K. Musioł, M. Kampik, A. Ziółek, Maciej Koszarny, Jolanta Jursza, Paweł Zawadzki
The article presents current trends in impedance metrology of the highest accuracy. Attention was paid to digital non-quantum impedance bridges, which have been developed in many European National Metrology Institutes over the last decade. Particular attention in the article was devoted to the digital impedance bridge currently being developed at the Central Office of Measures in Warsaw. The conceptual diagram, system implementation and the progress of work related to the development of this bridge and its implementation in the near future into the national measurement system are presented as well.
{"title":"The Role and Importance of Digital Impedance Bridges in Contemporary Metrology","authors":"K. Musioł, M. Kampik, A. Ziółek, Maciej Koszarny, Jolanta Jursza, Paweł Zawadzki","doi":"10.14313/par_251/49","DOIUrl":"https://doi.org/10.14313/par_251/49","url":null,"abstract":"The article presents current trends in impedance metrology of the highest accuracy. Attention was paid to digital non-quantum impedance bridges, which have been developed in many European National Metrology Institutes over the last decade. Particular attention in the article was devoted to the digital impedance bridge currently being developed at the Central Office of Measures in Warsaw. The conceptual diagram, system implementation and the progress of work related to the development of this bridge and its implementation in the near future into the national measurement system are presented as well.","PeriodicalId":383231,"journal":{"name":"Pomiary Automatyka Robotyka","volume":" 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140391865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Suchocki, Jacek Katzer, M. Zawidzki, Rafał Nowak
The article presents a research program aimed at preliminary determination of the potential of iPAD-LiDAR technology in the inventory of building structures. The authors focused on the use of commercially available devices (mobile phones and tablets) equipped with a LiDAR sensor. Such devices can be treated as low-cost measuring devices and used for engineering measurements. The first possible area of use of the devices discussed is broadly understood construction inventories, which, when performed using traditional methods, always involve a large amount of work. The automation of this process and the quality and quantity of data obtained during the inventory create a completely new technical reality and related measurement and diagnostic possibilities.
{"title":"Studying the Potential of iPAD-LiDAR Technology in the Inventory of Building Structures","authors":"C. Suchocki, Jacek Katzer, M. Zawidzki, Rafał Nowak","doi":"10.14313/par_251/55","DOIUrl":"https://doi.org/10.14313/par_251/55","url":null,"abstract":"The article presents a research program aimed at preliminary determination of the potential of iPAD-LiDAR technology in the inventory of building structures. The authors focused on the use of commercially available devices (mobile phones and tablets) equipped with a LiDAR sensor. Such devices can be treated as low-cost measuring devices and used for engineering measurements. The first possible area of use of the devices discussed is broadly understood construction inventories, which, when performed using traditional methods, always involve a large amount of work. The automation of this process and the quality and quantity of data obtained during the inventory create a completely new technical reality and related measurement and diagnostic possibilities.","PeriodicalId":383231,"journal":{"name":"Pomiary Automatyka Robotyka","volume":" 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140391449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The article presents a modified Active Disturbance Rejection Control (ADRC) algorithm that uses the Kalman Filter (KF) for the estimation of extended state vector. The Kalman filter replaced the Extended State Observer (ESO) used in its basic form. The purpose of this modification was to improve the system robustness under conditions of stochastic measurement disturbances. The method of the control system synthesis and the Kalman filter gains selection, ensuring control efficiency, as well as their impact on the system operation, were presented. The experiments were carried out on a laboratory setup – the Ball Balancing Table (BBT). Control quality was assessed based on time plots of signals and integral performance indices for various algorithm gains configurations and different noise levels. As a result of the conducted research, the advantage of using the Kalman filter over the ESO in terms of sensitivity to measurement noises was demonstrated. Implementation of the Kalman filter as the ESO determined a positive impact on control quality and the ability to reject internal disturbance also in a deterministic system.
{"title":"Kalman Filter as an Alternative to Extended State Observer in ADRC Control Algorithm","authors":"Jacek Michalski, Mikołaj Mrotek, Piotr Kozierski","doi":"10.14313/par_251/31","DOIUrl":"https://doi.org/10.14313/par_251/31","url":null,"abstract":"The article presents a modified Active Disturbance Rejection Control (ADRC) algorithm that uses the Kalman Filter (KF) for the estimation of extended state vector. The Kalman filter replaced the Extended State Observer (ESO) used in its basic form. The purpose of this modification was to improve the system robustness under conditions of stochastic measurement disturbances. The method of the control system synthesis and the Kalman filter gains selection, ensuring control efficiency, as well as their impact on the system operation, were presented. The experiments were carried out on a laboratory setup – the Ball Balancing Table (BBT). Control quality was assessed based on time plots of signals and integral performance indices for various algorithm gains configurations and different noise levels. As a result of the conducted research, the advantage of using the Kalman filter over the ESO in terms of sensitivity to measurement noises was demonstrated. Implementation of the Kalman filter as the ESO determined a positive impact on control quality and the ability to reject internal disturbance also in a deterministic system.","PeriodicalId":383231,"journal":{"name":"Pomiary Automatyka Robotyka","volume":" 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140391719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Machine learning is increasingly being applied in the processing and analysis of thermal imaging for object recognition and identification. This article presents a study on the impact of data augmentation on the effectiveness of machine learning in the context of thermal image analysis. The publicly available FLIR ADAS dataset, which includes labeled thermal and visible light images, was used for this study. The research focuses on the use of Convolutional Neural Networks, specifically the YOLOv8 architecture, for object detection in thermal images. As part of the study, the FLIR ADAS dataset underwent preprocessing and augmentation, and was then used to train two different models: one based on grayscale images and another using a color palette. The results of the experiment indicate that data augmentation can significantly impact the effectiveness of the model, and the use of colors in thermal images may, in certain situations, further improve detection accuracy.
{"title":"Methods of Increasing the Amount of Thermal Imaging Data in Machine Learning","authors":"Piotr Sadzyński","doi":"10.14313/par_251/97","DOIUrl":"https://doi.org/10.14313/par_251/97","url":null,"abstract":"Machine learning is increasingly being applied in the processing and analysis of thermal imaging for object recognition and identification. This article presents a study on the impact of data augmentation on the effectiveness of machine learning in the context of thermal image analysis. The publicly available FLIR ADAS dataset, which includes labeled thermal and visible light images, was used for this study. The research focuses on the use of Convolutional Neural Networks, specifically the YOLOv8 architecture, for object detection in thermal images. As part of the study, the FLIR ADAS dataset underwent preprocessing and augmentation, and was then used to train two different models: one based on grayscale images and another using a color palette. The results of the experiment indicate that data augmentation can significantly impact the effectiveness of the model, and the use of colors in thermal images may, in certain situations, further improve detection accuracy.","PeriodicalId":383231,"journal":{"name":"Pomiary Automatyka Robotyka","volume":" 54","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140391981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article presents a real-time model of an obstacle detection and environmental mapping system based on image processing for an autonomous underwater vehicle (AUV). The model was based on Tritech Micron Sonar operating parameters with mechanical beam adjustment. The operation of the detection system was verified using a mathematical model of an autonomous underwater vehicle moving in the underwater environment, expressed by a test map prepared based on actual measurements of the above-mentioned sonar. The system model allows for detecting and mapping obstacles in the sonar’s field of view in real-time.
{"title":"Simulation Model of Obstacle Detection and Mapping System for AUVs","authors":"R. Kot, P. Piskur, Norbert Sigiel","doi":"10.14313/par_250/19","DOIUrl":"https://doi.org/10.14313/par_250/19","url":null,"abstract":"This article presents a real-time model of an obstacle detection and environmental mapping system based on image processing for an autonomous underwater vehicle (AUV). The model was based on Tritech Micron Sonar operating parameters with mechanical beam adjustment. The operation of the detection system was verified using a mathematical model of an autonomous underwater vehicle moving in the underwater environment, expressed by a test map prepared based on actual measurements of the above-mentioned sonar. The system model allows for detecting and mapping obstacles in the sonar’s field of view in real-time.","PeriodicalId":383231,"journal":{"name":"Pomiary Automatyka Robotyka","volume":"10 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139168162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NETD (Noise Equivalent Temperature Difference) parameter of infrared systems is the important parameter that allows determining the limit of temperature measurement of tested objects. Currently, the commercially available devices have the NETD < 20 mK. The infrared (IR) detectors and accompanying electronic circuits generate noise. In consequence, it is difficult to achieve the high level of signal-to-noise ratio (SNR) while measuring temperature. This paper presents a method of measuring the root mean square (RMS) value of alternating current, using a single-detector high-speed IR system for detecting 100 Hz harmonic spectral component of temperature, whose value is certainly below NETD limit.
{"title":"Measurement of High-Frequency Sub-Noise Temperature Signal and RMS Current Using a Single-Detector High-Speed IR System","authors":"B. Torzyk, Bogusław Więcek","doi":"10.14313/par_250/53","DOIUrl":"https://doi.org/10.14313/par_250/53","url":null,"abstract":"NETD (Noise Equivalent Temperature Difference) parameter of infrared systems is the important parameter that allows determining the limit of temperature measurement of tested objects. Currently, the commercially available devices have the NETD < 20 mK. The infrared (IR) detectors and accompanying electronic circuits generate noise. In consequence, it is difficult to achieve the high level of signal-to-noise ratio (SNR) while measuring temperature. This paper presents a method of measuring the root mean square (RMS) value of alternating current, using a single-detector high-speed IR system for detecting 100 Hz harmonic spectral component of temperature, whose value is certainly below NETD limit.","PeriodicalId":383231,"journal":{"name":"Pomiary Automatyka Robotyka","volume":"53 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139169732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Particle Filters (PF) accomplish nonlinear system estimation and have received high interest from numerous engineering domains over the past decade. The main problem of PF is to degenerate over time due to the loss of particle diversity. One of the essential causes of losing particle diversity is sample impoverishment (most of particle’s weights are insignificant) which affects the result from the particle depletion in the resampling stage and unsuitable prior information of process and measurement noise. To address this problem, a new Adaptive Fuzzy Particle Filter (AFPF) is used to improve the precision and efficiency of the state estimation results. The error in AFPF state is avoided from diverging by using Fuzzy logic. This method is called tuning weighting factor (α) as output membership function of fuzzy logic and input memberships function is the mean and the covariance of residual error. When the motion model is noisier than measurement, the performance of the proposed method (AFPF) is compared with the standard method (PF) at various particles number. The performance of the proposed method can be compared by keeping the noise level acceptable and convergence of the particle will be measured by the standard deviation. The simulation experiment findings are discussed and evaluated.
{"title":"Optimal State Estimation via Adaptive Fuzzy Particle Filter","authors":"Jurek Sąsiadek, Hamdan Bitlmal","doi":"10.14313/par_250/5","DOIUrl":"https://doi.org/10.14313/par_250/5","url":null,"abstract":"Particle Filters (PF) accomplish nonlinear system estimation and have received high interest from numerous engineering domains over the past decade. The main problem of PF is to degenerate over time due to the loss of particle diversity. One of the essential causes of losing particle diversity is sample impoverishment (most of particle’s weights are insignificant) which affects the result from the particle depletion in the resampling stage and unsuitable prior information of process and measurement noise. To address this problem, a new Adaptive Fuzzy Particle Filter (AFPF) is used to improve the precision and efficiency of the state estimation results. The error in AFPF state is avoided from diverging by using Fuzzy logic. This method is called tuning weighting factor (α) as output membership function of fuzzy logic and input memberships function is the mean and the covariance of residual error. When the motion model is noisier than measurement, the performance of the proposed method (AFPF) is compared with the standard method (PF) at various particles number. The performance of the proposed method can be compared by keeping the noise level acceptable and convergence of the particle will be measured by the standard deviation. The simulation experiment findings are discussed and evaluated.","PeriodicalId":383231,"journal":{"name":"Pomiary Automatyka Robotyka","volume":"141 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139170368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the paper the analysis of the impact of the interval uncertainty of parameters on the behaviour of the elementary Fractional Order (FO) transfer function is investigated. The fractional order and quasi time constant are defined as intervals describing deviation from nominal values. Such an analysis has not be considered yet. The proposed elementary, interval model can be applied in modeling of different, uncertain-parameters elements and physical phenomena. For the considered transfer function the methodology of its numerical analysis is proposed and illustrated by simulations. Results of numerical tests point that the best robustness of the model is achieved for relatively lower values of its parameters.
{"title":"The Numerical Analysis of the Elementary, Fractional Order, Interval Transfer Function","authors":"Krzysztof Oprzędkiewicz","doi":"10.14313/par_250/45","DOIUrl":"https://doi.org/10.14313/par_250/45","url":null,"abstract":"In the paper the analysis of the impact of the interval uncertainty of parameters on the behaviour of the elementary Fractional Order (FO) transfer function is investigated. The fractional order and quasi time constant are defined as intervals describing deviation from nominal values. Such an analysis has not be considered yet. The proposed elementary, interval model can be applied in modeling of different, uncertain-parameters elements and physical phenomena. For the considered transfer function the methodology of its numerical analysis is proposed and illustrated by simulations. Results of numerical tests point that the best robustness of the model is achieved for relatively lower values of its parameters.","PeriodicalId":383231,"journal":{"name":"Pomiary Automatyka Robotyka","volume":"44 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139171026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Power magnetics in the energy storage configuration are not able to handle a significant amount of power without the introduction of a physical discontinuity in their magnetic path. This frequently takes the form of a discrete air gap giving rise to certain consequences such as extra power dissipation in the coils mounted on gapped cores. The ascertainment of the impact of the fringing magnetic field at the air gap on the efficiency of power conversion is highly problematic due to the complex nature of the phenomenon. The fringing-effect power loss typically coexists and is combined with all the other power-dissipation mechanisms, which greatly complicates the extraction of losses brought about solely by the fringing flux at the air gap from the total amount of dissipation in a given magnetic component. Magnetic cores of composite materials do not require a discrete air gap, as the air gap in them is distributed throughout the entire material, thus preventing the fringing magnetic flux from forming. However, there is a downside to this approach, as power loss in the material is comparably greater and so are the manufacturing costs. As shown here, distributed-gap-type core materials, due to the absence of physical discontinuity, and hence the lack of registerable fringing-effect power loss, can be utilized to comparatively ascertain and extract the extra power dissipation due to the fringing effect phenomenon in gapped magnetic components.
{"title":"Extraction of Fringing-Effect Power Loss from Total Dissipation in Magnetic Component","authors":"R. Kasikowski","doi":"10.14313/par_250/33","DOIUrl":"https://doi.org/10.14313/par_250/33","url":null,"abstract":"Power magnetics in the energy storage configuration are not able to handle a significant amount of power without the introduction of a physical discontinuity in their magnetic path. This frequently takes the form of a discrete air gap giving rise to certain consequences such as extra power dissipation in the coils mounted on gapped cores. The ascertainment of the impact of the fringing magnetic field at the air gap on the efficiency of power conversion is highly problematic due to the complex nature of the phenomenon. The fringing-effect power loss typically coexists and is combined with all the other power-dissipation mechanisms, which greatly complicates the extraction of losses brought about solely by the fringing flux at the air gap from the total amount of dissipation in a given magnetic component. Magnetic cores of composite materials do not require a discrete air gap, as the air gap in them is distributed throughout the entire material, thus preventing the fringing magnetic flux from forming. However, there is a downside to this approach, as power loss in the material is comparably greater and so are the manufacturing costs. As shown here, distributed-gap-type core materials, due to the absence of physical discontinuity, and hence the lack of registerable fringing-effect power loss, can be utilized to comparatively ascertain and extract the extra power dissipation due to the fringing effect phenomenon in gapped magnetic components.","PeriodicalId":383231,"journal":{"name":"Pomiary Automatyka Robotyka","volume":"97 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139170390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The article scrutinises the intricate interplay between artificial intelligence (AI) and patent jurisprudence. According to the authors, while inventions conventionally qualify for patent protection, those predominantly or entirely conceived by AI fall outside the purview of extant Polish and European legislative frameworks. The article delineates the parameters of AI and explicates the criteria for patentability, accentuating that inventions engendered by AI present a conundrum for the prevailing legal paradigms.
{"title":"Inventiveness Aided by Artificial Intelligence and Patent Protection in Polish and European Law. A Comparative Perspective","authors":"Michał Szkaradek, Justyna Telenga","doi":"10.14313/par_250/79","DOIUrl":"https://doi.org/10.14313/par_250/79","url":null,"abstract":"The article scrutinises the intricate interplay between artificial intelligence (AI) and patent jurisprudence. According to the authors, while inventions conventionally qualify for patent protection, those predominantly or entirely conceived by AI fall outside the purview of extant Polish and European legislative frameworks. The article delineates the parameters of AI and explicates the criteria for patentability, accentuating that inventions engendered by AI present a conundrum for the prevailing legal paradigms.","PeriodicalId":383231,"journal":{"name":"Pomiary Automatyka Robotyka","volume":"25 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139168563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}