光化学形成量达到 2.9 μg m-3。原生 OA 和氧化程度较低的含氧 OA 在 OFR 的光化学年龄较高(3 天)时会出现质量损失,而氧化程度较高的含氧 OA 则会继续出现质量增加,这表明异质过程在形成高度老化的 SOA 中发挥了作用。闭合研究表明,根据已知前体估算的 SOA 占测量 SOA 的 50.0 ± 17.3%。IVOCs 的贡献率相对较低(10.3 ± 5.2%),这强调了未测量的 S/IVOCs 在 SOA 形成过程中的重要性。此外,我们还说明了热浪在夏季通过加强光化学氧化和生物排放对环境 SOA 形成的影响。
{"title":"Secondary Organic Aerosol Formation from Ambient Air in Summer in Urban Beijing: Contribution of S/IVOCs and Impacts of Heat Waves","authors":"Zijun Zhang, Weiqi Xu, Siqi Zeng, Yongchun Liu, Tengyu Liu, Yi Zhang, Aodong Du, Yan Li, Ning Zhang, Junfeng Wang, Eleonora Aruffo, Pengfei Han, Jie Li, Zifa Wang and Yele Sun*, ","doi":"10.1021/acs.estlett.4c00415","DOIUrl":"10.1021/acs.estlett.4c00415","url":null,"abstract":"<p >Semivolatile and intermediate volatility organic compounds (S/IVOCs) are known as crucial precursors of secondary organic aerosols (SOA), yet their specific contributions to SOA in urban areas remain unclear. Here, we investigate the real-time SOA formation from urban ambient air in summer in Beijing utilizing an oxidation flow reactor (OFR), coupled with aerosol and proton-transfer-reaction mass spectrometers. Our results show that the maximum photochemical formation of SOA in the OFR reached 2.9 μg m<sup>–3</sup> at ∼1.5 days of photochemical age. Primary OA and less oxidized oxygenated OA experience mass loss at high photochemical ages (>3 days) in the OFR, whereas more oxidized oxygenated OA continues to show mass enhancement, indicating the role of heterogeneous processes in the formation of highly aged SOA. Closure studies demonstrate that SOA estimated from the known precursors contribute 50.0 ± 17.3% of the measured SOA. The relatively low contribution (10.3 ± 5.2%) of IVOCs emphasizes the importance of unmeasured S/IVOCs in SOA formation. Furthermore, we illustrate the impact of heat waves on ambient SOA formation by enhancing photochemical oxidation and biogenic emissions in summer.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"738–745"},"PeriodicalIF":8.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1021/acs.estlett.4c00280
Jennifer B. Dunn*, Kristen Greene, Eveline Vasquez-Arroyo, Muhammad Awais, Adriana Gomez-Sanabria, Page Kyle, Ruslana R. Palatnik, Roberto Schaeffer, Pengxiao Zhou, Baya Aissaoui and Enrica De Cian,
Sustainable water management is essential to increasing water availability and decreasing water pollution. The wastewater sector is expanding globally and beginning to incorporate technologies that recover nutrients from wastewater. Nutrient recovery increases energy consumption but may reduce the demand for nutrients from virgin sources. We estimate the increase in annual global energy consumption (1,100 million GJ) and greenhouse gas emissions (84 million t CO2e) for wastewater treatment in the year 2030 compared to today’s levels to meet sustainable development goals. To capture these trends, integrated assessment and computable general equilibrium models that address the energy-water nexus must evolve. We reviewed 16 of these models to assess how well they capture wastewater treatment plant energy consumption and GHG emissions. Only three models include biogas production from the wastewater organic content. Four explicitly represent energy demand for wastewater treatment, and eight include explicit representation of wastewater treatment plant greenhouse gas emissions. Of those eight models, six models quantify methane emissions from treatment, five include representation of emissions of nitrous oxide, and two include representation of emissions of carbon dioxide. Our review concludes with proposals to improve these models to better capture the energy-water nexus associated with the evolving wastewater treatment sector.
{"title":"Toward Enhancing Wastewater Treatment with Resource Recovery in Integrated Assessment and Computable General Equilibrium Models","authors":"Jennifer B. Dunn*, Kristen Greene, Eveline Vasquez-Arroyo, Muhammad Awais, Adriana Gomez-Sanabria, Page Kyle, Ruslana R. Palatnik, Roberto Schaeffer, Pengxiao Zhou, Baya Aissaoui and Enrica De Cian, ","doi":"10.1021/acs.estlett.4c00280","DOIUrl":"10.1021/acs.estlett.4c00280","url":null,"abstract":"<p >Sustainable water management is essential to increasing water availability and decreasing water pollution. The wastewater sector is expanding globally and beginning to incorporate technologies that recover nutrients from wastewater. Nutrient recovery increases energy consumption but may reduce the demand for nutrients from virgin sources. We estimate the increase in annual global energy consumption (1,100 million GJ) and greenhouse gas emissions (84 million t CO<sub>2</sub>e) for wastewater treatment in the year 2030 compared to today’s levels to meet sustainable development goals. To capture these trends, integrated assessment and computable general equilibrium models that address the energy-water nexus must evolve. We reviewed 16 of these models to assess how well they capture wastewater treatment plant energy consumption and GHG emissions. Only three models include biogas production from the wastewater organic content. Four explicitly represent energy demand for wastewater treatment, and eight include explicit representation of wastewater treatment plant greenhouse gas emissions. Of those eight models, six models quantify methane emissions from treatment, five include representation of emissions of nitrous oxide, and two include representation of emissions of carbon dioxide. Our review concludes with proposals to improve these models to better capture the energy-water nexus associated with the evolving wastewater treatment sector.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"654–663"},"PeriodicalIF":8.9,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.4c00280","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1021/acs.estlett.4c00276
Hui Wang, Yarê Baker, Hongru Shen, Rongrong Wu, Sungah Kang, Defeng Zhao, Andreas Wahner, Sören R. Zorn* and Thomas F. Mentel,
Oxygenated volatile organic compounds (OVOCs) contribute to atmospheric secondary organic aerosols. To better constrain OVOC distributions, e.g., from the oxidation of phenolics, voltage scanning was applied for the targeted destruction of product nitrate (NO3–) clusters in a chemical ionization mass spectrometer. Herein, the voltage difference at which half of the clusters remain (dV50) represents their bond strength. This study identified the type and relative bond strength of adducts for product distributions that can be observed for hours in our steady-state chamber (SAPHIR*). An unexpected increase was observed in voltage scanning curves of clusters containing nitrated phenols [e.g., C7H7NO3(NO3–)], which was attributed to the declustering of double-analyte clusters [e.g., C14H14N2O6(NO3–)] at small voltage differences. Double-analyte clusters were distinguished from accretion product clusters [e.g., C12H(10,12)Ox(NO3–)] by their significantly lower intermolecular forces. Misidentifying C14H14N2O6 as accretion products could lead to an overestimation of its contribution to particle mass. In addition, the higher bonding strength in C6H(6,8)O4–9(NO3–) compared to that in H2SO4(NO3–) indicates maximum sensitivities of C6H(6,8)O4–9 at the collision limit. We could elucidate the relative acidity of the analytes to HNO3. This study highlights additional dimensions gained from voltage scanning and suggests performing it to clarify the product distribution in complex urban air in the presence of nitrated phenols.
{"title":"Decomposition of Clusters of Oxygenated Compounds with NO3– by Applying Voltage Scanning to Chemical Ionization Mass Spectrometry in Steady-State Experiments","authors":"Hui Wang, Yarê Baker, Hongru Shen, Rongrong Wu, Sungah Kang, Defeng Zhao, Andreas Wahner, Sören R. Zorn* and Thomas F. Mentel, ","doi":"10.1021/acs.estlett.4c00276","DOIUrl":"10.1021/acs.estlett.4c00276","url":null,"abstract":"<p >Oxygenated volatile organic compounds (OVOCs) contribute to atmospheric secondary organic aerosols. To better constrain OVOC distributions, e.g., from the oxidation of phenolics, voltage scanning was applied for the targeted destruction of product nitrate (NO<sub>3</sub><sup>–</sup>) clusters in a chemical ionization mass spectrometer. Herein, the voltage difference at which half of the clusters remain (dV<sub>50</sub>) represents their bond strength. This study identified the type and relative bond strength of adducts for product distributions that can be observed for hours in our steady-state chamber (SAPHIR*). An unexpected increase was observed in voltage scanning curves of clusters containing nitrated phenols [e.g., C<sub>7</sub>H<sub>7</sub>NO<sub>3</sub>(NO<sub>3</sub><sup>–</sup>)], which was attributed to the declustering of double-analyte clusters [e.g., C<sub>14</sub>H<sub>14</sub>N<sub>2</sub>O<sub>6</sub>(NO<sub>3</sub><sup>–</sup>)] at small voltage differences. Double-analyte clusters were distinguished from accretion product clusters [e.g., C<sub>12</sub>H<sub>(10,12)</sub>O<sub><i>x</i></sub>(NO<sub>3</sub><sup>–</sup>)] by their significantly lower intermolecular forces. Misidentifying C<sub>14</sub>H<sub>14</sub>N<sub>2</sub>O<sub>6</sub> as accretion products could lead to an overestimation of its contribution to particle mass. In addition, the higher bonding strength in C<sub>6</sub>H<sub>(6,8)</sub>O<sub>4–9</sub>(NO<sub>3</sub><sup>–</sup>) compared to that in H<sub>2</sub>SO<sub>4</sub>(NO<sub>3</sub><sup>–</sup>) indicates maximum sensitivities of C<sub>6</sub>H<sub>(6,8)</sub>O<sub>4–9</sub> at the collision limit. We could elucidate the relative acidity of the analytes to HNO<sub>3</sub>. This study highlights additional dimensions gained from voltage scanning and suggests performing it to clarify the product distribution in complex urban air in the presence of nitrated phenols.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"694–700"},"PeriodicalIF":8.9,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.4c00276","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1021/acs.estlett.4c00406
Timothy R. Julian, and , Alexandria B. Boehm*,
{"title":"Advances in Wastewater-Based Epidemiology in the ES&T Family of Journals","authors":"Timothy R. Julian, and , Alexandria B. Boehm*, ","doi":"10.1021/acs.estlett.4c00406","DOIUrl":"10.1021/acs.estlett.4c00406","url":null,"abstract":"","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"650–653"},"PeriodicalIF":8.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1021/acs.estlett.4c0029610.1021/acs.estlett.4c00296
Zachary D. Calhoun, Marilyn S. Black, Mike Bergin and David Carlson*,
Studies of urban heat are often limited by their ability to measure air temperature; data are collected either at a few locations over time or at many locations at one point in time. Citizen science approaches to observing temperature provide a way to overcome these limitations, by capturing data over long time scales, at many locations. However, citizen scientists are more likely to be wealthier, making certain neighborhoods better observed than others. Because urban heat islands are more prevalent in poorer neighborhoods, heat extremes are less likely to be observed by citizen scientists. In spatial statistics, this is known as preferential sampling. When we adjust citizen science data for this effect, we obtain results that better agree with NOAA’s urban heat island data, which are not preferentially sampled. Using this adjustment, estimates of the July 2021 average evening temperature are almost 1 °C warmer in unobserved neighborhoods in Durham, North Carolina, than if they were not adjusted. We demonstrate that adjusted citizen science data allow for better characterization of heat risk at any time of interest and may be used for almost any neighborhood in the United States.
{"title":"Refining Citizen Climate Science: Addressing Preferential Sampling for Improved Estimates of Urban Heat","authors":"Zachary D. Calhoun, Marilyn S. Black, Mike Bergin and David Carlson*, ","doi":"10.1021/acs.estlett.4c0029610.1021/acs.estlett.4c00296","DOIUrl":"https://doi.org/10.1021/acs.estlett.4c00296https://doi.org/10.1021/acs.estlett.4c00296","url":null,"abstract":"<p >Studies of urban heat are often limited by their ability to measure air temperature; data are collected either at a few locations over time or at many locations at one point in time. Citizen science approaches to observing temperature provide a way to overcome these limitations, by capturing data over long time scales, at many locations. However, citizen scientists are more likely to be wealthier, making certain neighborhoods better observed than others. Because urban heat islands are more prevalent in poorer neighborhoods, heat extremes are less likely to be observed by citizen scientists. In spatial statistics, this is known as preferential sampling. When we adjust citizen science data for this effect, we obtain results that better agree with NOAA’s urban heat island data, which are not preferentially sampled. Using this adjustment, estimates of the July 2021 average evening temperature are almost 1 °C warmer in unobserved neighborhoods in Durham, North Carolina, than if they were not adjusted. We demonstrate that adjusted citizen science data allow for better characterization of heat risk at any time of interest and may be used for almost any neighborhood in the United States.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 8","pages":"845–850 845–850"},"PeriodicalIF":8.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141973421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1021/acs.estlett.4c00362
Xiaofei Geng, Jun Li, Guangcai Zhong, Shizhen Zhao, Chongguo Tian, Yan-Lin Zhang and Gan Zhang*,
Atmospheric black carbon (BC) over coastal regions poses a threat in terms of both climate change and human health. However, the provenance of aerosol BC, particularly its subfractions (char-BC and soot-BC, which have different physicochemical properties), is poorly constrained. Here, we apportioned the sources of char-BC and soot-BC in year-round PM2.5 samples from a coastal receptor island off southern China. Char-BC dominated, accounting for 88.6 ± 13.2% of the total BC. The two BC subfractions exhibited distinct seasonal variation patterns, which may be attributed to differences in their sources and hydrophilicity. Combustion of liquid fossil fuels, including bunker fuel, diesel, and gasoline, contributed more highly to soot-BC (71.4%) than to char-BC (53.9%). Conversely, combustion of solid fuels, including biomass and coal, contributed more highly to char-BC (44.6%) than to soot-BC (6.7%). Bunker fuel combustion, the dominant portion of ship emissions, was the largest contributor to total BC (46.0%), char-BC (45.2%), and soot-BC (56.4%). This indicates that marine ship emissions, rather than land-based sources including biomass and coal combustion, were the dominant source of atmospheric BC in coastal areas, highlighting the importance of controlling maritime ship emissions.
沿海地区上空的大气黑碳(BC)对气候变化和人类健康都构成了威胁。然而,气溶胶黑碳的来源,尤其是其子分馏物(炭黑碳和煤烟黑碳,它们具有不同的物理化学性质)的来源却很难确定。在这里,我们对中国南部沿海受体岛常年 PM2.5 样品中的炭黑和烟尘碳黑的来源进行了划分。炭黑-BC 占主导地位,占 BC 总量的 88.6 ± 13.2%。这两种 BC 子组分表现出不同的季节变化规律,这可能是由于它们的来源和亲水性不同造成的。液态化石燃料(包括船用燃料、柴油和汽油)燃烧产生的烟尘-BC(71.4%)比焦炭-BC(53.9%)高。相反,包括生物质和煤在内的固体燃料燃烧产生的炭-BC(44.6%)比产生的烟尘-BC(6.7%)高。燃料舱燃料燃烧是船舶排放的主要部分,对总 BC(46.0%)、木炭-BC(45.2%)和烟尘-BC(56.4%)的贡献最大。这表明,沿海地区大气中 BC 的主要来源是海洋船舶排放,而不是陆地来源(包括生物质和煤炭燃烧),这凸显了控制海洋船舶排放的重要性。
{"title":"Ship Emissions as the Largest Contributor to Coastal Atmospheric Black Carbon at a Receptor Island in Southern China","authors":"Xiaofei Geng, Jun Li, Guangcai Zhong, Shizhen Zhao, Chongguo Tian, Yan-Lin Zhang and Gan Zhang*, ","doi":"10.1021/acs.estlett.4c00362","DOIUrl":"10.1021/acs.estlett.4c00362","url":null,"abstract":"<p >Atmospheric black carbon (BC) over coastal regions poses a threat in terms of both climate change and human health. However, the provenance of aerosol BC, particularly its subfractions (char-BC and soot-BC, which have different physicochemical properties), is poorly constrained. Here, we apportioned the sources of char-BC and soot-BC in year-round PM<sub>2.5</sub> samples from a coastal receptor island off southern China. Char-BC dominated, accounting for 88.6 ± 13.2% of the total BC. The two BC subfractions exhibited distinct seasonal variation patterns, which may be attributed to differences in their sources and hydrophilicity. Combustion of liquid fossil fuels, including bunker fuel, diesel, and gasoline, contributed more highly to soot-BC (71.4%) than to char-BC (53.9%). Conversely, combustion of solid fuels, including biomass and coal, contributed more highly to char-BC (44.6%) than to soot-BC (6.7%). Bunker fuel combustion, the dominant portion of ship emissions, was the largest contributor to total BC (46.0%), char-BC (45.2%), and soot-BC (56.4%). This indicates that marine ship emissions, rather than land-based sources including biomass and coal combustion, were the dominant source of atmospheric BC in coastal areas, highlighting the importance of controlling maritime ship emissions.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"723–729"},"PeriodicalIF":8.9,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141345844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1021/acs.estlett.4c00342
Phillip J. Ankley, Francisco C. da Silva Jr., David Montgomery, Matthew Schultz, Ed S. Krol, Markus Hecker and Markus Brinkmann*,
Urban stormwater runoff contains the tire-derived transformation product N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine-quinone (6PPD-quinone), which poses significant environmental risks due to its high toxicity toward certain salmonids. 6PPD-quinone biotransformation has been investigated to explain some of the stark interspecies differences in sensitivity across different fishes; however, the primary mechanisms of 6PPD-quinone biotransformation remain unclear. This work aimed to explore the toxicokinetics of 6PPD-quinone in immortalized rainbow trout (Oncorhynchus mykiss) liver cells (RTL-W1) to identify transformation products, using coexposure with different enzyme inhibitors and inducers. Using high-resolution mass spectrometry, we identified three phase I 6PPD-quinone transformation products, with phenyl ring hydroxylation dominating, followed by hydroxylation of the alkyl side chain, and an unknown transformation product after 4 h of exposure. Co-exposing RTL-W1 cells with α-naphthoflavone and quercetin greatly inhibited the biotransformation of 6PPD-quinone, revealing that CYP1A is primarily involved in phase I biotransformation. Hepatic clearance predicted from in vitro results was further verified based on isolated perfused trout liver experiments. Further studies are necessary on the biotransformation and kinetics of 6PPD-quinone and the detoxification pathways involved in a wide phylogenetic space in fishes.
{"title":"Biotransformation of 6PPD-quinone In Vitro Using RTL-W1 Cell Line","authors":"Phillip J. Ankley, Francisco C. da Silva Jr., David Montgomery, Matthew Schultz, Ed S. Krol, Markus Hecker and Markus Brinkmann*, ","doi":"10.1021/acs.estlett.4c00342","DOIUrl":"10.1021/acs.estlett.4c00342","url":null,"abstract":"<p >Urban stormwater runoff contains the tire-derived transformation product <i>N</i>-(1,3-dimethylbutyl)-<i>N</i>′-phenyl-<i>p</i>-phenylenediamine-quinone (6PPD-quinone), which poses significant environmental risks due to its high toxicity toward certain salmonids. 6PPD-quinone biotransformation has been investigated to explain some of the stark interspecies differences in sensitivity across different fishes; however, the primary mechanisms of 6PPD-quinone biotransformation remain unclear. This work aimed to explore the toxicokinetics of 6PPD-quinone in immortalized rainbow trout (<i>Oncorhynchus mykiss</i>) liver cells (RTL-W1) to identify transformation products, using coexposure with different enzyme inhibitors and inducers. Using high-resolution mass spectrometry, we identified three phase I 6PPD-quinone transformation products, with phenyl ring hydroxylation dominating, followed by hydroxylation of the alkyl side chain, and an unknown transformation product after 4 h of exposure. Co-exposing RTL-W1 cells with α-naphthoflavone and quercetin greatly inhibited the biotransformation of 6PPD-quinone, revealing that CYP1A is primarily involved in phase I biotransformation. Hepatic clearance predicted from <i>in vitro</i> results was further verified based on isolated perfused trout liver experiments. Further studies are necessary on the biotransformation and kinetics of 6PPD-quinone and the detoxification pathways involved in a wide phylogenetic space in fishes.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"687–693"},"PeriodicalIF":8.9,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141352036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1021/acs.estlett.4c00272
Nina Pálešová, Katarína Řiháčková, Jan Kuta, Aleš Pindur, Ludmila Šebejová and Pavel Čupr*,
Increased wildfire activity increases the demands on fire rescue services and firefighters’ contact with harmful chemicals. This study aimed to determine firefighters’ exposure to toxic metal(loid)s and its association with the lipid profile. CELSPAC-FIREexpo study participants (including 110 firefighters) provided urine and blood samples to quantify urinary levels of metal(loid)s (arsenic, cadmium (Cd), mercury, and lead (Pb)), and serum lipid biomarkers (cholesterol (CHOL), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglycerides (TG)). The associations were investigated by using multiple linear regression and Bayesian weighted quantile sum (BWQS) regression. Higher levels of Pb were observed in firefighters. Pb was positively associated with CHOL and TG. Cd was negatively associated with HDL. In the BWQS model, the mixture of metal(loid)s was associated positively with CHOL (β = 14.75, 95% CrI = 2.45–29.08), LDL (β = 15.14, 95% CrI = 3.39–29.35), and TG (β = 14.79, 95% CrI = 0.73–30.42), while negatively with HDL (β = −14.96, 95% CrI = −25.78 to −1.8). Pb emerged as a key component in a metal(loid) mixture. The results suggest that higher exposure to lead and the mixture of metal(loid)s is associated with the alteration of the lipid profile, which can result in an unfavorable cardiometabolic profile, especially in occupationally exposed firefighters.
{"title":"Internal Flames: Metal(loid) Exposure Linked to Alteration of the Lipid Profile in Czech Male Firefighters (CELSPAC-FIREexpo Study)","authors":"Nina Pálešová, Katarína Řiháčková, Jan Kuta, Aleš Pindur, Ludmila Šebejová and Pavel Čupr*, ","doi":"10.1021/acs.estlett.4c00272","DOIUrl":"10.1021/acs.estlett.4c00272","url":null,"abstract":"<p >Increased wildfire activity increases the demands on fire rescue services and firefighters’ contact with harmful chemicals. This study aimed to determine firefighters’ exposure to toxic metal(loid)s and its association with the lipid profile. CELSPAC-FIREexpo study participants (including 110 firefighters) provided urine and blood samples to quantify urinary levels of metal(loid)s (arsenic, cadmium (Cd), mercury, and lead (Pb)), and serum lipid biomarkers (cholesterol (CHOL), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglycerides (TG)). The associations were investigated by using multiple linear regression and Bayesian weighted quantile sum (BWQS) regression. Higher levels of Pb were observed in firefighters. Pb was positively associated with CHOL and TG. Cd was negatively associated with HDL. In the BWQS model, the mixture of metal(loid)s was associated positively with CHOL (β = 14.75, 95% CrI = 2.45–29.08), LDL (β = 15.14, 95% CrI = 3.39–29.35), and TG (β = 14.79, 95% CrI = 0.73–30.42), while negatively with HDL (β = −14.96, 95% CrI = −25.78 to −1.8). Pb emerged as a key component in a metal(loid) mixture. The results suggest that higher exposure to lead and the mixture of metal(loid)s is associated with the alteration of the lipid profile, which can result in an unfavorable cardiometabolic profile, especially in occupationally exposed firefighters.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 7","pages":"679–686"},"PeriodicalIF":8.9,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.4c00272","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141351348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}