Pub Date : 2024-09-21DOI: 10.1016/j.mcat.2024.114559
Xiaohong Ren, Zeming Rong, Xiaoqiang Yu
Selective hydrogenolysis of CAr-O bonds in lignin to produce aromatic compounds typically necessitates severe conditions. We developed a Ni/Nb2O5HZSM-5 catalyst that facilitates direct cleavage of guaiacol's aryl ether bonds at reduced temperatures (200 °C) and pressure (0.1 MPa H2), achieving a conversion of 89.5 % with the selectivity of phenol at 81.7 %, while retaining its activity after five cycles. The Ni/Nb2O5HZSM-5 exhibits a higher yield of phenol (49.1 mmolphenol·gNi−1·h−1), currently achieving the highest phenol yield among Ni-based catalysts. The addition of Nb2O5 enhances the dispersion of Ni and augments the effective surface area. In addition, the strong interaction of Nb with the HZSM-5 changed the electronic state of Nb and enhanced the resistance of the catalyst to high temperature and mechanical stress. Employing this catalyst for lignin depolymerization in an aqueous medium led to a 17.0 wt% yield of alkyl phenolic compounds. This approach represents an advancement in biomass resource conversion, circumventing the dependency on high-pressure and precious-metal catalysts, and signaling a new trajectory for sustainable biomass utilization in scientific research.
{"title":"Hydrogenolysis of guaiacol and lignin to phenols over Ni/Nb2O5HZSM-5 catalyst","authors":"Xiaohong Ren, Zeming Rong, Xiaoqiang Yu","doi":"10.1016/j.mcat.2024.114559","DOIUrl":"10.1016/j.mcat.2024.114559","url":null,"abstract":"<div><p>Selective hydrogenolysis of C<sub>Ar</sub>-O bonds in lignin to produce aromatic compounds typically necessitates severe conditions. We developed a Ni/Nb<sub>2</sub>O<sub>5</sub><img>HZSM-5 catalyst that facilitates direct cleavage of guaiacol's aryl ether bonds at reduced temperatures (200 °C) and pressure (0.1 MPa H<sub>2</sub>), achieving a conversion of 89.5 % with the selectivity of phenol at 81.7 %, while retaining its activity after five cycles. The Ni/Nb<sub>2</sub>O<sub>5</sub><img>HZSM-5 exhibits a higher yield of phenol (49.1 mmol<sub>phenol</sub>·g<sub>Ni</sub><sup>−1</sup>·<em>h</em><sup>−1</sup>), currently achieving the highest phenol yield among Ni-based catalysts. The addition of Nb<sub>2</sub>O<sub>5</sub> enhances the dispersion of Ni and augments the effective surface area. In addition, the strong interaction of Nb with the HZSM-5 changed the electronic state of Nb and enhanced the resistance of the catalyst to high temperature and mechanical stress. Employing this catalyst for lignin depolymerization in an aqueous medium led to a 17.0 wt% yield of alkyl phenolic compounds. This approach represents an advancement in biomass resource conversion, circumventing the dependency on high-pressure and precious-metal catalysts, and signaling a new trajectory for sustainable biomass utilization in scientific research.</p></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114559"},"PeriodicalIF":3.9,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.mcat.2024.114562
Anil Malik , Nitish Saini , Ranjita S. Das , Anupama Kumar , Suman L. Jain
Herein, we report a combination of experimental and computational studies for the photochemical synthesis of N,N’-dibenzyl-N-methylamine via three component coupling of benzylamine, benzaldehyde, and CO2 assisted by 1-butyl-3-methylimidazolium chloride ionic liquid at atmospheric pressure. The theoretical investigation revealed the formation of imine and two reaction intermediates (I & II) through the coupling reaction of CO2 with benzaldehyde and benzylamine in excess phenyl saline. The Molecular electrostatic potential and activation energy calculations depicted the formation of Intermediate I (formoxysilane) formation by inserting CO2 into the SiH bond of the phenyl silane via hydrogen bonding. Furthermore, Intermediate I converted to Intermediate II by reacting with phenyl saline (PhSiH3) and imine, followed by the final methylated product via the CN bond between the carbon of CO2 and nitrogen of the imine group.
在此,我们报告了在常压下通过 1-丁基-3-甲基氯化咪唑离子液体辅助苄胺、苯甲醛和二氧化碳三组分偶联光化学合成 N,N'-二苄基-N-甲胺的实验和计算研究。理论研究表明,二氧化碳与苯甲醛和苄胺在过量苯盐水中发生偶联反应,生成了亚胺和两种反应中间体(I & II)。分子静电位和活化能计算表明,中间体 I(甲氧基硅烷)是通过氢键将 CO2 插入苯基硅烷的 SiH 键而形成的。此外,中间体 I 通过与苯盐水(PhSiH3)和亚胺反应转化为中间体 II,然后通过 CO2 的碳和亚胺基团的氮之间的 CN 键转化为最终的甲基化产物。
{"title":"Light-induced, metal free, and green synthetic approach for N-methylation via coupling of benzylamine, benzaldehyde and CO2 at atmospheric pressure","authors":"Anil Malik , Nitish Saini , Ranjita S. Das , Anupama Kumar , Suman L. Jain","doi":"10.1016/j.mcat.2024.114562","DOIUrl":"10.1016/j.mcat.2024.114562","url":null,"abstract":"<div><p>Herein, we report a combination of experimental and computational studies for the photochemical synthesis of <em>N,N’-</em>dibenzyl<em>-N-</em>methylamine <em>via</em> three component coupling of benzylamine, benzaldehyde, and CO<sub>2</sub> assisted by 1-butyl-3-methylimidazolium chloride ionic liquid at atmospheric pressure. The theoretical investigation revealed the formation of imine and two reaction intermediates (I & II) through the coupling reaction of CO<sub>2</sub> with benzaldehyde and benzylamine in excess phenyl saline. The Molecular electrostatic potential and activation energy calculations depicted the formation of Intermediate I (formoxysilane) formation by inserting CO<sub>2</sub> into the Si<img>H bond of the phenyl silane <em>via</em> hydrogen bonding. Furthermore, Intermediate I converted to Intermediate II by reacting with phenyl saline (PhSiH<sub>3</sub>) and imine, followed by the final methylated product <em>via</em> the C<img>N bond between the carbon of CO<sub>2</sub> and nitrogen of the imine group.</p></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114562"},"PeriodicalIF":3.9,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.mcat.2024.114567
Qian Wang , Mingqin Xing , Liping Wang , Zhiyuan Gong , Muhammad Asif Nawaz , Rubén Blay-Roger , T. Ramirez-Reina , Zhong Li , Fanhui Meng
The production of light olefins from the hydrogenation of CO2 is an efficient way to utilize CO2, where the surface oxygen vacancy in metal oxide plays an important role in CO2 adsorption and activation. Here, the Ga-Zr metal oxides were prepared by hydrolysis of urea at different temperatures and combined with SAPO-34 to prepare the bifunctional catalyst for CO2 hydrogenation to light olefins. The surface oxygen vacancy content of Ga-Zr oxide increases with increasing urea hydrolysis temperature, and a high CO2 conversion of 26.4% and C2=–C4= hydrocarbon selectivity of 87.2% were obtained by a well-matched amount of desorbed CO2 and H2. Using the CO2 and H2/HCOOH/CH3OH as probe molecules, the in-situ DRIFT spectra reveal that the CO2 could be activated on surface oxygen vacancy and converted to CO3* and HCO3* species, which were further hydrogenated to HCOO* and CH3O* species. While the by-product CO mainly originates from the decomposition of HCOO* and the presence of SAPO-34 converts CH3O* to C2=–C4=. The current study illustrates that boosting the surface oxygen vacancy in defected surfaces of metal oxide and providing a matching H2 dissociation ability is the key to improve the performance of CO2 hydrogenation to light olefins.
二氧化碳加氢制取轻烯烃是利用二氧化碳的一种有效方法,其中金属氧化物表面的氧空位在二氧化碳的吸附和活化中起着重要作用。本文通过在不同温度下水解尿素制备了 Ga-Zr 金属氧化物,并与 SAPO-34 结合制备了用于 CO2 加氢制取轻质烯烃的双功能催化剂。Ga-Zr 氧化物的表面氧空位含量随尿素水解温度的升高而增加,通过良好匹配的 CO2 和 H2 解吸量,获得了 26.4% 的高 CO2 转化率和 87.2% 的 C2=-C4= 碳氢化合物选择性。以 CO2 和 H2/HCOOH/CH3OH 为探针分子,原位 DRIFT 图谱显示,CO2 可在表面氧空位上被活化并转化为 CO3* 和 HCO3* 物种,然后进一步氢化为 HCOO* 和 CH3O* 物种。本研究表明,提高金属氧化物缺陷表面的表面氧空位并提供与之相匹配的 H2 解离能力是改善 CO2 加氢制轻烯烃性能的关键。
{"title":"CO2 hydrogenation to light olefins over highly active and selective Ga-Zr/SAPO-34 bifunctional catalyst","authors":"Qian Wang , Mingqin Xing , Liping Wang , Zhiyuan Gong , Muhammad Asif Nawaz , Rubén Blay-Roger , T. Ramirez-Reina , Zhong Li , Fanhui Meng","doi":"10.1016/j.mcat.2024.114567","DOIUrl":"10.1016/j.mcat.2024.114567","url":null,"abstract":"<div><div>The production of light olefins from the hydrogenation of CO<sub>2</sub> is an efficient way to utilize CO<sub>2</sub>, where the surface oxygen vacancy in metal oxide plays an important role in CO<sub>2</sub> adsorption and activation. Here, the Ga-Zr metal oxides were prepared by hydrolysis of urea at different temperatures and combined with SAPO-34 to prepare the bifunctional catalyst for CO<sub>2</sub> hydrogenation to light olefins. The surface oxygen vacancy content of Ga-Zr oxide increases with increasing urea hydrolysis temperature, and a high CO<sub>2</sub> conversion of 26.4% and C<sub>2</sub><sup>=</sup>–C<sub>4</sub><sup>=</sup> hydrocarbon selectivity of 87.2% were obtained by a well-matched amount of desorbed CO<sub>2</sub> and H<sub>2</sub>. Using the CO<sub>2</sub> and H<sub>2</sub>/HCOOH/CH<sub>3</sub>OH as probe molecules, the <em>in-situ</em> DRIFT spectra reveal that the CO<sub>2</sub> could be activated on surface oxygen vacancy and converted to CO<sub>3</sub>* and HCO<sub>3</sub>* species, which were further hydrogenated to HCOO* and CH<sub>3</sub>O* species. While the by-product CO mainly originates from the decomposition of HCOO* and the presence of SAPO-34 converts CH<sub>3</sub>O* to C<sub>2</sub><sup>=</sup>–C<sub>4</sub><sup>=</sup>. The current study illustrates that boosting the surface oxygen vacancy in defected surfaces of metal oxide and providing a matching H<sub>2</sub> dissociation ability is the key to improve the performance of CO<sub>2</sub> hydrogenation to light olefins.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114567"},"PeriodicalIF":3.9,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.mcat.2024.114564
Quan Zhang, Zikang Li, Lingxiang Peng, Cuiru Wang, Zhiqiang Yao
Synthesizing efficient and selective green ideal catalysts has been an increasingly critical, yet unsolved, issue for the ammonia synthesis industry, hindering the growing global demand for environmental protection and energy efficiency. Electrocatalytic nitrogen reduction reaction (eNRR) is a promising technology for low-energy ammonia synthesis. However, designing efficient electrocatalysts for NRR remains challenging. The emergence of graphene-like substrates offers exciting prospects for addressing this challenge and facilitating single-atom catalysts in eNRR. Here, we report the innovative selection of a recently synthesized two-dimensional biphenyl network (2D BPN) compound as a substrate. Its excellent conductivity and porosity enable stable transition metal atoms (TMs) support for constructing eNRR electrocatalysts. we evaluated the feasibility of 23 TMs anchored on BPN for eNRR by high-throughput first-principles calculations. Through a systematic five-step strategy, we identified several single-atom catalysts (SACs) with potential for eNRR, including Mo@BPN, V@BPN, W@BPN, and Re@BPN. Among them, Mo@BPN exhibited the best balance in the adsorption of key reaction intermediates (e.g., N2H and NH3) and demonstrated a low limiting potential (-0.37 V). In addition, the underlying mechanism of NRR activity was elucidated by analyzing the extrinsic patterns revealed through the screened catalysts. A triangular volcano diagram, incorporating the initial protonation step, adsorption free energy, and final protonation step, revealed the NRR activity trend. Overall, this study provides a solid theoretical foundation and valuable guidance for future experimental exploration of efficient electrocatalysts for ammonia synthesis on BPN. Crucial insights into the theoretical design of efficient electrocatalysts are also offered.
{"title":"A high-throughput screening of catalyst for efficient nitrogen fixation: Transition metal single-atom anchored on an emerging synthesized biphenyl network","authors":"Quan Zhang, Zikang Li, Lingxiang Peng, Cuiru Wang, Zhiqiang Yao","doi":"10.1016/j.mcat.2024.114564","DOIUrl":"10.1016/j.mcat.2024.114564","url":null,"abstract":"<div><p>Synthesizing efficient and selective green ideal catalysts has been an increasingly critical, yet unsolved, issue for the ammonia synthesis industry, hindering the growing global demand for environmental protection and energy efficiency. Electrocatalytic nitrogen reduction reaction (eNRR) is a promising technology for low-energy ammonia synthesis. However, designing efficient electrocatalysts for NRR remains challenging. The emergence of graphene-like substrates offers exciting prospects for addressing this challenge and facilitating single-atom catalysts in eNRR. Here, we report the innovative selection of a recently synthesized two-dimensional biphenyl network (2D BPN) compound as a substrate. Its excellent conductivity and porosity enable stable transition metal atoms (TMs) support for constructing eNRR electrocatalysts. we evaluated the feasibility of 23 TMs anchored on BPN for eNRR by high-throughput first-principles calculations. Through a systematic five-step strategy, we identified several single-atom catalysts (SACs) with potential for eNRR, including Mo@BPN, V@BPN, W@BPN, and Re@BPN. Among them, Mo@BPN exhibited the best balance in the adsorption of key reaction intermediates (e.g., N<sub>2</sub>H and NH<sub>3</sub>) and demonstrated a low limiting potential (-0.37 V). In addition, the underlying mechanism of NRR activity was elucidated by analyzing the extrinsic patterns revealed through the screened catalysts. A triangular volcano diagram, incorporating the initial protonation step, adsorption free energy, and final protonation step, revealed the NRR activity trend. Overall, this study provides a solid theoretical foundation and valuable guidance for future experimental exploration of efficient electrocatalysts for ammonia synthesis on BPN. Crucial insights into the theoretical design of efficient electrocatalysts are also offered.</p></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114564"},"PeriodicalIF":3.9,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.mcat.2024.114561
Kaixuan Ke , Ling Guo , Zhipeng Qi , Dou Dou , Han Ma , Xianying Fang , Linguo Zhao
Carotenoid cleavage dioxygenases (CCDs) play a pivotal role in the biosynthesis of volatile apocarotenoids, which have significant industrial applications due to their aromatic and bioactive properties. This study focuses on the molecular cloning and biochemical characterization of the LbCCD1 from Lycium barbarum. The LbCCD1 gene was successfully cloned and heterologously expressed in Escherichia coli and several carotenoids were using as substrates for investigate its specificity by in vitro and in vivo experiment. The LbCCD1 protein was able to cleave a variety of carotenoids including β-carotene, zeaxanthin, astaxanthin, and β-apo-8′-carotenal, at the 9, 10 (9′, 10′) double bond to produce β-ionone, 3‑hydroxy-4-oxo-β-ionone, and 3‑hydroxy-β-ionone, respectively in vitro. LbCCD1 could also cleave zeaxanthin and β-carotene at the 9, 10 (9′, 10′) double bond to produce β-ionone, respectively, in E. coli accumulating carotenoids. Interestingly, LbCCD1 did not exhibit cleavage activity on lycopene either in vivo or in vitro unlike other CCD1 family enzymes.
In the previous experiment, it was confirmed that LbCCD1 exhibits cleavage activity towards β-apo-8′-carotenal in vitro, so we used β-apo-8′-carotenal as the substrate for characterizing the enzymatic properties. The expression of LbCCD1 was optimized at such conditions (temperature 24 °C, IPTG 0.1 mM, induction time 24 h). The biochemical characterization of LbCCD1 revealed the optimal activities were at pH 9 and 55 °C. The addition of 10 % ethanol could increase enzyme activity to above 15 %. However, the concentration of Fe2+ has a minimal effect on enzyme activity. The Vmax for β-apo-8′-carotenal was 8.6 U/mg, while the Km was 0.27 mM. To preliminarily verify the potential of LbCCD1 as a biological component for β-ionone production. By introducing LbCCD1 into the β-carotene-high-producing chassis cell and optimizing the conditions (temperature 30 °C, IPTG 0.01 mM, Fe2+ concentration 0.05 mM), the β-ionone yield reached 21.45 mg/L. This study focused on one of the CCDs derived from woody plants, which have been relatively underexplored. It lays the groundwork for expanding the CCD enzyme library, identifying suitable CCDs, and investigating the structure-function relationship of CCDs. Furthermore, it sets the stage for engineering novel CCD genes and developing advanced applications of CCDs as biocatalysts and platforms for synthetic biology. These advancements will enable the efficient production of volatile aroma compounds from carotenoids.
{"title":"Molecular cloning, expression, and biochemical characterization of carotenoid cleavage dioxygenase 1 (LbCCD1) from Lycium barbarum","authors":"Kaixuan Ke , Ling Guo , Zhipeng Qi , Dou Dou , Han Ma , Xianying Fang , Linguo Zhao","doi":"10.1016/j.mcat.2024.114561","DOIUrl":"10.1016/j.mcat.2024.114561","url":null,"abstract":"<div><div>Carotenoid cleavage dioxygenases (CCDs) play a pivotal role in the biosynthesis of volatile apocarotenoids, which have significant industrial applications due to their aromatic and bioactive properties. This study focuses on the molecular cloning and biochemical characterization of the LbCCD1 from <em>Lycium barbarum</em>. The LbCCD1 gene was successfully cloned and heterologously expressed in <em>Escherichia coli</em> and several carotenoids were using as substrates for investigate its specificity by in vitro and in vivo experiment. The LbCCD1 protein was able to cleave a variety of carotenoids including β-carotene, zeaxanthin, astaxanthin, and β-apo-8′-carotenal, at the 9, 10 (9′, 10′) double bond to produce β-ionone, 3‑hydroxy-4-oxo-β-ionone, and 3‑hydroxy-β-ionone, respectively in vitro. LbCCD1 could also cleave zeaxanthin and β-carotene at the 9, 10 (9′, 10′) double bond to produce β-ionone, respectively, in E. coli accumulating carotenoids. Interestingly, LbCCD1 did not exhibit cleavage activity on lycopene either in vivo or in vitro unlike other CCD1 family enzymes.</div><div>In the previous experiment, it was confirmed that LbCCD1 exhibits cleavage activity towards β-apo-8′-carotenal in vitro, so we used β-apo-8′-carotenal as the substrate for characterizing the enzymatic properties. The expression of LbCCD1 was optimized at such conditions (temperature 24 °C, IPTG 0.1 mM, induction time 24 h). The biochemical characterization of LbCCD1 revealed the optimal activities were at pH 9 and 55 °C. The addition of 10 % ethanol could increase enzyme activity to above 15 %. However, the concentration of Fe<sup>2+</sup> has a minimal effect on enzyme activity. The V<sub>max</sub> for β-apo-8′-carotenal was 8.6 U/mg, while the K<sub>m</sub> was 0.27 mM. To preliminarily verify the potential of LbCCD1 as a biological component for β-ionone production. By introducing LbCCD1 into the β-carotene-high-producing chassis cell and optimizing the conditions (temperature 30 °C, IPTG 0.01 mM, Fe<sup>2+</sup> concentration 0.05 mM), the β-ionone yield reached 21.45 mg/L. This study focused on one of the CCDs derived from woody plants, which have been relatively underexplored. It lays the groundwork for expanding the CCD enzyme library, identifying suitable CCDs, and investigating the structure-function relationship of CCDs. Furthermore, it sets the stage for engineering novel CCD genes and developing advanced applications of CCDs as biocatalysts and platforms for synthetic biology. These advancements will enable the efficient production of volatile aroma compounds from carotenoids.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114561"},"PeriodicalIF":3.9,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.mcat.2024.114556
Pengfei Liu , Xiaoying Feng , Mingqian Wang , Wanfei Hu , Xing Gao , Yanyan Xing , Qiang Wang , Junying Zhang
The electrocatalytic reduction of NO (NORR) and selective catalytic reduction of NO by CO (CO-SCR) are the two most attractive approaches for selective conversion of NO. Herein, a bifunctional metal-free catalyst 2-Pmmn borophene is reported that is effective for both NORR and CO-SCR. NO can form NH3 and N2 through NORR and CO-SCR respectively. The results show that NO chemically adsorbed on the surface of borophene through the NO terminal can be electrocatalytically reduced to NH3. The optimal reaction path for NO to generate NH3 is through the protonation process of *NHO instead of *NOH. The rate-determining step is the hydrogenation of *NH2O to *NH2OH, and the free energy increases by 0.41 eV. At the same time, NO can also react with CO on the surface of borophene to form N2 and CO2. First, NO can form chemically adsorbed ONNO intermediate through NN coupling, then ONNO can be denitrified to form N2 and residual oxygen, and finally residual oxygen and CO can generate CO2 through the LH mechanism. The rate-determining step of the reaction is the NN coupling process of NO, and activation energy barrier is 1.27 eV. The present work provides theoretical insights for the effective conversion of NO.
电催化还原一氧化氮(NORR)和一氧化碳选择性催化还原一氧化氮(CO-SCR)是选择性转化一氧化氮的两种最有吸引力的方法。本文报告了一种双功能无金属催化剂 2-Pmmn 硼吩,它对 NORR 和 CO-SCR 均有效。通过 NORR 和 CO-SCR,NO 可分别生成 NH3 和 N2。研究结果表明,通过 NO 端化学吸附在硼吩表面的 NO 可以通过电催化还原成 NH3。NO 生成 NH3 的最佳反应路径是通过 *NHO 而不是 *NOH 的质子化过程。决定速率的步骤是 *NH2O 加氢为 *NH2OH,自由能增加了 0.41 eV。与此同时,NO 还能在硼吩表面与 CO 反应生成 N2 和 CO2。首先,NO 可以通过 NN 偶联形成化学吸附的 ONNO 中间体,然后 ONNO 被反硝化形成 N2 和残氧,最后残氧和 CO 通过 LH 机制生成 CO2。该反应的速率决定步骤是 NO 的 NNN 偶联过程,活化能垒为 1.27 eV。本研究为 NO 的有效转化提供了理论依据。
{"title":"Theoretical study on borophene as metal-free catalyst for selective conversion of NO","authors":"Pengfei Liu , Xiaoying Feng , Mingqian Wang , Wanfei Hu , Xing Gao , Yanyan Xing , Qiang Wang , Junying Zhang","doi":"10.1016/j.mcat.2024.114556","DOIUrl":"10.1016/j.mcat.2024.114556","url":null,"abstract":"<div><div>The electrocatalytic reduction of NO (NORR) and selective catalytic reduction of NO by CO (CO-SCR) are the two most attractive approaches for selective conversion of NO. Herein, a bifunctional metal-free catalyst 2-Pmmn borophene is reported that is effective for both NORR and CO-SCR. NO can form NH<sub>3</sub> and N<sub>2</sub> through NORR and CO-SCR respectively. The results show that NO chemically adsorbed on the surface of borophene through the N<img>O terminal can be electrocatalytically reduced to NH<sub>3</sub>. The optimal reaction path for NO to generate NH<sub>3</sub> is through the protonation process of *NHO instead of *NOH. The rate-determining step is the hydrogenation of *NH<sub>2</sub>O to *NH<sub>2</sub>OH, and the free energy increases by 0.41 eV. At the same time, NO can also react with CO on the surface of borophene to form N<sub>2</sub> and CO<sub>2</sub>. First, NO can form chemically adsorbed ONNO intermediate through N<img>N coupling, then ONNO can be denitrified to form N<sub>2</sub> and residual oxygen, and finally residual oxygen and CO can generate CO<sub>2</sub> through the LH mechanism. The rate-determining step of the reaction is the N<img>N coupling process of NO, and activation energy barrier is 1.27 eV. The present work provides theoretical insights for the effective conversion of NO.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114556"},"PeriodicalIF":3.9,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.mcat.2024.114484
JiYu Wang, Naiwang Liu, Li Shi, Xuan Meng
This study investigates the application of cobalt-copper layered double hydroxides (LDHs) in the oxidation of butylated hydroxytoluene (BHT) and explores their catalytic behavior during thermal treatment. LDHs were synthesized via coprecipitation, and various ratios of Co-Cu hydrotalcite were subjected to thermal treatment. Structural analysis revealed that thermal treatment transforms the LDHs into mixed metal oxides. Among the synthesized catalysts, Co1Cu3-LDHs exhibited superior catalytic activity in the oxidation of BHT. Techniques such as XRD, FT-IR, TGA, N2 adsorption-desorption, SEM, and XPS were employed to investigate the structural changes and surface properties of the LDHs. The Co1Cu3-LDH catalyst, treated at 250 °C, exhibited outstanding catalytic performance, attributed to the synergistic effects between Co and Cu. Upon optimizing the reaction conditions, the conversion of BHT reached 99 %, with a selectivity of 77 % towards 3,5-di‑tert‑butyl‑4-hydroxybenzaldehyde (BHT-CHO). The oxidation mechanism involves the oxidation of the π-electron system on the benzene ring and deep oxidation of the phenolic hydroxyl methyl group, with two potential reaction pathways proposed.
{"title":"Catalytic oxidation of butylated hydroxytoluene using thermally treated cobalt-copper layered double hydroxides: Synthesis, structural evolution, and mechanistic insights","authors":"JiYu Wang, Naiwang Liu, Li Shi, Xuan Meng","doi":"10.1016/j.mcat.2024.114484","DOIUrl":"10.1016/j.mcat.2024.114484","url":null,"abstract":"<div><p>This study investigates the application of cobalt-copper layered double hydroxides (LDHs) in the oxidation of butylated hydroxytoluene (BHT) and explores their catalytic behavior during thermal treatment. LDHs were synthesized via coprecipitation, and various ratios of Co-Cu hydrotalcite were subjected to thermal treatment. Structural analysis revealed that thermal treatment transforms the LDHs into mixed metal oxides. Among the synthesized catalysts, Co1Cu3-LDHs exhibited superior catalytic activity in the oxidation of BHT. Techniques such as XRD, FT-IR, TGA, N<sub>2</sub> adsorption-desorption, SEM, and XPS were employed to investigate the structural changes and surface properties of the LDHs. The Co1Cu3-LDH catalyst, treated at 250 °C, exhibited outstanding catalytic performance, attributed to the synergistic effects between Co and Cu. Upon optimizing the reaction conditions, the conversion of BHT reached 99 %, with a selectivity of 77 % towards 3,5-di‑tert‑butyl‑4-hydroxybenzaldehyde (BHT-CHO). The oxidation mechanism involves the oxidation of the π-electron system on the benzene ring and deep oxidation of the phenolic hydroxyl methyl group, with two potential reaction pathways proposed.</p></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114484"},"PeriodicalIF":3.9,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to get a better life, industrial revolution prevails worldwide since past few centuries but the rapid growth of industrialization in our planet invites different type of severe pollutions and hence environmental damage, which has now impacted on the survival of mankind. Although, the survival of mankind demands physical resourses but these are limited in quantity. In this problematic situation, biomimetics can be a solution. Biomimetics is the study which deals with nature and natural phenomenon to investigate the fundamental mechanisms, and afterwards to apply the concepts in the field of science, technology, and vastly in medical. In this present study, we look into one of the biomimetic enzymes, phenoxazinone synthase. Phenoxazinone synthase is an important class of enzyme that catalyzes the oxidation of o-aminophenol to aminophenoxazinone with the activation of molecular dioxygen. Bioinorganic chemists are largely influenced by the nature's design on phenoxazinone synthase and hence they are excited to synthesize this mimics model enzyme to understand the mechanistic pathways properly, so that they can explored its potential applications in the field of bioelectronics, material science, optoelectronics, and biomedical. In the literature, a significant number of Schiff base bound model complexes (about 126) for phenoxazinone synthase-like activity have been synthesized and catalytically characterized by different research groups. A variety of Schiff base ligands (about 68) are employed to prepare such model complexes with different nuclearities in presence of one or more 3d metals like V, Mn, Fe, Co, Ni, Cu and Zn in order to modulate the catalytic activity and to get a better structure property relationship on phenoxazinone synthase activity. This article aims to explore the recent advances, challenges, and opportunities in bioenzymatic catalysis, highlighting its promise to revolutionize the way we create value added compounds and materials.
{"title":"Phenoxazinone synthase-like activity: Schiff base bound model complexes","authors":"Poulami Koley , Bidyut Ghosh , Jyotipriyo Bhattacharyya , Alokesh Hazari","doi":"10.1016/j.mcat.2024.114523","DOIUrl":"10.1016/j.mcat.2024.114523","url":null,"abstract":"<div><p>In order to get a better life, industrial revolution prevails worldwide since past few centuries but the rapid growth of industrialization in our planet invites different type of severe pollutions and hence environmental damage, which has now impacted on the survival of mankind. Although, the survival of mankind demands physical resourses but these are limited in quantity. In this problematic situation, biomimetics can be a solution. Biomimetics is the study which deals with nature and natural phenomenon to investigate the fundamental mechanisms, and afterwards to apply the concepts in the field of science, technology, and vastly in medical. In this present study, we look into one of the biomimetic enzymes, phenoxazinone synthase. Phenoxazinone synthase is an important class of enzyme that catalyzes the oxidation of <em>o</em>-aminophenol to aminophenoxazinone with the activation of molecular dioxygen. Bioinorganic chemists are largely influenced by the nature's design on phenoxazinone synthase and hence they are excited to synthesize this mimics model enzyme to understand the mechanistic pathways properly, so that they can explored its potential applications in the field of bioelectronics, material science, optoelectronics, and biomedical. In the literature, a significant number of Schiff base bound model complexes (about 126) for phenoxazinone synthase-like activity have been synthesized and catalytically characterized by different research groups. A variety of Schiff base ligands (about 68) are employed to prepare such model complexes with different nuclearities in presence of one or more 3<em>d</em> metals like V, Mn, Fe, Co, Ni, Cu and Zn in order to modulate the catalytic activity and to get a better structure property relationship on phenoxazinone synthase activity. This article aims to explore the recent advances, challenges, and opportunities in bioenzymatic catalysis, highlighting its promise to revolutionize the way we create value added compounds and materials.</p></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114523"},"PeriodicalIF":3.9,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1016/j.mcat.2024.114555
Haotian Guo , Xinhuan Lu , Wang Zhang , Meiling Zhang , Lin Zhao , Dan Zhou , Qinghua Xia
Bimetallic or polymetallic materials often exhibit different catalytic activities due to the interaction between different metal centers compared with monometallic materials. Here, we designed and synthesized a new bimetallic catalyst SnMo-MOF with tin and molybdenum as metal centers by solvothermal synthesis, which could realize the oxidation of diphenyl sulfide (Ph2S) and difurfuryl sulfide (FFS) under mild conditions, and selectively generate sulfoxide and sulfone, respectively. The introduction of Sn enhanced the Lewis acidity of the catalyst surface and the electron transfer between Sn and Mo led to bimetallic synergistic catalysis, which made a great contribution to the high conversion and selectivity of sulfide oxidation. This is reflected in the complete conversion of Ph2S and FFS with 91.8% and 98.1% selectivity of diphenyl sulfoxide (Ph2SO) and difurfuryl sulfone (FFSO2), respectively. The composite material had good substrate adaptability for the catalytic oxidation of other phenyl sulfides and furfuryl sulfides, which opens interesting prospects for the development of new MOF materials as efficient heterogeneous catalysts for the oxidation of thioethers.
{"title":"Highly efficient oxidation of various thioethers with molecular oxygen catalyzed by bimetallic SnMo-MOF","authors":"Haotian Guo , Xinhuan Lu , Wang Zhang , Meiling Zhang , Lin Zhao , Dan Zhou , Qinghua Xia","doi":"10.1016/j.mcat.2024.114555","DOIUrl":"10.1016/j.mcat.2024.114555","url":null,"abstract":"<div><p>Bimetallic or polymetallic materials often exhibit different catalytic activities due to the interaction between different metal centers compared with monometallic materials. Here, we designed and synthesized a new bimetallic catalyst SnMo-MOF with tin and molybdenum as metal centers by solvothermal synthesis, which could realize the oxidation of diphenyl sulfide (Ph<sub>2</sub>S) and difurfuryl sulfide (FFS) under mild conditions, and selectively generate sulfoxide and sulfone, respectively. The introduction of Sn enhanced the Lewis acidity of the catalyst surface and the electron transfer between Sn and Mo led to bimetallic synergistic catalysis, which made a great contribution to the high conversion and selectivity of sulfide oxidation. This is reflected in the complete conversion of Ph<sub>2</sub>S and FFS with 91.8% and 98.1% selectivity of diphenyl sulfoxide (Ph<sub>2</sub>SO) and difurfuryl sulfone (FFSO<sub>2</sub>), respectively. The composite material had good substrate adaptability for the catalytic oxidation of other phenyl sulfides and furfuryl sulfides, which opens interesting prospects for the development of new MOF materials as efficient heterogeneous catalysts for the oxidation of thioethers.</p></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114555"},"PeriodicalIF":3.9,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1016/j.mcat.2024.114552
Kunrou Zhang , Yongbin Guo , Ke Zhang , Zean Xie , Linlin Mei , Xintong Wang , Wenxi Wang , Yangyang Song , Guichang Wang , Zhen Zhao
As an environmentally friendly way, propylene epoxidation forming propylene oxide (PO) catalyzed by Ag-based catalyst had received considerable attentions, which was important in the chemical industry. The experimental results exhibited that the products of propylene epoxidation catalyzed by Ag2O were PO and carbon dioxide. In this work, the spin-polarized density functional theory (DFT) calculations combined with a Hubbard U correction were performed to investigate propylene epoxidation on Ag2O(111) and Cl−Ag2O(111) surfaces, and reaction micro-mechanism of propylene epoxidation was discussed in detail. The micro-mechanism mainly included two pathways: the allylic hydrogen stripping (AHS) pathway and the intermediary propylene oxametallacycles (OMMP) pathway. In the AHS pathway, the allyl radical can be generated, which was considered as a precursor for acrolein formation, and completed combustion yielding CO2. In the OMMP pathway, PO, propanal and acetone can be created through the propylene oxametallacycle intermediates. Our calculated results indicated that the Osuf site on the Ag2O(111) surface has a stronger basicity than the Osuf site on the Cl−Ag2O(111) surface, the stronger basicity was beneficial for the AHS pathway, and carbon dioxide can be regarded as the main product for propylene epoxidation. It was also found that PO became the main product with the effect of Cl doping on the Ag2O(111) surface, and the electrostatic effect of Cl−Agcus can improve the adsorption ability between the Agcus site and the absorbate. Moreover, energetic span model analysis were carried out and found that the TOF or the orders of selectivity are: acrolein > acetone > propanal ≅ PO on clean surface, PO > acetone > acrolein > propanal on the Cl doped surface, and acrolein, as a precursor, was easily completely burned to CO2, the results confirmed that the selectivity of PO can be enhanced by the effect of subsurface Cl- doping. The present study aimed to help workers to find high selectivity and activity catalyst for propylene epoxidation.
{"title":"Insights into Cl effect for propylene epoxidation over Ag2O(111) surface: A periodic density functional theory study","authors":"Kunrou Zhang , Yongbin Guo , Ke Zhang , Zean Xie , Linlin Mei , Xintong Wang , Wenxi Wang , Yangyang Song , Guichang Wang , Zhen Zhao","doi":"10.1016/j.mcat.2024.114552","DOIUrl":"10.1016/j.mcat.2024.114552","url":null,"abstract":"<div><p>As an environmentally friendly way, propylene epoxidation forming propylene oxide (PO) catalyzed by Ag-based catalyst had received considerable attentions, which was important in the chemical industry. The experimental results exhibited that the products of propylene epoxidation catalyzed by Ag<sub>2</sub>O were PO and carbon dioxide. In this work, the spin-polarized density functional theory (DFT) calculations combined with a Hubbard U correction were performed to investigate propylene epoxidation on Ag<sub>2</sub>O(111) and Cl−Ag<sub>2</sub>O(111) surfaces, and reaction micro-mechanism of propylene epoxidation was discussed in detail. The micro-mechanism mainly included two pathways: the allylic hydrogen stripping (AHS) pathway and the intermediary propylene oxametallacycles (OMMP) pathway. In the AHS pathway, the allyl radical can be generated, which was considered as a precursor for acrolein formation, and completed combustion yielding CO<sub>2</sub>. In the OMMP pathway, PO, propanal and acetone can be created through the propylene oxametallacycle intermediates. Our calculated results indicated that the O<sub>suf</sub> site on the Ag<sub>2</sub>O(111) surface has a stronger basicity than the O<sub>suf</sub> site on the Cl−Ag<sub>2</sub>O(111) surface, the stronger basicity was beneficial for the AHS pathway, and carbon dioxide can be regarded as the main product for propylene epoxidation. It was also found that PO became the main product with the effect of Cl doping on the Ag<sub>2</sub>O(111) surface, and the electrostatic effect of Cl−Ag<sub>cus</sub> can improve the adsorption ability between the Ag<sub>cus</sub> site and the absorbate. Moreover, energetic span model analysis were carried out and found that the TOF or the orders of selectivity are: acrolein > acetone > propanal ≅ PO on clean surface, PO > acetone > acrolein > propanal on the Cl doped surface, and acrolein, as a precursor, was easily completely burned to CO<sub>2</sub>, the results confirmed that the selectivity of PO can be enhanced by the effect of subsurface Cl<sup>-</sup> doping. The present study aimed to help workers to find high selectivity and activity catalyst for propylene epoxidation.</p></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114552"},"PeriodicalIF":3.9,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}