Pub Date : 2017-01-01Epub Date: 2017-12-27DOI: 10.1155/2017/8607532
Xin Xing, Carmen Mroß, Linlin Hao, Martina Munck, Alexandra Herzog, Clara Mohr, C P Unnikannan, Pranav Kelkar, Angelika A Noegel, Ludwig Eichinger, Sascha Neumann
The nuclear envelope proteins, Nesprins, have been primarily studied during interphase where they function in maintaining nuclear shape, size, and positioning. We analyze here the function of Nesprin-2 in chromatin interactions in interphase and dividing cells. We characterize a region in the rod domain of Nesprin-2 that is predicted as SMC domain (aa 1436-1766). We show that this domain can interact with itself. It furthermore has the capacity to bind to SMC2 and SMC4, the core subunits of condensin. The interaction was observed during all phases of the cell cycle; it was particularly strong during S phase and persisted also during mitosis. Nesprin-2 knockdown did not affect condensin distribution; however we noticed significantly higher numbers of chromatin bridges in Nesprin-2 knockdown cells in anaphase. Thus, Nesprin-2 may have an impact on chromosomes which might be due to its interaction with condensins or to indirect mechanisms provided by its interactions at the nuclear envelope.
{"title":"Nesprin-2 Interacts with Condensin Component SMC2.","authors":"Xin Xing, Carmen Mroß, Linlin Hao, Martina Munck, Alexandra Herzog, Clara Mohr, C P Unnikannan, Pranav Kelkar, Angelika A Noegel, Ludwig Eichinger, Sascha Neumann","doi":"10.1155/2017/8607532","DOIUrl":"https://doi.org/10.1155/2017/8607532","url":null,"abstract":"<p><p>The nuclear envelope proteins, Nesprins, have been primarily studied during interphase where they function in maintaining nuclear shape, size, and positioning. We analyze here the function of Nesprin-2 in chromatin interactions in interphase and dividing cells. We characterize a region in the rod domain of Nesprin-2 that is predicted as SMC domain (aa 1436-1766). We show that this domain can interact with itself. It furthermore has the capacity to bind to SMC2 and SMC4, the core subunits of condensin. The interaction was observed during all phases of the cell cycle; it was particularly strong during S phase and persisted also during mitosis. Nesprin-2 knockdown did not affect condensin distribution; however we noticed significantly higher numbers of chromatin bridges in Nesprin-2 knockdown cells in anaphase. Thus, Nesprin-2 may have an impact on chromosomes which might be due to its interaction with condensins or to indirect mechanisms provided by its interactions at the nuclear envelope.</p>","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2017 ","pages":"8607532"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/8607532","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35831491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-04-10DOI: 10.1155/2017/5312951
Yohan Choi, Fanwei Meng, Charles S Cox, Kevin P Lally, Johnny Huard, Yong Li
Tissue regeneration and repair have received much attention in the medical field over the years. The study of amphibians, such as newts and salamanders, has uncovered many of the processes that occur in these animals during full-limb/digit regeneration, a process that is highly limited in mammals. Understanding these processes in amphibians could shed light on how to develop and improve this process in mammals. Amputation injuries in mammals usually result in the formation of scar tissue with limited regrowth of the limb/digit; however, it has been observed that the very tips of digits (fingers and toes) can partially regrow in humans and mice under certain conditions. This review will summarize and compare the processes involved in salamander limb regeneration, mammalian wound healing, and digit regeneration in mice and humans.
{"title":"Regeneration and Regrowth Potentials of Digit Tips in Amphibians and Mammals.","authors":"Yohan Choi, Fanwei Meng, Charles S Cox, Kevin P Lally, Johnny Huard, Yong Li","doi":"10.1155/2017/5312951","DOIUrl":"https://doi.org/10.1155/2017/5312951","url":null,"abstract":"<p><p>Tissue regeneration and repair have received much attention in the medical field over the years. The study of amphibians, such as newts and salamanders, has uncovered many of the processes that occur in these animals during full-limb/digit regeneration, a process that is highly limited in mammals. Understanding these processes in amphibians could shed light on how to develop and improve this process in mammals. Amputation injuries in mammals usually result in the formation of scar tissue with limited regrowth of the limb/digit; however, it has been observed that the very tips of digits (fingers and toes) can partially regrow in humans and mice under certain conditions. This review will summarize and compare the processes involved in salamander limb regeneration, mammalian wound healing, and digit regeneration in mice and humans.</p>","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2017 ","pages":"5312951"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/5312951","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34982119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It has been reported that water at the interface of a hydrophilic thin film forms an exclusion zone, which has a higher density than ordinary water. A similar phenomenon was observed for a hydrated hydrophilic ceramic powder, and water turns into a three-dimensional cell-like structure composed of high density water and low density water. This structured water appears to have a stimulative effect on plant growth. This report outlines our study of antioxidant properties of this structured water and its effect on cell bioactivities. Culturing media which were prepared utilizing this antioxidant structured water promoted the viability of RAW 264.7 macrophage cells by up to three times. The same tendency was observed for other cells including IEC-6, C2C12, and 3T3-L1. Also, the cytokine expression of the splenocytes taken from a mouse spleen increased in the same manner. The water also appears to suppress the viability of cancer cell, MCF-7. These results strongly suggest that the structured water helps the activities of normal cells while suppressing those of malignant cells.
{"title":"Effect of Antioxidant Water on the Bioactivities of Cells.","authors":"Seong Gu Hwang, Ho-Sung Lee, Byung-Cheon Lee, GunWoong Bahng","doi":"10.1155/2017/1917239","DOIUrl":"https://doi.org/10.1155/2017/1917239","url":null,"abstract":"<p><p>It has been reported that water at the interface of a hydrophilic thin film forms an exclusion zone, which has a higher density than ordinary water. A similar phenomenon was observed for a hydrated hydrophilic ceramic powder, and water turns into a three-dimensional cell-like structure composed of high density water and low density water. This structured water appears to have a stimulative effect on plant growth. This report outlines our study of antioxidant properties of this structured water and its effect on cell bioactivities. Culturing media which were prepared utilizing this antioxidant structured water promoted the viability of RAW 264.7 macrophage cells by up to three times. The same tendency was observed for other cells including IEC-6, C2C12, and 3T3-L1. Also, the cytokine expression of the splenocytes taken from a mouse spleen increased in the same manner. The water also appears to suppress the viability of cancer cell, MCF-7. These results strongly suggest that the structured water helps the activities of normal cells while suppressing those of malignant cells.</p>","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2017 ","pages":"1917239"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/1917239","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35407332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-02-12DOI: 10.1155/2017/8093813
Julie E Morgan, Susanna F Greer
The Class II Transactivator (CIITA) is essential to the regulation of Major Histocompatibility Class II (MHC II) genes transcription. As the "master regulator" of MHC II transcription, CIITA regulation is imperative and requires various posttranslational modifications (PTMs) in order to facilitate its role. Previously we identified various ubiquitination events on CIITA. Monoubiquitination is important for CIITA transactivity, while K63 linked ubiquitination is involved in crosstalk with ERK1/2 phosphorylation, where together they mediate cellular movement from the cytoplasm to nuclear region. Further, CIITA is also modified by degradative K48 polyubiquitination. However, the E3 ligase responsible for these modifications was unknown. We show CIITA ubiquitination and transactivity are enhanced with the histone acetyltransferase (HAT), p300/CBP associated factor (pCAF), and the E3 ligase region within pCAF is necessary for both. Additionally, pCAF mediated ubiquitination is independent of pCAF's HAT domain, and acetylation deficient CIITA is K48 polyubiquitinated and degraded in the presence of pCAF. Lastly, we identify the histone acetyltransferase, pCAF, as the E3 ligase responsible for CIITA's ubiquitination.
{"title":"Pulling a Ligase out of a \"HAT\": pCAF Mediates Ubiquitination of the Class II Transactivator.","authors":"Julie E Morgan, Susanna F Greer","doi":"10.1155/2017/8093813","DOIUrl":"https://doi.org/10.1155/2017/8093813","url":null,"abstract":"<p><p>The Class II Transactivator (CIITA) is essential to the regulation of Major Histocompatibility Class II (MHC II) genes transcription. As the \"master regulator\" of MHC II transcription, CIITA regulation is imperative and requires various posttranslational modifications (PTMs) in order to facilitate its role. Previously we identified various ubiquitination events on CIITA. Monoubiquitination is important for CIITA transactivity, while K63 linked ubiquitination is involved in crosstalk with ERK1/2 phosphorylation, where together they mediate cellular movement from the cytoplasm to nuclear region. Further, CIITA is also modified by degradative K48 polyubiquitination. However, the E3 ligase responsible for these modifications was unknown. We show CIITA ubiquitination and transactivity are enhanced with the histone acetyltransferase (HAT), p300/CBP associated factor (pCAF), and the E3 ligase region within pCAF is necessary for both. Additionally, pCAF mediated ubiquitination is independent of pCAF's HAT domain, and acetylation deficient CIITA is K48 polyubiquitinated and degraded in the presence of pCAF. Lastly, we identify the histone acetyltransferase, pCAF, as the E3 ligase responsible for CIITA's ubiquitination.</p>","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2017 ","pages":"8093813"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/8093813","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34805956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Proinflammatory cytokines are potent mediators of numerous biological processes and are tightly regulated in the body. Chronic uncontrolled levels of such cytokines can initiate and derive many pathologies, including incidences of autoimmunity and cancer. Therefore, therapies that regulate the activity of inflammatory cytokines, either by supplementation of anti-inflammatory recombinant cytokines or by neutralizing them by using blocking antibodies, have been extensively used over the past decades. Over the past few years, new innovative biological agents for blocking and regulating cytokine activities have emerged. Here, we review some of the most recent approaches of cytokine targeting, focusing on anti-TNF antibodies or recombinant TNF decoy receptor, recombinant IL-1 receptor antagonist (IL-1Ra) and anti-IL-1 antibodies, anti-IL-6 receptor antibodies, and TH17 targeting antibodies. We discuss their effects as biologic drugs, as evaluated in numerous clinical trials, and highlight their therapeutic potential as well as emphasize their inherent limitations and clinical risks. We suggest that while systemic blocking of proinflammatory cytokines using biological agents can ameliorate disease pathogenesis and progression, it may also abrogate the hosts defense against infections. Moreover, we outline the rational need to develop new therapies, which block inflammatory cytokines only at sites of inflammation, while enabling their function systemically.
{"title":"Biologics for Targeting Inflammatory Cytokines, Clinical Uses, and Limitations","authors":"Peleg Rider, Y. Carmi, Idan Cohen","doi":"10.1155/2016/9259646","DOIUrl":"https://doi.org/10.1155/2016/9259646","url":null,"abstract":"Proinflammatory cytokines are potent mediators of numerous biological processes and are tightly regulated in the body. Chronic uncontrolled levels of such cytokines can initiate and derive many pathologies, including incidences of autoimmunity and cancer. Therefore, therapies that regulate the activity of inflammatory cytokines, either by supplementation of anti-inflammatory recombinant cytokines or by neutralizing them by using blocking antibodies, have been extensively used over the past decades. Over the past few years, new innovative biological agents for blocking and regulating cytokine activities have emerged. Here, we review some of the most recent approaches of cytokine targeting, focusing on anti-TNF antibodies or recombinant TNF decoy receptor, recombinant IL-1 receptor antagonist (IL-1Ra) and anti-IL-1 antibodies, anti-IL-6 receptor antibodies, and TH17 targeting antibodies. We discuss their effects as biologic drugs, as evaluated in numerous clinical trials, and highlight their therapeutic potential as well as emphasize their inherent limitations and clinical risks. We suggest that while systemic blocking of proinflammatory cytokines using biological agents can ameliorate disease pathogenesis and progression, it may also abrogate the hosts defense against infections. Moreover, we outline the rational need to develop new therapies, which block inflammatory cytokines only at sites of inflammation, while enabling their function systemically.","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2016 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/9259646","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64603968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The distribution of monocarboxylate transporter (MCT) isoforms 1 and 4, which mediate the plasmalemmal transport of l-lactic and pyruvic acids, has been identified in the placentae of rats and rabbits at different ages of gestation. Groups of three pregnant Sprague-Dawley rats and New Zealand White rabbits were sacrificed on gestation days (GD) 11, 14, 18, or 20 and on GD 13, 18, or 28, respectively. Placentae were removed and processed for immunohistochemical detection of MCT1 and MCT4. In the rat, staining for MCT1 was associated with lakes and blood vessels containing enucleated red blood cells (maternal vessels) while staining for MCT4 was associated with vessels containing nucleated red blood cells (embryofoetal vessels). In the rabbit, staining for MCT1 was associated with blood vessels containing nucleated red blood cells while staining for MCT4 was associated with vessels containing enucleated red blood cells. Strength of staining for MCT1 decreased during gestation in both species, but that for MCT4 was stronger than that for MCT1 and was consistent between gestation days. The results imply an opposite polarity of MCT1 and MCT4 across the trophoblast between rat and rabbit.
{"title":"Localisation of Lactate Transporters in Rat and Rabbit Placentae","authors":"N. Moore, C. Picut, J. Charlap","doi":"10.1155/2016/2084252","DOIUrl":"https://doi.org/10.1155/2016/2084252","url":null,"abstract":"The distribution of monocarboxylate transporter (MCT) isoforms 1 and 4, which mediate the plasmalemmal transport of l-lactic and pyruvic acids, has been identified in the placentae of rats and rabbits at different ages of gestation. Groups of three pregnant Sprague-Dawley rats and New Zealand White rabbits were sacrificed on gestation days (GD) 11, 14, 18, or 20 and on GD 13, 18, or 28, respectively. Placentae were removed and processed for immunohistochemical detection of MCT1 and MCT4. In the rat, staining for MCT1 was associated with lakes and blood vessels containing enucleated red blood cells (maternal vessels) while staining for MCT4 was associated with vessels containing nucleated red blood cells (embryofoetal vessels). In the rabbit, staining for MCT1 was associated with blood vessels containing nucleated red blood cells while staining for MCT4 was associated with vessels containing enucleated red blood cells. Strength of staining for MCT1 decreased during gestation in both species, but that for MCT4 was stronger than that for MCT1 and was consistent between gestation days. The results imply an opposite polarity of MCT1 and MCT4 across the trophoblast between rat and rabbit.","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2016 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/2084252","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64260688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microwave irradiation of tissue during fixation and subsequent histochemical staining procedures significantly reduces the time required for incubation in fixation and staining solutions. Minimizing the incubation time in fixative reduces disruption of tissue morphology, and reducing the incubation time in staining solution or antibody solution decreases nonspecific labeling. Reduction of incubation time in staining solution also decreases the level of background noise. Microwave-assisted tissue preparation is applicable for tissue fixation, decalcification of bone tissues, treatment of adipose tissues, antigen retrieval, and other special staining of tissues. Microwave-assisted tissue fixation and staining are useful tools for histological analyses. This review describes the protocols using microwave irradiation for several essential procedures in histochemical studies, and these techniques are applicable to other protocols for tissue fixation and immunostaining in the field of cell biology.
{"title":"Microwave-Assisted Tissue Preparation for Rapid Fixation, Decalcification, Antigen Retrieval, Cryosectioning, and Immunostaining","authors":"K. Katoh","doi":"10.1155/2016/7076910","DOIUrl":"https://doi.org/10.1155/2016/7076910","url":null,"abstract":"Microwave irradiation of tissue during fixation and subsequent histochemical staining procedures significantly reduces the time required for incubation in fixation and staining solutions. Minimizing the incubation time in fixative reduces disruption of tissue morphology, and reducing the incubation time in staining solution or antibody solution decreases nonspecific labeling. Reduction of incubation time in staining solution also decreases the level of background noise. Microwave-assisted tissue preparation is applicable for tissue fixation, decalcification of bone tissues, treatment of adipose tissues, antigen retrieval, and other special staining of tissues. Microwave-assisted tissue fixation and staining are useful tools for histological analyses. This review describes the protocols using microwave irradiation for several essential procedures in histochemical studies, and these techniques are applicable to other protocols for tissue fixation and immunostaining in the field of cell biology.","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2016 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/7076910","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64504386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Norma Estrada, E. Velázquez, C. Rodríguez‐Jaramillo, F. Ascencio
Hemocytes represent one of the most important defense mechanisms against foreign material in Crustacea and are also involved in a variety of other physiological responses. Fluorescent lectin-binding assays and cytochemical reactions were used to identify specificity and distribution of carbohydrate moieties and presence of several hydrolytic enzymes, in hemocytes of whiteleg shrimp Litopenaeus vannamei. Two general classes of circulating hemocytes (granular and agranular) exist in L. vannamei, which express carbohydrates residues for FITC-conjugated lectins WGA, LEA, and PNA; UEA and Con-A were not observed. Enzymatic studies indicated that acid phosphatase, nonspecific esterase, and specific esterases were present; alkaline phosphatase was not observed. The enzymes and carbohydrates are useful tools in hemocyte classification and cellular defense mechanism studies.
{"title":"Carbohydrate Moieties and Cytoenzymatic Characterization of Hemocytes in Whiteleg Shrimp Litopenaeus vannamei","authors":"Norma Estrada, E. Velázquez, C. Rodríguez‐Jaramillo, F. Ascencio","doi":"10.1155/2016/9032181","DOIUrl":"https://doi.org/10.1155/2016/9032181","url":null,"abstract":"Hemocytes represent one of the most important defense mechanisms against foreign material in Crustacea and are also involved in a variety of other physiological responses. Fluorescent lectin-binding assays and cytochemical reactions were used to identify specificity and distribution of carbohydrate moieties and presence of several hydrolytic enzymes, in hemocytes of whiteleg shrimp Litopenaeus vannamei. Two general classes of circulating hemocytes (granular and agranular) exist in L. vannamei, which express carbohydrates residues for FITC-conjugated lectins WGA, LEA, and PNA; UEA and Con-A were not observed. Enzymatic studies indicated that acid phosphatase, nonspecific esterase, and specific esterases were present; alkaline phosphatase was not observed. The enzymes and carbohydrates are useful tools in hemocyte classification and cellular defense mechanism studies.","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2016 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/9032181","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64594419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gap junctions are cell-to-cell junctions that are located in the basolateral surface of two adjoining cells. A gap junction channel is composed of a family of proteins called connexins. Gap junction channels maintain intercellular communication between two cells through the exchange of ions, small metabolites, and electrical signals. Gap junction channels or connexins are widespread in terms of their expression and function in maintaining the development, differentiation, and homeostasis of vertebrate tissues. Gap junction connexins play a major role in maintaining intercellular communication among different cell types of normal mammary gland for proper development and homeostasis. Connexins have also been implicated in the pathogenesis of breast cancer. Differential expression pattern of connexins and their gap junction dependent or independent functions provide pivotal cross talk of breast tumor cells with the surrounding stromal cell in the microenvironment. Substantial research from the last 20 years has accumulated ample evidences that allow us a better understanding of the roles that connexins play in the tumorigenesis of primary breast tumor and its metastatic progression. This review will summarize the knowledge about the connexins and gap junction activities in breast cancer highlighting the differential expression and functional dynamics of connexins in the pathogenesis of the disease.
{"title":"Connexin's Connection in Breast Cancer Growth and Progression","authors":"Debarshi Banerjee","doi":"10.1155/2016/9025905","DOIUrl":"https://doi.org/10.1155/2016/9025905","url":null,"abstract":"Gap junctions are cell-to-cell junctions that are located in the basolateral surface of two adjoining cells. A gap junction channel is composed of a family of proteins called connexins. Gap junction channels maintain intercellular communication between two cells through the exchange of ions, small metabolites, and electrical signals. Gap junction channels or connexins are widespread in terms of their expression and function in maintaining the development, differentiation, and homeostasis of vertebrate tissues. Gap junction connexins play a major role in maintaining intercellular communication among different cell types of normal mammary gland for proper development and homeostasis. Connexins have also been implicated in the pathogenesis of breast cancer. Differential expression pattern of connexins and their gap junction dependent or independent functions provide pivotal cross talk of breast tumor cells with the surrounding stromal cell in the microenvironment. Substantial research from the last 20 years has accumulated ample evidences that allow us a better understanding of the roles that connexins play in the tumorigenesis of primary breast tumor and its metastatic progression. This review will summarize the knowledge about the connexins and gap junction activities in breast cancer highlighting the differential expression and functional dynamics of connexins in the pathogenesis of the disease.","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2016 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/9025905","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64593989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01Epub Date: 2016-07-19DOI: 10.1155/2016/6940283
Ranjeet Singh Mahla
Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation.
{"title":"Stem Cells Applications in Regenerative Medicine and Disease Therapeutics.","authors":"Ranjeet Singh Mahla","doi":"10.1155/2016/6940283","DOIUrl":"10.1155/2016/6940283","url":null,"abstract":"<p><p>Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation. </p>","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2016 ","pages":"6940283"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4969512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34749911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}