The development of novel biocatalysts is essential to promote the commercialization of biodiesel production by transesterification reaction. In this paper, Rhizopus oryzae lipase (ROL) was immobilized on an amino-functionalized zirconium-based metal organoskeleton by interfacial adsorption. The immobilization conditions were optimized and the enzymatic properties were tested, and the resulting novel biocatalysts exhibited higher stability and heat resistance. SEM, XRD and BET analyses were used to characterize the biocatalysts and carrier materials. The catalytic performance of ROL@UiO-66-NH2 in the production of biodiesel by transesterification reaction was explored, and the production process was optimized by response surface method. The results showed that the conversion rate of FAEE reached 82.05% at molar ratio of ethanol/oil of 15.43:1, reaction temperature of 50.28°C, reaction time of 120.9 min, DES addition of 48.08 wt%, biocatalyst addition of 3 wt%, and ultrasonic power of 90 W. In addition, ROL@UiO-66-NH2 demonstrated good recyclability, with the catalytic efficiency remaining at 71.87% after five cycles.