Pub Date : 2023-01-01DOI: 10.1615/interjenercleanenv.2023047205
Muhammet Ramazan Eren, Işıl Güneş, E. Varol
{"title":"The effect of carbonization temperature on the properties of carbonaceous material obtained from ethylene-propylene-diene-monomer (EPDM) wastes","authors":"Muhammet Ramazan Eren, Işıl Güneş, E. Varol","doi":"10.1615/interjenercleanenv.2023047205","DOIUrl":"https://doi.org/10.1615/interjenercleanenv.2023047205","url":null,"abstract":"","PeriodicalId":38729,"journal":{"name":"International Journal of Energy for a Clean Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67396525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1615/interjenercleanenv.2023047644
Adam Y. Sulaiman, Umar Ali Umar, Muhammad Usman Kaisan, Ibrahim Umar Ibrahim, S. Abubakar, Ayodeji Nathaniel Oyedeji
{"title":"Optimisation of the Engine Performance of Neem Oil Bio-Diesel with Pentanol Blend in Diesel Engine: Simplex-Lattice Design Optimisation","authors":"Adam Y. Sulaiman, Umar Ali Umar, Muhammad Usman Kaisan, Ibrahim Umar Ibrahim, S. Abubakar, Ayodeji Nathaniel Oyedeji","doi":"10.1615/interjenercleanenv.2023047644","DOIUrl":"https://doi.org/10.1615/interjenercleanenv.2023047644","url":null,"abstract":"","PeriodicalId":38729,"journal":{"name":"International Journal of Energy for a Clean Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67396792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1615/interjenercleanenv.2023047661
Lei Li, V. Akkerman, Zhiwei Yang, D. Magalhães, R. Axelbaum
{"title":"A computational analysis of the impact of boundary conditions on a particle-laden flow: A case study in a pressurized oxy-coal combustor","authors":"Lei Li, V. Akkerman, Zhiwei Yang, D. Magalhães, R. Axelbaum","doi":"10.1615/interjenercleanenv.2023047661","DOIUrl":"https://doi.org/10.1615/interjenercleanenv.2023047661","url":null,"abstract":"","PeriodicalId":38729,"journal":{"name":"International Journal of Energy for a Clean Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67396985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1615/interjenercleanenv.2023047216
S. Ray, S. Sahoo, S. Mahapatra, P. Satapathy, R. Mallik
{"title":"COMPUTATIONAL INVESTIGATION OF GLASS TEMPERATURE DISTRIBUTION IN PARABOLIC TROUGH SOLAR COLLECTOR RELATING TO HUMID CONDITIONS","authors":"S. Ray, S. Sahoo, S. Mahapatra, P. Satapathy, R. Mallik","doi":"10.1615/interjenercleanenv.2023047216","DOIUrl":"https://doi.org/10.1615/interjenercleanenv.2023047216","url":null,"abstract":"","PeriodicalId":38729,"journal":{"name":"International Journal of Energy for a Clean Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67396875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renewable and sustainable energy resources have been widely used to reduce environmental pollution and accommodate world energy consumption. Biodiesel is an environmentally friendly biofuel that can be made from non-edible and algae oil. Response surface approach and Artificial neuron network modal is used to predict and optimize the biodiesel yield. Karanja and C. vulgaris oil are mixed at 75 to 25% volumetric ratio to lower the free fatty acid content. Process parameters of biodiesel production from hybrid oil of Karanja and C. vulgaris oil were optimized by employing a single-step transesterification process. It was found that a maximum 97.55% biodiesel yield is obtained at 1.09% (w/w) catalyst amount, 91.47 minutes reaction time, 56.86 °C reaction temperature, and 8.46:1 methanol to oil molar ratio. The experimental output of biodiesel was compared with the predicted response from RSM. The amount of the Environmental factor was determined to be 0.0251 at maximum biodiesel yield. A lower value of the E factor suggests that there was minimum waste produced during biodiesel production.
{"title":"Optimization of process parameter of biodiesel derived from hybrid blend of Karanja and chlorella vulgaris oil","authors":"Sujeet Kesharvani, Gaurav Dwivedi, Tikendra Nath Verma","doi":"10.1615/interjenercleanenv.2023047783","DOIUrl":"https://doi.org/10.1615/interjenercleanenv.2023047783","url":null,"abstract":"Renewable and sustainable energy resources have been widely used to reduce environmental pollution and accommodate world energy consumption. Biodiesel is an environmentally friendly biofuel that can be made from non-edible and algae oil. Response surface approach and Artificial neuron network modal is used to predict and optimize the biodiesel yield. Karanja and C. vulgaris oil are mixed at 75 to 25% volumetric ratio to lower the free fatty acid content. Process parameters of biodiesel production from hybrid oil of Karanja and C. vulgaris oil were optimized by employing a single-step transesterification process. It was found that a maximum 97.55% biodiesel yield is obtained at 1.09% (w/w) catalyst amount, 91.47 minutes reaction time, 56.86 °C reaction temperature, and 8.46:1 methanol to oil molar ratio. The experimental output of biodiesel was compared with the predicted response from RSM. The amount of the Environmental factor was determined to be 0.0251 at maximum biodiesel yield. A lower value of the E factor suggests that there was minimum waste produced during biodiesel production.","PeriodicalId":38729,"journal":{"name":"International Journal of Energy for a Clean Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134981398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The simultaneous calcination and sulfation characteristics of limestone in simulative CFB flue gas atmosphere is examined using a slidable tube furnace system combined with X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) with a focus on the effect of particle size. The effect mechanism of particle size on simultaneous calcination and sulfation of limestone is further analyzed based on the effect of temperature and CO2 concentration. The qualitative and quantitative results show that calcination reaction dominates in the early simultaneous calcination and sulfation reaction of limestone and the predominant effect transforms from calcination to sulfation reaction in the late simultaneous reaction of limestone. Compared with small particle size limestone, the big particle size limestone slows the weight loss rate and weight gain rate and needs more time to achieve the lowest weight point. This is related to lower mole fraction loss rate of CaCO3 and mole fraction gain rate of CaSO4 during simultaneous calcination and sulfation of limestone with big particle size. The effect mechanism of particle size on simultaneous calcination and sulfation of limestone is mainly due to the change of reaction specific surface area, heat transfer, and mass transfer from the surface to the inside of limestone with different particle sizes.
{"title":"EFFECT OF PARTICLE SIZE ON SIMULTANEOUS CALCINATION AND SULFATION OF LIMESTONE","authors":"Yuanyuan Zhang, Xiangying Cheng, Jiangting Zhao, Fengling Yang, Fangqin Cheng","doi":"10.1615/interjenercleanenv.v24.i8.120","DOIUrl":"https://doi.org/10.1615/interjenercleanenv.v24.i8.120","url":null,"abstract":"The simultaneous calcination and sulfation characteristics of limestone in simulative CFB flue gas atmosphere is examined using a slidable tube furnace system combined with X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) with a focus on the effect of particle size. The effect mechanism of particle size on simultaneous calcination and sulfation of limestone is further analyzed based on the effect of temperature and CO<sub>2</sub> concentration. The qualitative and quantitative results show that calcination reaction dominates in the early simultaneous calcination and sulfation reaction of limestone and the predominant effect transforms from calcination to sulfation reaction in the late simultaneous reaction of limestone. Compared with small particle size limestone, the big particle size limestone slows the weight loss rate and weight gain rate and needs more time to achieve the lowest weight point. This is related to lower mole fraction loss rate of CaCO<sub>3</sub> and mole fraction gain rate of CaSO<sub>4</sub> during simultaneous calcination and sulfation of limestone with big particle size. The effect mechanism of particle size on simultaneous calcination and sulfation of limestone is mainly due to the change of reaction specific surface area, heat transfer, and mass transfer from the surface to the inside of limestone with different particle sizes.","PeriodicalId":38729,"journal":{"name":"International Journal of Energy for a Clean Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136216856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1615/interjenercleanenv.2023048296
I. Zvarych, Oksana Brodovska, Liliya Krysovata, Svyatoslav Gerchakivsky, Olga Gerchakivska
{"title":"Energy system decarbonization & circular economy: \"bypass emission hotspots\"","authors":"I. Zvarych, Oksana Brodovska, Liliya Krysovata, Svyatoslav Gerchakivsky, Olga Gerchakivska","doi":"10.1615/interjenercleanenv.2023048296","DOIUrl":"https://doi.org/10.1615/interjenercleanenv.2023048296","url":null,"abstract":"","PeriodicalId":38729,"journal":{"name":"International Journal of Energy for a Clean Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67397137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1615/interjenercleanenv.2023045722
M. Renganathan
{"title":"Reduction of Hydrogen-Diesel Engine Emissions by Water Injection/EGR and a Novel Vortex Tube Intake System","authors":"M. Renganathan","doi":"10.1615/interjenercleanenv.2023045722","DOIUrl":"https://doi.org/10.1615/interjenercleanenv.2023045722","url":null,"abstract":"","PeriodicalId":38729,"journal":{"name":"International Journal of Energy for a Clean Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67395775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1615/interjenercleanenv.2023045692
E. R. Reddy, M. Pal
{"title":"A study on the application of Diesel-RK simulation tool at retarded injection condition to reduce NOx emission of a diesel engine fuelled with biodiesel blends","authors":"E. R. Reddy, M. Pal","doi":"10.1615/interjenercleanenv.2023045692","DOIUrl":"https://doi.org/10.1615/interjenercleanenv.2023045692","url":null,"abstract":"","PeriodicalId":38729,"journal":{"name":"International Journal of Energy for a Clean Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67395645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1615/interjenercleanenv.2023049144
Fabrício Pena, Marcelo de Lemos
The thermite reaction is a self-sustained exothermic reaction commonly employed in welding processes of railway tracks, material synthesis, pyrotechnics, etc. More recently, this reaction has been assessed to plug depleted oil wells. The investigated geometry is modeled as a two-dimensional axisymmetric domain with a thermite mixture compressed between a PMMA lid and a stainless-steel disk. First-order kinetic is assumed for the chemical kinetics model. Governing equations are discretized with the finite-volume approach. Experimental validation is performed by comparing numerical combustion velocities and peak temperatures with the experimental data in the literature. Results demonstrated a remarkable thermal gradient through the longitudinal direction, displaying higher thermal losses next to the thermite-steel interface. These heat losses also affected melting of species, as a small portion of alumina remained entirely solid during the reaction.
{"title":"NUMERICAL SOLUTION OF COUPLED HEAT TRANSFER WITH PHASE-CHANGE AND THERMITE REACTION","authors":"Fabrício Pena, Marcelo de Lemos","doi":"10.1615/interjenercleanenv.2023049144","DOIUrl":"https://doi.org/10.1615/interjenercleanenv.2023049144","url":null,"abstract":"The thermite reaction is a self-sustained exothermic reaction commonly employed in welding processes of railway tracks, material synthesis, pyrotechnics, etc. More recently, this reaction has been assessed to plug depleted oil wells. The investigated geometry is modeled as a two-dimensional axisymmetric domain with a thermite mixture compressed between a PMMA lid and a stainless-steel disk. First-order kinetic is assumed for the chemical kinetics model. Governing equations are discretized with the finite-volume approach. Experimental validation is performed by comparing numerical combustion velocities and peak temperatures with the experimental data in the literature. Results demonstrated a remarkable thermal gradient through the longitudinal direction, displaying higher thermal losses next to the thermite-steel interface. These heat losses also affected melting of species, as a small portion of alumina remained entirely solid during the reaction.","PeriodicalId":38729,"journal":{"name":"International Journal of Energy for a Clean Environment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135181740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}