首页 > 最新文献

European Journal of Inorganic Chemistry最新文献

英文 中文
Integrated CO2 capture and conversion to form syngas 综合二氧化碳捕获和转化为合成气
IF 39.8 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-11-11 DOI: 10.1016/j.joule.2024.10.010
Yongwook Kim, Eric W. Lees, Chaitanya Donde, Andrew M.L. Jewlal, Christopher E.B. Waizenegger, Basil M.W. de Hepcée, Grace L. Simpson, Akshi Valji, Curtis P. Berlinguette
To convert waste carbon dioxide (CO2) into valuable chemicals and fuels, electrolyzers must be integrated with an upstream CO2 capture step. However, this integration has not been demonstrated due to the mismatched rates between CO2 capture and conversion. We present an integrated CO2 capture-conversion system that produces syngas with a 1.7:1 H2 to CO ratio at steady state, where the capture rate matches the release rate in the electrolyzer. The system uses a packed-bed absorber where K2CO3 solutions react with CO2 from simulated flue gas to form (bi)carbonate-enriched solutions, which are then fed into an electrolyzer to produce CO and OH. The alkaline product is recycled to the absorber, completing the CO2 capture-conversion loop. With glycine as a CO2 capture promoter, the system captures 30% of carbon from simulated flue gas with a Faradaic efficiency of 30% for CO2 conversion to CO at 100 mA cm−2 over 30 h.
要将废弃的二氧化碳(CO2)转化为有价值的化学品和燃料,电解槽必须与上游的二氧化碳捕集步骤相结合。然而,由于二氧化碳捕获和转化率不匹配,这种整合尚未得到证实。我们介绍了一种二氧化碳捕集-转化集成系统,该系统在稳定状态下产生的合成气中,H2 与 CO 的比例为 1.7:1,捕集率与电解槽中的释放率相匹配。该系统采用填料床吸收器,其中 K2CO3 溶液与模拟烟气中的 CO2 反应生成富含(双)碳酸盐的溶液,然后将其送入电解槽生成 CO 和 OH-。碱性产物再循环到吸收器,完成二氧化碳捕获-转化循环。利用甘氨酸作为二氧化碳捕获促进剂,该系统可从模拟烟气中捕获 30% 的碳,在 100 mA cm-2 的条件下,30 小时内二氧化碳转化为 CO 的法拉第效率为 30%。
{"title":"Integrated CO2 capture and conversion to form syngas","authors":"Yongwook Kim, Eric W. Lees, Chaitanya Donde, Andrew M.L. Jewlal, Christopher E.B. Waizenegger, Basil M.W. de Hepcée, Grace L. Simpson, Akshi Valji, Curtis P. Berlinguette","doi":"10.1016/j.joule.2024.10.010","DOIUrl":"https://doi.org/10.1016/j.joule.2024.10.010","url":null,"abstract":"To convert waste carbon dioxide (CO<sub>2</sub>) into valuable chemicals and fuels, electrolyzers must be integrated with an upstream CO<sub>2</sub> capture step. However, this integration has not been demonstrated due to the mismatched rates between CO<sub>2</sub> capture and conversion. We present an integrated CO<sub>2</sub> capture-conversion system that produces syngas with a 1.7:1 H<sub>2</sub> to CO ratio at steady state, where the capture rate matches the release rate in the electrolyzer. The system uses a packed-bed absorber where K<sub>2</sub>CO<sub>3</sub> solutions react with CO<sub>2</sub> from simulated flue gas to form (bi)carbonate-enriched solutions, which are then fed into an electrolyzer to produce CO and OH<sup>−</sup>. The alkaline product is recycled to the absorber, completing the CO<sub>2</sub> capture-conversion loop. With glycine as a CO<sub>2</sub> capture promoter, the system captures 30% of carbon from simulated flue gas with a Faradaic efficiency of 30% for CO<sub>2</sub> conversion to CO at 100 mA cm<sup>−2</sup> over 30 h.","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"7 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-energy photoredox catalysis 低能光氧化催化
IF 36.3 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-11-11 DOI: 10.1038/s41570-024-00663-6
David C. Cabanero, Tomislav Rovis

With the advent of photoredox catalysis, new synthetic paradigms have been established with many novel transformations being achieved. Nevertheless, modern photoredox chemistry has several drawbacks, namely, deficiencies in reaction efficiency and scalability. Furthermore, wavelengths of light in excess of the energy required for a chemical reaction are often used. In this Review, we document recent developments of low-energy light-absorbing catalysts and their cognate photochemical methods, advantageously mitigating off-cycle photochemical reactivity of excited-state species in the reaction mixture and improving batch scalability of photochemical reactions. Finally, developments in red-light photoredox catalysis are leading the next-generation applications to polymer science and biochemistry–chemical biology, enabling catalytic reactions within media composites — including mammalian tissue — that are historically recalcitrant with blue-light photoredox catalysis.

随着光氧化催化技术的出现,新的合成范式得以建立,并实现了许多新颖的转化。然而,现代光氧化还原化学有几个缺点,即反应效率和可扩展性不足。此外,所使用的光波长往往超过化学反应所需的能量。在本综述中,我们将介绍低能量光吸收催化剂及其同类光化学方法的最新发展,这些催化剂和方法可有效缓解反应混合物中激发态物种的非周期光化学反应性,并提高光化学反应的批量可扩展性。最后,红光光氧化催化技术的发展引领了聚合物科学和生物化学-化学生物学的下一代应用,使蓝光光氧化催化技术历来难以解决的介质复合材料(包括哺乳动物组织)内的催化反应成为可能。
{"title":"Low-energy photoredox catalysis","authors":"David C. Cabanero, Tomislav Rovis","doi":"10.1038/s41570-024-00663-6","DOIUrl":"https://doi.org/10.1038/s41570-024-00663-6","url":null,"abstract":"<p>With the advent of photoredox catalysis, new synthetic paradigms have been established with many novel transformations being achieved. Nevertheless, modern photoredox chemistry has several drawbacks, namely, deficiencies in reaction efficiency and scalability. Furthermore, wavelengths of light in excess of the energy required for a chemical reaction are often used. In this Review, we document recent developments of low-energy light-absorbing catalysts and their cognate photochemical methods, advantageously mitigating off-cycle photochemical reactivity of excited-state species in the reaction mixture and improving batch scalability of photochemical reactions. Finally, developments in red-light photoredox catalysis are leading the next-generation applications to polymer science and biochemistry–chemical biology, enabling catalytic reactions within media composites — including mammalian tissue — that are historically recalcitrant with blue-light photoredox catalysis.</p><figure></figure>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"2 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Managing tuberculosis before the onset of symptoms 在肺结核症状出现前进行治疗
IF 76.2 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-11-11 DOI: 10.1016/s2213-2600(24)00372-2
Dennis Falzon, Cecily Miller, Irwin Law, Katherine Floyd, Nimalan Arinaminpathy, Matteo Zignol, Tereza Kasaeva
No Abstract
无摘要
{"title":"Managing tuberculosis before the onset of symptoms","authors":"Dennis Falzon, Cecily Miller, Irwin Law, Katherine Floyd, Nimalan Arinaminpathy, Matteo Zignol, Tereza Kasaeva","doi":"10.1016/s2213-2600(24)00372-2","DOIUrl":"https://doi.org/10.1016/s2213-2600(24)00372-2","url":null,"abstract":"No Abstract","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"1 1","pages":""},"PeriodicalIF":76.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ex situ bismuth doping for efficient CdSeTe thin-film solar cells with open-circuit voltages exceeding 900 mV 原位掺铋实现开路电压超过 900 mV 的高效碲化镉薄膜太阳能电池
IF 39.8 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-11-08 DOI: 10.1016/j.joule.2024.09.013
Sabin Neupane, Deng-Bing Li, Abasi Abudulimu, Manoj Kumar Jamarkattel, Chun-Sheng Jiang, Yeming Xian, Xiaomeng Duan, Adam B. Phillips, Michael J. Heben, Randall J. Ellingson, Feng Yan, Dingyuan Lu, Dan Mao, Nicholas Miller, James Becker, William Huber, Gang Xiong, Yanfa Yan
The focus of CdSeTe thin-film solar cell doping has transitioned from copper (Cu) doping to group V doping. In situ group V doping has resulted in a new record power conversion efficiency (PCE) of 23.1%, with open-circuit voltages (VOCs) exceeding the 900 mV mark. Here, we report that ex situ bismuth (Bi)-doped CdSeTe thin-film solar cells show VOCs exceeding 900 mV and a champion PCE of 20.6%. Characterizations revealed that the Se-rich CdSeTe region near the front junction promotes Bi ions to occupy the anion sites and dope this region weakly p-type. Bi ions in the CdTe-dominating back surface region occupy the cation sites and are oxidized. This ex situ Bi doping with BiF3 as a dopant precursor offers several advantages, including simplicity, high tolerance to the processing environment, and no requirement of additional Cd vapor or special activation processes, making it highly adaptable for researchers to explore efficient Bi-doped CdSeTe thin-film solar cells.
碲化镉薄膜太阳能电池掺杂的重点已从铜(Cu)掺杂过渡到 V 族掺杂。原位 V 族掺杂使功率转换效率 (PCE) 达到 23.1%,创下新纪录,开路电压 (VOC) 超过 900 mV。在这里,我们报告了原位掺铋 (Bi) 的碲化镉薄膜太阳能电池显示出超过 900 mV 的 VOC 和 20.6% 的冠军 PCE。表征结果表明,前结点附近富含硒的 CdSeTe 区域促进 Bi 离子占据阴离子位点,并使该区域成为弱 p 型。碲化镉为主的背面区域中的铋离子占据阳离子位点并被氧化。这种以 BiF3 为掺杂剂前驱体的原位 Bi 掺杂具有多种优势,包括操作简单、对加工环境的耐受性高、无需额外的镉蒸气或特殊的活化过程,因此非常适合研究人员探索高效的 Bi 掺杂碲化镉薄膜太阳能电池。
{"title":"Ex situ bismuth doping for efficient CdSeTe thin-film solar cells with open-circuit voltages exceeding 900 mV","authors":"Sabin Neupane, Deng-Bing Li, Abasi Abudulimu, Manoj Kumar Jamarkattel, Chun-Sheng Jiang, Yeming Xian, Xiaomeng Duan, Adam B. Phillips, Michael J. Heben, Randall J. Ellingson, Feng Yan, Dingyuan Lu, Dan Mao, Nicholas Miller, James Becker, William Huber, Gang Xiong, Yanfa Yan","doi":"10.1016/j.joule.2024.09.013","DOIUrl":"https://doi.org/10.1016/j.joule.2024.09.013","url":null,"abstract":"The focus of CdSeTe thin-film solar cell doping has transitioned from copper (Cu) doping to group V doping. <em>In situ</em> group V doping has resulted in a new record power conversion efficiency (PCE) of 23.1%, with open-circuit voltages (V<sub>OC</sub>s) exceeding the 900 mV mark. Here, we report that <em>ex situ</em> bismuth (Bi)-doped CdSeTe thin-film solar cells show V<sub>OC</sub>s exceeding 900 mV and a champion PCE of 20.6%. Characterizations revealed that the Se-rich CdSeTe region near the front junction promotes Bi ions to occupy the anion sites and dope this region weakly p-type. Bi ions in the CdTe-dominating back surface region occupy the cation sites and are oxidized. This <em>ex situ</em> Bi doping with BiF<sub>3</sub> as a dopant precursor offers several advantages, including simplicity, high tolerance to the processing environment, and no requirement of additional Cd vapor or special activation processes, making it highly adaptable for researchers to explore efficient Bi-doped CdSeTe thin-film solar cells.","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"33 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Full on-device manipulation of olefin metathesis for precise manufacturing 完全在设备上操纵烯烃偏析,实现精确制造
IF 38.3 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-11-08 DOI: 10.1038/s41565-024-01814-y
Yilin Guo, Chen Yang, Lei Zhang, Yujie Hu, Jie Hao, Chuancheng Jia, Yang Yang, Yan Xu, Xingxing Li, Fanyang Mo, Yanwei Li, Kendall N. Houk, Xuefeng Guo

Olefin metathesis, as a powerful metal-catalysed carbon–carbon bond-forming method, has achieved considerable progress in recent years. However, the complexity originating from multicomponent interactions has long impeded a complete mechanistic understanding of olefin metathesis, which hampers further optimization of the reaction. Here, we clarify both productive and hidden degenerate pathways of ring-closing metathesis by focusing on one individual catalyst, using a sensitive single-molecule electrical detection platform. In addition to visualizing the full pathway, we found that the conventionally unwanted degenerate pathways have an unexpected constructive coupling effect on the productive pathway, and both types of pathway can be regulated by an external electric field. We then pushed forward this ability to ring-opening metathesis polymerization involving more interactive components. With single-monomer-insertion-event resolution, precise on-device synthesis of a single polymer was achieved by online manipulation of monomer insertion dynamics, intramolecular chain transfer, stereoregularity, degree of polymerization and block copolymerization. These results offer a comprehensive mechanistic understanding of olefin metathesis, exemplifying infinite opportunities for practical precise manufacturing.

烯烃偏聚反应作为一种功能强大的金属催化碳碳键形成方法,近年来取得了长足的进步。然而,长期以来,多组分相互作用产生的复杂性阻碍了人们对烯烃偏聚反应的完整机理理解,从而妨碍了该反应的进一步优化。在这里,我们利用灵敏的单分子电学检测平台,以单个催化剂为研究对象,阐明了闭环复分解反应的生产途径和隐藏的退化途径。除了可视化整个途径外,我们还发现传统上不受欢迎的退化途径对生产性途径具有意想不到的建设性耦合效应,而且这两种途径都可以通过外部电场进行调节。随后,我们将这种能力推进到涉及更多交互成分的开环偏聚聚合反应中。通过在线操纵单体插入动力学、分子内链转移、立体规整度、聚合度和嵌段共聚,以单单体插入事件为分辨率,在设备上实现了单个聚合物的精确合成。这些结果提供了对烯烃偏聚作用的全面机械理解,为实际的精确制造提供了无限机会。
{"title":"Full on-device manipulation of olefin metathesis for precise manufacturing","authors":"Yilin Guo, Chen Yang, Lei Zhang, Yujie Hu, Jie Hao, Chuancheng Jia, Yang Yang, Yan Xu, Xingxing Li, Fanyang Mo, Yanwei Li, Kendall N. Houk, Xuefeng Guo","doi":"10.1038/s41565-024-01814-y","DOIUrl":"https://doi.org/10.1038/s41565-024-01814-y","url":null,"abstract":"<p>Olefin metathesis, as a powerful metal-catalysed carbon–carbon bond-forming method, has achieved considerable progress in recent years. However, the complexity originating from multicomponent interactions has long impeded a complete mechanistic understanding of olefin metathesis, which hampers further optimization of the reaction. Here, we clarify both productive and hidden degenerate pathways of ring-closing metathesis by focusing on one individual catalyst, using a sensitive single-molecule electrical detection platform. In addition to visualizing the full pathway, we found that the conventionally unwanted degenerate pathways have an unexpected constructive coupling effect on the productive pathway, and both types of pathway can be regulated by an external electric field. We then pushed forward this ability to ring-opening metathesis polymerization involving more interactive components. With single-monomer-insertion-event resolution, precise on-device synthesis of a single polymer was achieved by online manipulation of monomer insertion dynamics, intramolecular chain transfer, stereoregularity, degree of polymerization and block copolymerization. These results offer a comprehensive mechanistic understanding of olefin metathesis, exemplifying infinite opportunities for practical precise manufacturing.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"164 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fully integrated multi-mode optoelectronic memristor array for diversified in-sensor computing 用于传感器内多样化计算的全集成多模光电忆阻器阵列
IF 38.3 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-11-08 DOI: 10.1038/s41565-024-01794-z
Heyi Huang, Xiangpeng Liang, Yuyan Wang, Jianshi Tang, Yuankun Li, Yiwei Du, Wen Sun, Jianing Zhang, Peng Yao, Xing Mou, Feng Xu, Jinzhi Zhang, Yuyao Lu, Zhengwu Liu, Jianlin Wang, Zhixing Jiang, Ruofei Hu, Ze Wang, Qingtian Zhang, Bin Gao, Xuedong Bai, Lu Fang, Qionghai Dai, Huaxiang Yin, He Qian, Huaqiang Wu

In-sensor computing, which integrates sensing, memory and processing functions, has shown substantial potential in artificial vision systems. However, large-scale monolithic integration of in-sensor computing based on emerging devices with complementary metal–oxide–semiconductor (CMOS) circuits remains challenging, lacking functional demonstrations at the hardware level. Here we report a fully integrated 1-kb array with 128 × 8 one-transistor one-optoelectronic memristor (OEM) cells and silicon CMOS circuits, which features configurable multi-mode functionality encompassing three different modes of electronic memristor, dynamic OEM and non-volatile OEM (NV-OEM). These modes are configured by modulating the charge density within the oxygen vacancies via synergistic optical and electrical operations, as confirmed by differential phase-contrast scanning transmission electron microscopy. Using this OEM system, three visual processing tasks are demonstrated: image sensory pre-processing with a recognition accuracy enhanced from 85.7% to 96.1% by the NV-OEM mode, more advanced object tracking with 96.1% accuracy using both dynamic OEM and NV-OEM modes and human motion recognition with a fully OEM-based in-sensor reservoir computing system achieving 91.2% accuracy. A system-level benchmark further shows that it consumes over 20 times less energy than graphics processing units. By monolithically integrating the multi-functional OEMs with Si CMOS, this work provides a cost-effective platform for diverse in-sensor computing applications.

传感内计算集成了传感、内存和处理功能,在人工视觉系统中显示出巨大的潜力。然而,基于新兴器件与互补金属氧化物半导体(CMOS)电路的传感内计算大规模单片集成仍具有挑战性,缺乏硬件层面的功能演示。在这里,我们报告了一个完全集成的 1-kb 阵列,该阵列采用 128 × 8 单晶体管单光电忆阻器(OEM)单元和硅 CMOS 电路,具有可配置的多模式功能,包括电子忆阻器、动态 OEM 和非易失性 OEM(NV-OEM)三种不同模式。这些模式是通过协同光学和电子操作调节氧空位内的电荷密度来配置的,差分相位对比扫描透射电子显微镜证实了这一点。使用该 OEM 系统演示了三项视觉处理任务:图像感官预处理,NV-OEM 模式的识别准确率从 85.7% 提高到 96.1%;使用动态 OEM 和 NV-OEM 模式进行更高级的物体跟踪,准确率达到 96.1%;使用完全基于 OEM 的传感器内存储计算系统进行人体运动识别,准确率达到 91.2%。系统级基准测试进一步表明,它的能耗比图形处理单元低 20 多倍。通过将多功能 OEM 与 Si CMOS 单片集成,这项工作为各种传感器内计算应用提供了一个经济高效的平台。
{"title":"Fully integrated multi-mode optoelectronic memristor array for diversified in-sensor computing","authors":"Heyi Huang, Xiangpeng Liang, Yuyan Wang, Jianshi Tang, Yuankun Li, Yiwei Du, Wen Sun, Jianing Zhang, Peng Yao, Xing Mou, Feng Xu, Jinzhi Zhang, Yuyao Lu, Zhengwu Liu, Jianlin Wang, Zhixing Jiang, Ruofei Hu, Ze Wang, Qingtian Zhang, Bin Gao, Xuedong Bai, Lu Fang, Qionghai Dai, Huaxiang Yin, He Qian, Huaqiang Wu","doi":"10.1038/s41565-024-01794-z","DOIUrl":"https://doi.org/10.1038/s41565-024-01794-z","url":null,"abstract":"<p>In-sensor computing, which integrates sensing, memory and processing functions, has shown substantial potential in artificial vision systems. However, large-scale monolithic integration of in-sensor computing based on emerging devices with complementary metal–oxide–semiconductor (CMOS) circuits remains challenging, lacking functional demonstrations at the hardware level. Here we report a fully integrated 1-kb array with 128 × 8 one-transistor one-optoelectronic memristor (OEM) cells and silicon CMOS circuits, which features configurable multi-mode functionality encompassing three different modes of electronic memristor, dynamic OEM and non-volatile OEM (NV-OEM). These modes are configured by modulating the charge density within the oxygen vacancies via synergistic optical and electrical operations, as confirmed by differential phase-contrast scanning transmission electron microscopy. Using this OEM system, three visual processing tasks are demonstrated: image sensory pre-processing with a recognition accuracy enhanced from 85.7% to 96.1% by the NV-OEM mode, more advanced object tracking with 96.1% accuracy using both dynamic OEM and NV-OEM modes and human motion recognition with a fully OEM-based in-sensor reservoir computing system achieving 91.2% accuracy. A system-level benchmark further shows that it consumes over 20 times less energy than graphics processing units. By monolithically integrating the multi-functional OEMs with Si CMOS, this work provides a cost-effective platform for diverse in-sensor computing applications.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"8 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering modular and tunable single-molecule sensors by decoupling sensing from signal output 通过将传感与信号输出解耦,设计模块化可调谐单分子传感器
IF 38.3 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-11-07 DOI: 10.1038/s41565-024-01804-0
Lennart Grabenhorst, Martina Pfeiffer, Thea Schinkel, Mirjam Kümmerlin, Gereon A. Brüggenthies, Jasmin B. Maglic, Florian Selbach, Alexander T. Murr, Philip Tinnefeld, Viktorija Glembockyte

Biosensors play key roles in medical research and diagnostics. However, the development of biosensors for new biomolecular targets of interest often involves tedious optimization steps to ensure a high signal response at the analyte concentration of interest. Here we show a modular nanosensor platform that facilitates these steps by offering ways to decouple and independently tune the signal output as well as the response window. Our approach utilizes a dynamic DNA origami nanostructure to engineer a high optical signal response based on fluorescence resonance energy transfer. We demonstrate mechanisms to tune the sensor’s response window, specificity and cooperativity as well as highlight the modularity of the proposed platform by extending it to different biomolecular targets including more complex sensing schemes. This versatile nanosensor platform offers a promising starting point for the rapid development of biosensors with tailored properties.

生物传感器在医学研究和诊断中发挥着关键作用。然而,针对新的生物分子目标开发生物传感器往往涉及繁琐的优化步骤,以确保在相关分析物浓度下的高信号响应。在这里,我们展示了一种模块化纳米传感器平台,它通过提供解耦和独立调节信号输出以及响应窗口的方法来简化这些步骤。我们的方法利用动态 DNA 折纸纳米结构,在荧光共振能量转移的基础上设计出高光学信号响应。我们展示了调整传感器响应窗口、特异性和合作性的机制,并通过将其扩展到不同的生物分子目标(包括更复杂的传感方案)来突出所提议平台的模块性。这种多功能纳米传感器平台为快速开发具有定制特性的生物传感器提供了一个很好的起点。
{"title":"Engineering modular and tunable single-molecule sensors by decoupling sensing from signal output","authors":"Lennart Grabenhorst, Martina Pfeiffer, Thea Schinkel, Mirjam Kümmerlin, Gereon A. Brüggenthies, Jasmin B. Maglic, Florian Selbach, Alexander T. Murr, Philip Tinnefeld, Viktorija Glembockyte","doi":"10.1038/s41565-024-01804-0","DOIUrl":"https://doi.org/10.1038/s41565-024-01804-0","url":null,"abstract":"<p>Biosensors play key roles in medical research and diagnostics. However, the development of biosensors for new biomolecular targets of interest often involves tedious optimization steps to ensure a high signal response at the analyte concentration of interest. Here we show a modular nanosensor platform that facilitates these steps by offering ways to decouple and independently tune the signal output as well as the response window. Our approach utilizes a dynamic DNA origami nanostructure to engineer a high optical signal response based on fluorescence resonance energy transfer. We demonstrate mechanisms to tune the sensor’s response window, specificity and cooperativity as well as highlight the modularity of the proposed platform by extending it to different biomolecular targets including more complex sensing schemes. This versatile nanosensor platform offers a promising starting point for the rapid development of biosensors with tailored properties.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"18 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the boundaries of covalency 探索共价的界限
IF 36.3 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-11-06 DOI: 10.1038/s41570-024-00672-5
Zuping Xiong, Haoke Zhang
One electron σ-bonds were first proposed in 1931 but most discussion since then has been at a theoretical level. The first experimentally observed single-electron C–C bond both advances our fundamental understanding of bonding and provides the basis of an approach to creating a new class of molecules.
单电子σ键于 1931 年首次提出,但此后的讨论大多停留在理论层面。首次在实验中观察到的单电子 C-C 键既增进了我们对键的基本了解,又为创造一类新分子提供了基础。
{"title":"Exploring the boundaries of covalency","authors":"Zuping Xiong, Haoke Zhang","doi":"10.1038/s41570-024-00672-5","DOIUrl":"https://doi.org/10.1038/s41570-024-00672-5","url":null,"abstract":"One electron σ-bonds were first proposed in 1931 but most discussion since then has been at a theoretical level. The first experimentally observed single-electron C–C bond both advances our fundamental understanding of bonding and provides the basis of an approach to creating a new class of molecules.","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"38 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart molecular designs and applications of activatable organic photosensitizers 可活化有机光敏剂的智能分子设计与应用
IF 36.3 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-11-06 DOI: 10.1038/s41570-024-00662-7
Eleni Nestoros, Amit Sharma, Eunji Kim, Jong Seung Kim, Marc Vendrell

Photodynamic therapy (PDT) — which combines light, oxygen and photosensitizers (PS) to generate reactive oxygen species — has emerged as an effective approach for targeted ablation of pathogenic cells with reduced risk of inducing resistance. Some organic PS are now being applied for PDT in the clinic or undergoing evaluation in clinical trials. A limitation of the first-generation organic PS was their potential off-target toxicity. This shortcoming prompted the design of constructs that can be activated by the presence of specific biomolecules — from small biomolecules to large enzymes — in the target cells. Here, we review advances in the design and synthesis of activatable organic PS and their contribution to PDT in the past decade. Important areas of research include novel synthetic methodologies to engineer smart PS with tuneable singlet oxygen generation, their integration into larger constructs such as bioconjugates, and finally, representative examples of their translational potential as antimicrobial and anticancer therapies.

光动力疗法(PDT)结合了光、氧和光敏剂(PS)以产生活性氧,已成为靶向消融致病细胞的有效方法,并降低了诱发耐药性的风险。目前,一些有机 PS 已应用于临床或正在临床试验中进行评估。第一代有机 PS 的局限性在于其潜在的脱靶毒性。这一缺陷促使人们设计出可以通过靶细胞中存在的特定生物分子(从小分子到大分子酶)来激活的构建物。在此,我们回顾了过去十年中可活化有机 PS 的设计和合成方面的进展及其对 PDT 的贡献。重要的研究领域包括:采用新的合成方法设计可调节单线态氧生成的智能 PS、将其整合到生物共轭物等更大的构建体中,以及最后介绍其作为抗微生物和抗癌疗法的转化潜力的代表性实例。
{"title":"Smart molecular designs and applications of activatable organic photosensitizers","authors":"Eleni Nestoros, Amit Sharma, Eunji Kim, Jong Seung Kim, Marc Vendrell","doi":"10.1038/s41570-024-00662-7","DOIUrl":"https://doi.org/10.1038/s41570-024-00662-7","url":null,"abstract":"<p>Photodynamic therapy (PDT) — which combines light, oxygen and photosensitizers (PS) to generate reactive oxygen species — has emerged as an effective approach for targeted ablation of pathogenic cells with reduced risk of inducing resistance. Some organic PS are now being applied for PDT in the clinic or undergoing evaluation in clinical trials. A limitation of the first-generation organic PS was their potential off-target toxicity. This shortcoming prompted the design of constructs that can be activated by the presence of specific biomolecules — from small biomolecules to large enzymes — in the target cells. Here, we review advances in the design and synthesis of activatable organic PS and their contribution to PDT in the past decade. Important areas of research include novel synthetic methodologies to engineer smart PS with tuneable singlet oxygen generation, their integration into larger constructs such as bioconjugates, and finally, representative examples of their translational potential as antimicrobial and anticancer therapies.</p><figure></figure>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"10 1","pages":""},"PeriodicalIF":36.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted intervention in nerve–cancer crosstalk enhances pancreatic cancer chemotherapy 靶向干预神经-癌症串扰可增强胰腺癌化疗效果
IF 38.3 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-11-04 DOI: 10.1038/s41565-024-01803-1
Jiaqi Qin, Jingjie Liu, Zhaohan Wei, Xin Li, Zhaoxia Chen, Jianye Li, Wenxia Zheng, Haojie Liu, Shiyi Xu, Tuying Yong, Ben Zhao, Shanmiao Gou, Shenghong Ju, Gao-Jun Teng, Xiangliang Yang, Lu Gan

Nerve–cancer crosstalk has gained substantial attention owing to its impact on tumour growth, metastasis and therapy resistance. Effective therapeutic strategies targeting tumour-associated nerves within the intricate tumour microenvironment remain a major challenge in pancreatic cancer. Here we develop Escherichia coli Nissle 1917-derived outer membrane vesicles conjugated with nerve-binding peptide NP41, loaded with the tropomyosin receptor kinase (Trk) inhibitor larotrectinib (Lar@NP-OMVs) for tumour-associated nerve targeting. Lar@NP-OMVs achieve efficient nerve intervention to diminish neurite growth by disrupting the neurotrophin/Trk signalling pathway. Moreover, OMV-mediated repolarization of M2-like tumour-associated macrophages to an M1-like phenotype results in nerve injury, further accentuating Lar@NP-OMV-induced nerve intervention to inhibit nerve-triggered proliferation and migration of pancreatic cancer cells and angiogenesis. Leveraging this strategy, Lar@NP-OMVs significantly reduce nerve infiltration and neurite growth promoted by gemcitabine within the tumour microenvironment, leading to augmented chemotherapy efficacy in pancreatic cancer. This study sheds light on a potential avenue for nerve-targeted therapeutic intervention for enhancing pancreatic cancer therapy.

神经-癌症串扰因其对肿瘤生长、转移和耐药性的影响而备受关注。在错综复杂的肿瘤微环境中,针对肿瘤相关神经的有效治疗策略仍然是胰腺癌的一大挑战。在这里,我们开发了大肠杆菌 Nissle 1917 衍生的外膜囊泡,这些囊泡与神经结合肽 NP41 连接,并装载了肌球蛋白受体激酶(Trk)抑制剂 larotrectinib(Lar@NP-OMVs),用于靶向肿瘤相关神经。Lar@NP-OMVs 通过破坏神经营养素/Trk 信号通路,实现了有效的神经干预,减少了神经元的生长。此外,OMV 介导的 M2 型肿瘤相关巨噬细胞重新极化为 M1 型表型会导致神经损伤,从而进一步加强 Lar@NP-OMV 诱导的神经干预,抑制神经触发的胰腺癌细胞增殖和迁移以及血管生成。利用这一策略,Lar@NP-OMVs 能显著减少吉西他滨在肿瘤微环境中促进的神经浸润和神经元生长,从而提高胰腺癌的化疗疗效。这项研究揭示了神经靶向治疗干预增强胰腺癌治疗的潜在途径。
{"title":"Targeted intervention in nerve–cancer crosstalk enhances pancreatic cancer chemotherapy","authors":"Jiaqi Qin, Jingjie Liu, Zhaohan Wei, Xin Li, Zhaoxia Chen, Jianye Li, Wenxia Zheng, Haojie Liu, Shiyi Xu, Tuying Yong, Ben Zhao, Shanmiao Gou, Shenghong Ju, Gao-Jun Teng, Xiangliang Yang, Lu Gan","doi":"10.1038/s41565-024-01803-1","DOIUrl":"https://doi.org/10.1038/s41565-024-01803-1","url":null,"abstract":"<p>Nerve–cancer crosstalk has gained substantial attention owing to its impact on tumour growth, metastasis and therapy resistance. Effective therapeutic strategies targeting tumour-associated nerves within the intricate tumour microenvironment remain a major challenge in pancreatic cancer. Here we develop <i>Escherichia coli</i> Nissle 1917-derived outer membrane vesicles conjugated with nerve-binding peptide NP41, loaded with the tropomyosin receptor kinase (Trk) inhibitor larotrectinib (Lar@NP-OMVs) for tumour-associated nerve targeting. Lar@NP-OMVs achieve efficient nerve intervention to diminish neurite growth by disrupting the neurotrophin/Trk signalling pathway. Moreover, OMV-mediated repolarization of M2-like tumour-associated macrophages to an M1-like phenotype results in nerve injury, further accentuating Lar@NP-OMV-induced nerve intervention to inhibit nerve-triggered proliferation and migration of pancreatic cancer cells and angiogenesis. Leveraging this strategy, Lar@NP-OMVs significantly reduce nerve infiltration and neurite growth promoted by gemcitabine within the tumour microenvironment, leading to augmented chemotherapy efficacy in pancreatic cancer. This study sheds light on a potential avenue for nerve-targeted therapeutic intervention for enhancing pancreatic cancer therapy.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"45 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Journal of Inorganic Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1