首页 > 最新文献

RSC Chemical Biology最新文献

英文 中文
Early-stage biosynthesis of phenalinolactone diterpenoids involves sequential prenylation, epoxidation, and cyclization† 酚醛内酯二萜的早期生物合成涉及连续的前酰化、环氧化和环化过程
IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-05 DOI: 10.1039/D4CB00138A
Tyler A. Alsup, Zining Li, Caitlin A. McCadden, Annika Jagels, Diana P. Łomowska-Keehner, Erin M. Marshall, Liao-Bin Dong, Sandra Loesgen and Jeffrey D. Rudolf

The chemical logic associated with assembly of many bacterial terpenoids remains poorly understood. We focused our efforts on the early-stage biosynthesis of the phenalinolactone diterpenoids, demonstrating that the anti/anti/syn-perhydrophenanthrene core is constructed by sequential prenylation, epoxidation, and cyclization. The functions and timing of PlaT1–PlaT3 were assigned by comprehensive heterologous reconstitution. We illustrated that the UbiA prenyltransferase PlaT3 acts on geranylgeranyl diphosphate (GGPP) in the first step of phenalinolactone biosynthesis, prior to epoxidation by the flavin-dependent monooxygenase PlaT1 and cyclization by the type II terpene cyclase PlaT2. Finally, we isolated eight new-to-nature terpenoids, expanding the scope of the bacterial terpenome. The biosynthetic strategy employed in the assembly of the phenalinolactone core, with cyclization occurring after prenylation, is rare in bacteria and resembles fungal meroterpenoid biosynthesis. The findings presented here set the stage for future discovery, engineering, and enzymology efforts in bacterial meroterpenoids.

人们对许多细菌萜类化合物组装的化学逻辑仍然知之甚少。我们将研究重点放在酚内酯二萜的早期生物合成上,证明了反/反/合成过氢菲核心是通过连续的预炔化、环氧化和环化过程构建的。通过全面的异源重组,我们确定了 PlaT1-PlaT3 的功能和时间。我们证明了 UbiA 预炔基转移酶 PlaT3 在酚内酯生物合成的第一步作用于香叶基二磷酸甘油酯(GGPP),然后由黄素依赖性单加氧酶 PlaT1 进行环氧化,并由 II 型萜烯环化酶 PlaT2 进行环化。最后,我们分离出了八种新的天然萜类化合物,扩大了细菌萜类化合物组的范围。在组装酚醛内酯核心时采用的生物合成策略,即在前炔化后进行环化,在细菌中是罕见的,与真菌的经萜生物合成相似。本文介绍的研究结果为今后发现、工程化和酶学研究细菌经萜类化合物奠定了基础。
{"title":"Early-stage biosynthesis of phenalinolactone diterpenoids involves sequential prenylation, epoxidation, and cyclization†","authors":"Tyler A. Alsup, Zining Li, Caitlin A. McCadden, Annika Jagels, Diana P. Łomowska-Keehner, Erin M. Marshall, Liao-Bin Dong, Sandra Loesgen and Jeffrey D. Rudolf","doi":"10.1039/D4CB00138A","DOIUrl":"10.1039/D4CB00138A","url":null,"abstract":"<p >The chemical logic associated with assembly of many bacterial terpenoids remains poorly understood. We focused our efforts on the early-stage biosynthesis of the phenalinolactone diterpenoids, demonstrating that the <em>anti/anti/syn</em>-perhydrophenanthrene core is constructed by sequential prenylation, epoxidation, and cyclization. The functions and timing of PlaT1–PlaT3 were assigned by comprehensive heterologous reconstitution. We illustrated that the UbiA prenyltransferase PlaT3 acts on geranylgeranyl diphosphate (GGPP) in the first step of phenalinolactone biosynthesis, prior to epoxidation by the flavin-dependent monooxygenase PlaT1 and cyclization by the type II terpene cyclase PlaT2. Finally, we isolated eight new-to-nature terpenoids, expanding the scope of the bacterial terpenome. The biosynthetic strategy employed in the assembly of the phenalinolactone core, with cyclization occurring after prenylation, is rare in bacteria and resembles fungal meroterpenoid biosynthesis. The findings presented here set the stage for future discovery, engineering, and enzymology efforts in bacterial meroterpenoids.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" 10","pages":" 1010-1016"},"PeriodicalIF":4.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cb/d4cb00138a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adrenodoxin allosterically alters human cytochrome P450 11B enzymes to accelerate substrate binding and decelerate release† 肾上腺素异生素能改变人类细胞色素 P450 11B 酶,从而加速底物结合并减慢释放速度
IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-02 DOI: 10.1039/D4CB00015C
Cara L. Loomis, Sang-Choul Im and Emily E. Scott

Two human mitochondrial membrane CYP11B enzymes play a pivotal role in steroidogenesis. CYP11B1 generates the major glucocorticoid cortisol, while CYP11B2 catalysis yields the primary mineralocorticoid aldosterone. Catalysis by both requires electron delivery by a soluble iron–sulfur adrenodoxin redox partner. However recent studies have shown that adrenodoxin/CYP11B interaction alone allosterically increases substrate and inhibitor affinity as exhibited by decreased dissociation constant (Kd) values. The current study moves beyond such equilibrium studies, by defining adrenodoxin effects on the rates of P450 ligand binding and release separately. Stopped-flow data clearly demonstrate that adrenodoxin interaction with the P450 proximal surfaces increases ligand binding in both P450 CYP11B active sites by increasing the on rate constant and decreasing the off rate constant. As substrate entry and exit from the sequestered P450 active site requires conformational changes on the distal side of the P450 enzyme, a likely explanation is that adrenodoxin binding allosterically modulates CYP11B conformational changes. The 93% identical CYP11B enzymes can bind and hydroxylate each other's native substrates differing only by a hydroxyl. However, CYP11B1 exhibits monophasic substrate binding and CYP11B2 biphasic substrate binding, even when the substrates are swapped. This indicates that small differences in amino acid sequence between human CYP11B1 and CYP11B2 enzymes are more functionally important in ligand binding and could suggest avenues for more selective inhibition of these drug targets. Both protein/protein interactions and protein/substrate interactions are most likely to act by modulating CYP11B conformational dynamics.

人类线粒体膜上的两种 CYP11B 酶在类固醇生成过程中发挥着关键作用。CYP11B1 生成主要的糖皮质激素皮质醇,而 CYP11B2 催化生成主要的矿质皮质激素醛固酮。两者的催化作用都需要可溶性铁硫肾上腺素氧化还原伴侣提供电子。然而,最近的研究表明,肾上腺素多糖/CYP11B 自身的相互作用会通过降低解离常数(Kd)值来增加亚酸盐和抑制剂的亲和力。目前的研究超越了这种平衡研究,分别确定了肾上腺素多辛对 P450 配体结合和释放速率的影响。截流数据清楚地表明,肾上腺素多辛与 P450 近端表面的相互作用增加了 P450 CYP11B 两个活性位点的配体结合率,从而提高了开启率常数,降低了关闭率常数。由于底物进出被封闭的 P450 活性位点需要 P450 酶远端构象的改变,一种可能的解释是肾上腺素多辛的结合异构调节了 CYP11B 的构象变化。93% 相同的 CYP11B 酶可以结合并羟化彼此的原生底物,只是羟基不同而已。然而,即使底物互换,CYP11B1 也表现出单相底物结合,而 CYP11B2 则表现出双相底物结合。这表明,人类 CYP11B1 和 CYP11B2 酶之间氨基酸序列的细微差别在配体结合方面具有更重要的功能,并可能为更有选择性地抑制这些药物靶点提供了途径。蛋白质/蛋白质相互作用和蛋白质/底物相互作用最有可能通过调节 CYP11B 的构象动力学发挥作用。
{"title":"Adrenodoxin allosterically alters human cytochrome P450 11B enzymes to accelerate substrate binding and decelerate release†","authors":"Cara L. Loomis, Sang-Choul Im and Emily E. Scott","doi":"10.1039/D4CB00015C","DOIUrl":"10.1039/D4CB00015C","url":null,"abstract":"<p >Two human mitochondrial membrane CYP11B enzymes play a pivotal role in steroidogenesis. CYP11B1 generates the major glucocorticoid cortisol, while CYP11B2 catalysis yields the primary mineralocorticoid aldosterone. Catalysis by both requires electron delivery by a soluble iron–sulfur adrenodoxin redox partner. However recent studies have shown that adrenodoxin/CYP11B interaction alone allosterically increases substrate and inhibitor affinity as exhibited by decreased dissociation constant (<em>K</em><small><sub>d</sub></small>) values. The current study moves beyond such equilibrium studies, by defining adrenodoxin effects on the rates of P450 ligand binding and release separately. Stopped-flow data clearly demonstrate that adrenodoxin interaction with the P450 proximal surfaces increases ligand binding in both P450 CYP11B active sites by increasing the on rate constant and decreasing the off rate constant. As substrate entry and exit from the sequestered P450 active site requires conformational changes on the distal side of the P450 enzyme, a likely explanation is that adrenodoxin binding allosterically modulates CYP11B conformational changes. The 93% identical CYP11B enzymes can bind and hydroxylate each other's native substrates differing only by a hydroxyl. However, CYP11B1 exhibits monophasic substrate binding and CYP11B2 biphasic substrate binding, even when the substrates are swapped. This indicates that small differences in amino acid sequence between human CYP11B1 and CYP11B2 enzymes are more functionally important in ligand binding and could suggest avenues for more selective inhibition of these drug targets. Both protein/protein interactions and protein/substrate interactions are most likely to act by modulating CYP11B conformational dynamics.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" 9","pages":" 938-951"},"PeriodicalIF":4.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cb/d4cb00015c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel strategy for activating gene expression through triplex DNA formation targeting epigenetically suppressed genes† 通过针对表观遗传抑制基因的三重 DNA 形成激活基因表达的新策略
IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-31 DOI: 10.1039/D4CB00134F
Ryotaro Notomi, Shigeki Sasaki and Yosuke Taniguchi

Triplex DNA formation is a useful genomic targeting tool that is expected to have a wide range of applications, including the antigene method; however, there are fundamental limitations in its forming sequence. We recently extended the triplex DNA-forming sequence to methylated DNA sequences containing 5mCG base pairs by developing guanidino-dN, which is capable of recognizing a 5mCG base pair with high affinity. We herein investigated the effect of triplex DNA formation using TFOs with guanidino-dN on methylated DNA sequences at the promoter of the RASSF1A gene, whose expression is epigenetically suppressed by DNA methylation in MCF-7 cells, on gene expression. Interestingly, triplex DNA formation increased the expression of the RASSF1A gene at the transcript and protein levels. Furthermore, RASSF1A-activated MCF-7 cells exhibited cell growth suppressing activity. Changes in the expression of various genes associated with the promotion of apoptosis and breast cancer survival accompanied the activation of RASSF1A in cells exhibited antiproliferative activity. These results suggest the potential of increases in gene expression through triplex DNA formation as a new genomic targeting tool.

三重 DNA 形成是一种有用的基因组靶向工具,预计将有广泛的应用,包括抗原法;然而,其形成序列存在根本性的限制。最近,我们通过开发能够高亲和力识别 5mCG 碱基对的鸟苷-dN,将三联体 DNA 形成序列扩展到含有 5mCG 碱基对的甲基化 DNA 序列。在 MCF-7 细胞中,RASSF1A 基因的表达受到 DNA 甲基化的表观遗传学抑制。我们在此研究了使用带有胍基-dN 的 TFO 在 RASSF1A 基因启动子的甲基化 DNA 序列上形成三重 DNA 对基因表达的影响。有趣的是,三重 DNA 的形成增加了 RASSF1A 基因在转录本和蛋白质水平上的表达。此外,RASSF1A 激活的 MCF-7 细胞具有抑制细胞生长的活性。细胞中与促进细胞凋亡和乳腺癌存活有关的各种基因的表达变化伴随着 RASSF1A 的激活而表现出抗增殖活性。这些结果表明,通过形成三重 DNA 增加基因表达有可能成为一种新的基因组靶向工具。
{"title":"Novel strategy for activating gene expression through triplex DNA formation targeting epigenetically suppressed genes†","authors":"Ryotaro Notomi, Shigeki Sasaki and Yosuke Taniguchi","doi":"10.1039/D4CB00134F","DOIUrl":"10.1039/D4CB00134F","url":null,"abstract":"<p >Triplex DNA formation is a useful genomic targeting tool that is expected to have a wide range of applications, including the antigene method; however, there are fundamental limitations in its forming sequence. We recently extended the triplex DNA-forming sequence to methylated DNA sequences containing <small><sup>5m</sup></small>CG base pairs by developing guanidino-dN, which is capable of recognizing a <small><sup>5m</sup></small>CG base pair with high affinity. We herein investigated the effect of triplex DNA formation using TFOs with guanidino-dN on methylated DNA sequences at the promoter of the RASSF1A gene, whose expression is epigenetically suppressed by DNA methylation in MCF-7 cells, on gene expression. Interestingly, triplex DNA formation increased the expression of the RASSF1A gene at the transcript and protein levels. Furthermore, RASSF1A-activated MCF-7 cells exhibited cell growth suppressing activity. Changes in the expression of various genes associated with the promotion of apoptosis and breast cancer survival accompanied the activation of RASSF1A in cells exhibited antiproliferative activity. These results suggest the potential of increases in gene expression through triplex DNA formation as a new genomic targeting tool.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" 9","pages":" 884-890"},"PeriodicalIF":4.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cb/d4cb00134f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peptide dendrimers transfecting CRISPR/Cas9 plasmid DNA: optimization and mechanism† 转染 CRISPR/Cas9 质粒 DNA 的多肽树枝状聚合物:优化与机制
IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-29 DOI: 10.1039/D4CB00116H
Susanna Zamolo, Elena Zakharova, Lise Boursinhac, Florian Hollfelder, Tamis Darbre and Jean-Louis Reymond

Gene editing by CRISPR/Cas9 offers great therapeutic opportunities but requires delivering large plasmid DNA (pDNA) into cells, a task for which transfection reagents are better suited than viral vectors. Here we performed a structure–activity relationship study of Z22, a D-enantiomeric, arginine containing, lipidated peptide dendrimer developed for pDNA transfection of a CRISPR/Cas9 plasmid co-expressing GFP. While all dendrimer analogs tested bound pDNA strongly and internalized their cargo into cells, D-chirality proved essential for transfection by avoiding proteolysis of the dendrimer structure required for endosome escape and possibly crossing of the nuclear envelope. Furthermore, a cysteine residue at the core of Z22 proved non-essential and was removed to yield the more active analog Z34. This dendrimer shows >83% GFP transfection efficiency in HEK cells with no detrimental effect on cell viability and promotes functional CRISPR/Cas9 mediated gene editing. It is accessible by solid-phase peptide synthesis and therefore attractive for further development.

CRISPR/Cas9 基因编辑技术提供了很好的治疗机会,但需要将大型质粒 DNA(pDNA)转入细胞,而转染试剂比病毒载体更适合这项任务。在这里,我们对 Z22 进行了结构-活性关系研究,Z22 是一种 D-对映体、含精氨酸、脂化肽树枝状聚合物,开发用于 CRISPR/Cas9 质粒共表达 GFP 的 pDNA 转染。虽然所有测试过的树枝状聚合物类似物都能与 pDNA 紧密结合,并将货物内化到细胞中,但 D 手性被证明是成功转染的关键,因为它能避免树枝状聚合物结构被蛋白酶降解,而这种降解是内质体逃逸和可能穿过核膜所必需的。此外,Z22 核心的一个半胱氨酸残基被证明是非必需的,因此被移除以产生活性更强的类似物 Z34,该类似物已被证明能够实现 CRISPR/Cas9 介导的功能性基因编辑。多肽树枝状聚合物很容易通过固相多肽合成获得,而且其序列可以针对特定应用进行微调,因此是有吸引力进一步开发的试剂。
{"title":"Peptide dendrimers transfecting CRISPR/Cas9 plasmid DNA: optimization and mechanism†","authors":"Susanna Zamolo, Elena Zakharova, Lise Boursinhac, Florian Hollfelder, Tamis Darbre and Jean-Louis Reymond","doi":"10.1039/D4CB00116H","DOIUrl":"10.1039/D4CB00116H","url":null,"abstract":"<p >Gene editing by CRISPR/Cas9 offers great therapeutic opportunities but requires delivering large plasmid DNA (pDNA) into cells, a task for which transfection reagents are better suited than viral vectors. Here we performed a structure–activity relationship study of <strong>Z22</strong>, a <small>D</small>-enantiomeric, arginine containing, lipidated peptide dendrimer developed for pDNA transfection of a CRISPR/Cas9 plasmid co-expressing GFP. While all dendrimer analogs tested bound pDNA strongly and internalized their cargo into cells, <small>D</small>-chirality proved essential for transfection by avoiding proteolysis of the dendrimer structure required for endosome escape and possibly crossing of the nuclear envelope. Furthermore, a cysteine residue at the core of <strong>Z22</strong> proved non-essential and was removed to yield the more active analog <strong>Z34</strong>. This dendrimer shows &gt;83% GFP transfection efficiency in HEK cells with no detrimental effect on cell viability and promotes functional CRISPR/Cas9 mediated gene editing. It is accessible by solid-phase peptide synthesis and therefore attractive for further development.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" 9","pages":" 891-900"},"PeriodicalIF":4.2,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cb/d4cb00116h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mycobacterium lipid transporter MmpL3 is dimeric in detergent solution, SMALPs and reconstituted nanodiscs† 分枝杆菌脂质转运体 MmpL3 在洗涤剂溶液、SMALPs 和重组纳米盘中是二聚体
IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-29 DOI: 10.1039/D4CB00110A
Sara Cioccolo, Joseph D. Barritt, Naomi Pollock, Zoe Hall, Julia Babuta, Pooja Sridhar, Alicia Just, Nina Morgner, Tim Dafforn, Ian Gould and Bernadette Byrne

The mycobacterial membrane protein large 3 (MmpL3) transports key precursor lipids to the outer membrane of Mycobacterium species. Multiple structures of MmpL3 from both M. tuberculosis and M. smegmatis in various conformational states indicate that the protein is both structurally and functionally monomeric. However, most other resistance, nodulation and cell division (RND) transporters structurally characterised to date are either dimeric or trimeric. Here we present an in depth biophysical and computational analysis revealing that MmpL3 from M. smegmatis exists as a dimer in a variety of membrane mimetic systems (SMALPs, detergent-based solution and nanodiscs). Sucrose gradient separation of MmpL3 populations from M. smegmatis, reconstituted into nanodiscs, identified monomeric and dimeric populations of the protein using laser induced liquid bead ion desorption (LILBID), a native mass spectrometry technique. Preliminary cryo-EM analysis confirmed that MmpL3 forms physiological dimers. Untargeted lipidomics experiments on membrane protein co-purified lipids revealed PE and PG lipid classes were predominant. Molecular dynamics (MD) simulations, in the presence of physiologically-relevant lipid compositions revealed the likely dimer interface.

分枝杆菌膜蛋白大 3(MmpL3)将关键的前体脂质转运到分枝杆菌的外膜。结核分枝杆菌和烟曲霉分枝杆菌的 MmpL3 在不同构象状态下的多个结构表明,该蛋白在结构上和功能上都是单体。然而,迄今为止,大多数其他抗性、结核和细胞分裂(RND)转运体的结构特征要么是二聚体,要么是三聚体。在此,我们进行了深入的生物物理和计算分析,发现在各种膜模拟系统(SMALPs、去垢剂溶液和纳米盘)中,来自烟草真菌的 MmpL3 是以二聚体形式存在的。利用激光诱导液珠离子解吸(LILBID)--一种原生质谱技术--对重组到纳米盘中的来自烟曲霉的 MmpL3 群体进行蔗糖梯度分离,确定了该蛋白质的单体和二聚体群体。初步的冷冻电镜分析证实,MmpL3 形成了生理二聚体。对膜蛋白共纯化脂质进行的非靶向脂质组学实验显示,PE 和 PG 类脂质占主导地位。分子动力学模拟显示,在存在生理相关脂质成分的情况下,可能存在二聚体界面。
{"title":"The mycobacterium lipid transporter MmpL3 is dimeric in detergent solution, SMALPs and reconstituted nanodiscs†","authors":"Sara Cioccolo, Joseph D. Barritt, Naomi Pollock, Zoe Hall, Julia Babuta, Pooja Sridhar, Alicia Just, Nina Morgner, Tim Dafforn, Ian Gould and Bernadette Byrne","doi":"10.1039/D4CB00110A","DOIUrl":"10.1039/D4CB00110A","url":null,"abstract":"<p >The mycobacterial membrane protein large 3 (MmpL3) transports key precursor lipids to the outer membrane of Mycobacterium species. Multiple structures of MmpL3 from both <em>M. tuberculosis</em> and <em>M. smegmatis</em> in various conformational states indicate that the protein is both structurally and functionally monomeric. However, most other resistance, nodulation and cell division (RND) transporters structurally characterised to date are either dimeric or trimeric. Here we present an in depth biophysical and computational analysis revealing that MmpL3 from <em>M. smegmatis</em> exists as a dimer in a variety of membrane mimetic systems (SMALPs, detergent-based solution and nanodiscs). Sucrose gradient separation of MmpL3 populations from <em>M. smegmatis</em>, reconstituted into nanodiscs, identified monomeric and dimeric populations of the protein using laser induced liquid bead ion desorption (LILBID), a native mass spectrometry technique. Preliminary cryo-EM analysis confirmed that MmpL3 forms physiological dimers. Untargeted lipidomics experiments on membrane protein co-purified lipids revealed PE and PG lipid classes were predominant. Molecular dynamics (MD) simulations, in the presence of physiologically-relevant lipid compositions revealed the likely dimer interface.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" 9","pages":" 901-913"},"PeriodicalIF":4.2,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cb/d4cb00110a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of tryptophan 2-monooxygenase thermostability by semi-rational enzyme engineering: a strategic design to minimize experimental investigation† 通过半理性酶工程提高色氨酸 2-单加氧酶的热稳定性:尽量减少实验研究的战略设计
IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-27 DOI: 10.1039/D4CB00102H
Sirus Kongjaroon, Narin Lawan, Duangthip Trisrivirat and Pimchai Chaiyen

Tryptophan 2-monooxygenase (TMO) is an FAD-bound flavoenzyme which catalyzes the oxidative decarboxylation of L-tryptophan to produce indole-3-acetamide (IAM) and carbon dioxide. The reaction of TMO is the first step of indole-3-acetic acid (IAA) biosynthesis. Although TMO is of interest for mechanistic studies and synthetic biology applications, the enzyme has low thermostability and soluble expression yield. Herein, we employed a combined approach of rational design using computational tools with site-saturation mutagenesis to screen for TMO variants with significantly improved thermostability properties and soluble protein expression. The engineered TMO variants, TMO-PWS and TMO-PWSNR, possess melting temperatures (Tm) of 65 °C, 17 °C higher than that of the wild-type enzyme (TMO-WT). At 50 °C, the stabilities (t1/2) of TMO-PWS and TMO-PWSNR were 85-fold and 92.4-fold higher, while their soluble expression yields were 1.4-fold and 2.1-fold greater than TMO-WT, respectively. Remarkably, the kinetic parameters of these variants were similar to those of the wild-type enzymes, illustrating that they are promising candidates for future studies. Molecular dynamic simulations of the wild-type and thermostable TMO variants identified key interactions for enhancing these improvements in the biophysical properties of the TMO variants. The introduced mutations contributed to hydrogen bond formation and an increase in the regional hydrophobicity, thereby, strengthening the TMO structure.

色氨酸 2-单氧化酶(TMO)是一种与 FAD 结合的黄酶,它催化 L-色氨酸氧化脱羧,生成吲哚-3-乙酰胺(IAM)和二氧化碳。TMO 反应是吲哚-3-乙酸(IAA)生物合成的第一步。虽然 TMO 对机理研究和合成生物学应用很有意义,但该酶的热稳定性和可溶性表达量都很低。在此,我们采用了一种利用计算工具进行合理设计与定点饱和诱变相结合的方法,筛选出热稳定性和可溶性蛋白表达量均有显著改善的 TMO 变体。所设计的 TMO 变体 TMO-PWS 和 TMO-PWSNR 的熔化温度(Tm)为 65 ˚C,比野生型酶(TMO-WT)的熔化温度高 17 ˚C。在 50 ˚C 时,TMO-PWS 和 TMO-PWSNR 的稳定性(t1/2)分别比 TMO-WT 高 85 倍和 92.4 倍,可溶性表达量分别比 TMO-WT 高 1.4 倍和 2.1 倍。值得注意的是,这些变体的动力学参数与野生型酶相似,这说明它们是未来研究的候选对象。对野生型和恒温 TMO 变体的分子动力学模拟确定了关键的相互作用,这些相互作用提高了 TMO 变体的生物物理特性。引入的突变有助于氢键的形成和区域疏水性的增加,从而加强了 TMO 的结构。
{"title":"Enhancement of tryptophan 2-monooxygenase thermostability by semi-rational enzyme engineering: a strategic design to minimize experimental investigation†","authors":"Sirus Kongjaroon, Narin Lawan, Duangthip Trisrivirat and Pimchai Chaiyen","doi":"10.1039/D4CB00102H","DOIUrl":"10.1039/D4CB00102H","url":null,"abstract":"<p >Tryptophan 2-monooxygenase (TMO) is an FAD-bound flavoenzyme which catalyzes the oxidative decarboxylation of <small>L</small>-tryptophan to produce indole-3-acetamide (IAM) and carbon dioxide. The reaction of TMO is the first step of indole-3-acetic acid (IAA) biosynthesis. Although TMO is of interest for mechanistic studies and synthetic biology applications, the enzyme has low thermostability and soluble expression yield. Herein, we employed a combined approach of rational design using computational tools with site-saturation mutagenesis to screen for TMO variants with significantly improved thermostability properties and soluble protein expression. The engineered TMO variants, TMO-PWS and TMO-PWSNR, possess melting temperatures (<em>T</em><small><sub>m</sub></small>) of 65 °C, 17 °C higher than that of the wild-type enzyme (TMO-WT). At 50 °C, the stabilities (<em>t</em><small><sub>1/2</sub></small>) of TMO-PWS and TMO-PWSNR were 85-fold and 92.4-fold higher, while their soluble expression yields were 1.4-fold and 2.1-fold greater than TMO-WT, respectively. Remarkably, the kinetic parameters of these variants were similar to those of the wild-type enzymes, illustrating that they are promising candidates for future studies. Molecular dynamic simulations of the wild-type and thermostable TMO variants identified key interactions for enhancing these improvements in the biophysical properties of the TMO variants. The introduced mutations contributed to hydrogen bond formation and an increase in the regional hydrophobicity, thereby, strengthening the TMO structure.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" 10","pages":" 989-1001"},"PeriodicalIF":4.2,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cb/d4cb00102h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of a new inhibitor for YTH domain-containing m6A RNA readers† 发现含 YTH 结构域 m6A RNA 阅读器的新抑制剂
IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-25 DOI: 10.1039/D4CB00105B
Chuan-Hui Wang and Huiqing Zhou

N 6-methyladenosine (m6A) is an abundant modification in mammalian mRNAs and plays important regulatory roles in gene expression, primarily mediated through specific recognition by “reader” proteins. YTH family proteins are one major family of known m6A readers, which specifically recognize m6A-modified transcripts via the YTH domains. Despite the significant relevance of YTH-m6A recognition in biology and diseases, few small molecule inhibitors are available for specifically perturbing this interaction. Here we report the discovery of a new inhibitor (“N-7”) for YTH-m6A RNA recognition, from the screening of a nucleoside analogue library against the YTH domain of the YTHDF1 protein. N-7 is characterized to be a pan-inhibitor in vitro against five YTH domains from human YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2 proteins, with IC50 values in the range of 30–48 μM measured using a fluorescence polarization competition assay. We demonstrated that N-7 directly interacts with the YTH domain proteins via a thermal shift assay. N-7 expands the chemical structure landscape of the m6A YTH domain-containing reader inhibitors and potentiates future inhibitor development for reader functional studies and therapeutic efforts in targeting the epitranscriptome.

N6-甲基腺苷(m6A)是哺乳动物 mRNA 中的一种丰富修饰,主要通过 "阅读器 "蛋白的特异性识别在基因表达中发挥重要的调控功能。YTH 家族蛋白是已知 m6A 阅读器的一个主要家族,它们通过 YTH 结构域特异性地识别经 m6A 修饰的转录本。尽管 YTH-m6A 识别在生物学和疾病中具有重要意义,但很少有小分子抑制剂能特异性地扰乱这种相互作用。在此,我们报告了通过筛选针对 YTHDF1 蛋白 YTH 结构域的核苷类似物文库,发现了一种新的 YTH-m6A RNA 识别抑制剂("N-7")。N-7 在体外对人类 YTHDF1、YTHDF2、YTHDF3、YTHDC1 和 YTHDC2 蛋白的五个 YTH 结构域具有泛抑制作用,通过荧光偏振竞争试验测定的 IC50 范围在 30-48 μM 之间。我们通过热转移试验证明了 N-7 与 YTH 结构域蛋白的直接相互作用。N-7 拓展了含 m6A YTH 结构域的阅读器抑制剂的化学结构图,并促进了未来针对外转录组的阅读器功能研究和治疗工作的抑制剂开发。
{"title":"Discovery of a new inhibitor for YTH domain-containing m6A RNA readers†","authors":"Chuan-Hui Wang and Huiqing Zhou","doi":"10.1039/D4CB00105B","DOIUrl":"10.1039/D4CB00105B","url":null,"abstract":"<p > <em>N</em> <small><sup>6</sup></small>-methyladenosine (m<small><sup>6</sup></small>A) is an abundant modification in mammalian mRNAs and plays important regulatory roles in gene expression, primarily mediated through specific recognition by “reader” proteins. YTH family proteins are one major family of known m<small><sup>6</sup></small>A readers, which specifically recognize m<small><sup>6</sup></small>A-modified transcripts <em>via</em> the YTH domains. Despite the significant relevance of YTH-m<small><sup>6</sup></small>A recognition in biology and diseases, few small molecule inhibitors are available for specifically perturbing this interaction. Here we report the discovery of a new inhibitor (“<strong>N-7</strong>”) for YTH-m<small><sup>6</sup></small>A RNA recognition, from the screening of a nucleoside analogue library against the YTH domain of the YTHDF1 protein. <strong>N-7</strong> is characterized to be a <em>pan</em>-inhibitor <em>in vitro</em> against five YTH domains from human YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2 proteins, with IC<small><sub>50</sub></small> values in the range of 30–48 μM measured using a fluorescence polarization competition assay. We demonstrated that <strong>N-7</strong> directly interacts with the YTH domain proteins <em>via</em> a thermal shift assay. <strong>N-7</strong> expands the chemical structure landscape of the m<small><sup>6</sup></small>A YTH domain-containing reader inhibitors and potentiates future inhibitor development for reader functional studies and therapeutic efforts in targeting the epitranscriptome.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" 9","pages":" 914-923"},"PeriodicalIF":4.2,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cb/d4cb00105b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolically activated proteostasis regulators that protect against erastin-induced ferroptosis† 新陈代谢激活的蛋白稳态调节因子可抵御麦拉宁诱导的铁蛋白沉积症
IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-17 DOI: 10.1039/D4CB00027G
Gabriel M. Kline, Nicole Madrazo, Christian M. Cole, Meera Pannikkat, Michael J. Bollong, Jessica D. Rosarda, Jeffery W. Kelly and R. Luke Wiseman

We previously showed that the proteostasis regulator compound AA147 (N-(2-hydroxy-5-methylphenyl)benzenepropanamide) potently protects against neurotoxic insults, such as glutamate-induced oxytosis. Though AA147 is a selective activator of the ATF6 arm of the unfolded protein response in non-neuronal cells, AA147-dependent protection against glutamate toxicity in cells of neuronal origin is primarily mediated through activation of the NRF2 oxidative stress response. AA147 activates NRF2 through a mechanism involving metabolic activation of AA147 by endoplasmic reticulum (ER) oxidases, affording an AA147-based quinone methide that covalently targets the NRF2 repressor protein KEAP1. Previous results show that the 2-amino-p-cresol A-ring of AA147 is required for NRF2 activation, while the phenyl B-ring of AA147 is amenable to modification. Here we explore whether the protease-sensitive amide linker between the A- and B-rings of this molecule can be modified to retain NRF2 activation. We show that replacement of the amide linker of AA147 with a carbamate linker retains NRF2 activation in neuronal cells and improves protection against neurotoxic insults, including glutamate-induced oxytosis and erastin-induced ferroptosis. Moreover, we demonstrate that inclusion of this carbamate linker facilitates identification of next-generation AA147 analogs with improved cellular tolerance and activity in disease-relevant assays.

我们之前研究发现,蛋白稳态调节剂化合物AA147(N-(2-羟基-5-甲基苯基)苯丙酰胺)能有效防止神经毒性损伤,如谷氨酸诱导的氧中毒。尽管 AA147 在非神经元细胞中是未折叠蛋白反应的 ATF6 部分的选择性激活剂,但在神经元细胞中,AA147 依赖性的谷氨酸毒性保护主要是通过激活 NRF2 氧化应激反应介导的。AA147 激活 NRF2 的机制涉及内质网(ER)氧化酶对 AA147 的代谢活化,从而产生一种以 AA147 为基础的醌甲酰胺,它能共价地靶向 NRF2 抑制蛋白 KEAP1。之前的研究结果表明,AA147 的 2-amino-p-cresol A 环是 NRF2 激活所必需的,而 AA147 的苯基 B 环则可进行修饰。在此,我们探讨了能否对该分子的 A 环和 B 环之间对蛋白酶敏感的酰胺连接物进行修饰,以保留 NRF2 的激活作用。我们的研究表明,用氨基甲酸酯连接体取代 AA147 的酰胺连接体可保留神经元细胞中 NRF2 的活化,并改善对神经毒性损伤的保护,包括谷氨酸诱导的氧中毒和麦拉宁诱导的铁中毒。此外,我们还证明,加入这种氨基甲酸酯连接物有助于鉴定下一代 AA147 类似物,它们在疾病相关的实验中具有更好的细胞耐受性和活性。
{"title":"Metabolically activated proteostasis regulators that protect against erastin-induced ferroptosis†","authors":"Gabriel M. Kline, Nicole Madrazo, Christian M. Cole, Meera Pannikkat, Michael J. Bollong, Jessica D. Rosarda, Jeffery W. Kelly and R. Luke Wiseman","doi":"10.1039/D4CB00027G","DOIUrl":"10.1039/D4CB00027G","url":null,"abstract":"<p >We previously showed that the proteostasis regulator compound AA147 (<em>N</em>-(2-hydroxy-5-methylphenyl)benzenepropanamide) potently protects against neurotoxic insults, such as glutamate-induced oxytosis. Though AA147 is a selective activator of the ATF6 arm of the unfolded protein response in non-neuronal cells, AA147-dependent protection against glutamate toxicity in cells of neuronal origin is primarily mediated through activation of the NRF2 oxidative stress response. AA147 activates NRF2 through a mechanism involving metabolic activation of AA147 by endoplasmic reticulum (ER) oxidases, affording an AA147-based quinone methide that covalently targets the NRF2 repressor protein KEAP1. Previous results show that the 2-amino-<em>p</em>-cresol A-ring of AA147 is required for NRF2 activation, while the phenyl B-ring of AA147 is amenable to modification. Here we explore whether the protease-sensitive amide linker between the A- and B-rings of this molecule can be modified to retain NRF2 activation. We show that replacement of the amide linker of AA147 with a carbamate linker retains NRF2 activation in neuronal cells and improves protection against neurotoxic insults, including glutamate-induced oxytosis and erastin-induced ferroptosis. Moreover, we demonstrate that inclusion of this carbamate linker facilitates identification of next-generation AA147 analogs with improved cellular tolerance and activity in disease-relevant assays.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" 9","pages":" 866-876"},"PeriodicalIF":4.2,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cb/d4cb00027g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141718946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of small molecules that are synthetically lethal upon knockout of the RNA ligase Rlig1 in human cells† 小分子对 HEK293 细胞中 RNA 连接酶 Rlig1 基因敲除的致死作用
IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-17 DOI: 10.1039/D4CB00125G
Florian M. Stumpf, Silke Müller and Andreas Marx

Rlig1 is the first RNA ligase identified in humans utilising a classical 5′–3′ ligation mechanism. It is a conserved enzyme in all vertebrates and is mutated in various cancers. During our initial research on Rlig1, we observed that Rlig1-knockout (KO) HEK293 cells are more sensitive to the stress induced by menadione than their WT counterpart, representing a type of chemical synthetic lethality. To gain further insight into the biological pathways in which Rlig1 may be involved, we aimed at identifying new synthetically lethal small molecules. To this end, we conducted a high-throughput screening with a compound library comprising over 13 000 bioactive small molecules. This approach led to the identification of compounds that exhibited synthetic lethality in combination with Rlig1-KO. In addition to the aforementioned novel compounds that diverge structurally from menadione, we also tested multiple small molecules containing a naphthoquinone scaffold.

Rlig1 是人类发现的第一个利用经典 5'-3' 连接机制的 RNA 连接酶。它在所有脊椎动物中都是一种保守的酶,并在各种癌症中发生突变。在对 Rlig1 的初步研究中,我们观察到 Rlig1 基因敲除(KO)的 HEK293 细胞比 WT 细胞对月桂二酮诱导的应激更敏感,这代表了一种化学合成致死性。为了进一步了解 Rlig1 可能参与的生物学途径,我们的目标是鉴定新的合成致死小分子。为此,我们利用由 13,000 多种生物活性小分子组成的化合物库进行了高通量筛选。通过这种方法,我们鉴定出了与 Rlig1-KO 结合具有合成致死性的化合物。除了上述与甲萘醌结构不同的新型化合物外,我们还测试了多种含有萘醌支架的小分子化合物。
{"title":"Identification of small molecules that are synthetically lethal upon knockout of the RNA ligase Rlig1 in human cells†","authors":"Florian M. Stumpf, Silke Müller and Andreas Marx","doi":"10.1039/D4CB00125G","DOIUrl":"10.1039/D4CB00125G","url":null,"abstract":"<p >Rlig1 is the first RNA ligase identified in humans utilising a classical 5′–3′ ligation mechanism. It is a conserved enzyme in all vertebrates and is mutated in various cancers. During our initial research on Rlig1, we observed that Rlig1-knockout (KO) HEK293 cells are more sensitive to the stress induced by menadione than their WT counterpart, representing a type of chemical synthetic lethality. To gain further insight into the biological pathways in which Rlig1 may be involved, we aimed at identifying new synthetically lethal small molecules. To this end, we conducted a high-throughput screening with a compound library comprising over 13 000 bioactive small molecules. This approach led to the identification of compounds that exhibited synthetic lethality in combination with Rlig1-KO. In addition to the aforementioned novel compounds that diverge structurally from menadione, we also tested multiple small molecules containing a naphthoquinone scaffold.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" 9","pages":" 833-840"},"PeriodicalIF":4.2,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cb/d4cb00125g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141718945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced piperazine-containing inhibitors target microbial β-glucuronidases linked to gut toxicity† 针对与肠道毒性有关的微生物β-葡萄糖醛酸酶的高级含哌嗪抑制剂
IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-16 DOI: 10.1039/D4CB00058G
Amanda L. Graboski, Joshua B. Simpson, Samuel J. Pellock, Naimee Mehta, Benjamin C. Creekmore, Yamuna Ariyarathna, Aadra P. Bhatt, Parth B. Jariwala, Josh J. Sekela, Mark E. Kowalewski, Natalie K. Barker, Angie L. Mordant, Valentina B. Borlandelli, Hermen Overkleeft, Laura E. Herring, Jian Jin, Lindsey I. James and Matthew R. Redinbo

The gut microbiome plays critical roles in human homeostasis, disease progression, and pharmacological efficacy through diverse metabolic pathways. Gut bacterial β-glucuronidase (GUS) enzymes reverse host phase 2 metabolism, in turn releasing active hormones and drugs that can be reabsorbed into systemic circulation to affect homeostasis and promote toxic side effects. The FMN-binding and loop 1 gut microbial GUS proteins have been shown to drive drug and toxin reactivation. Here we report the structure–activity relationships of two selective piperazine-containing bacterial GUS inhibitors. We explore the potency and mechanism of action of novel compounds using purified GUS enzymes and co-crystal structures. Our results establish the importance of the piperazine nitrogen placement and nucleophilicity as well as the presence of a cyclohexyl moiety appended to the aromatic core. Using these insights, we synthesized an improved microbial GUS inhibitor, UNC10206581, that potently inhibits both the FMN-binding and loop 1 GUS enzymes in the human gut microbiome, does not inhibit bovine GUS, and is non-toxic within a relevant dosing range. Kinetic analyses demonstrate that UNC10206581 undergoes a slow-binding and substrate-dependent mechanism of inhibition similar to that of the parent scaffolds. Finally, we show that UNC10206581 displays potent activity within the physiologically relevant systems of microbial cultures and human fecal protein lysates examined by metagenomic and metaproteomic methods. Together, these results highlight the discovery of more effective bacterial GUS inhibitors for the alleviation of microbe-mediated homeostatic dysregulation and drug toxicities and potential therapeutic development.

肠道微生物组通过不同的代谢途径在人体稳态、疾病进展和药效方面发挥着关键作用。肠道细菌的β-葡萄糖醛酸酶(GUS)可逆转宿主的第二阶段代谢,进而释放出活性激素和药物,这些激素和药物可被重新吸收进入全身循环,从而影响体内平衡并产生毒副作用。事实证明,FMN 结合蛋白和环 1 肠道微生物 GUS 蛋白可驱动药物和毒素的再活化。在此,我们报告了两种含哌嗪的选择性细菌 GUS 抑制剂的结构-活性关系。我们利用纯化的 GUS 酶和共晶体结构探索了新型化合物的效力和作用机制。我们的研究结果确定了哌嗪氮的位置和亲核性的重要性,以及在芳香核上附加环己基的存在。利用这些见解,我们合成了一种改良的微生物 GUS 抑制剂 UNC10206581,它能有效抑制人类肠道微生物群中的 FMN 结合酶和环 1 GUS 酶,对牛 GUS 没有抑制作用,而且在相关剂量范围内无毒。动力学分析表明,UNC10206581 与母体支架类似,具有缓慢结合和底物依赖性抑制机制。最后,我们通过元基因组学和元蛋白组学方法研究发现,UNC10206581 在微生物培养物和人粪便蛋白裂解物的生理相关系统中显示出强大的活性。总之,这些结果凸显了发现更有效的细菌 GUS 抑制剂以缓解微生物介导的体内平衡失调和药物毒性以及潜在的治疗开发的重要性。
{"title":"Advanced piperazine-containing inhibitors target microbial β-glucuronidases linked to gut toxicity†","authors":"Amanda L. Graboski, Joshua B. Simpson, Samuel J. Pellock, Naimee Mehta, Benjamin C. Creekmore, Yamuna Ariyarathna, Aadra P. Bhatt, Parth B. Jariwala, Josh J. Sekela, Mark E. Kowalewski, Natalie K. Barker, Angie L. Mordant, Valentina B. Borlandelli, Hermen Overkleeft, Laura E. Herring, Jian Jin, Lindsey I. James and Matthew R. Redinbo","doi":"10.1039/D4CB00058G","DOIUrl":"10.1039/D4CB00058G","url":null,"abstract":"<p >The gut microbiome plays critical roles in human homeostasis, disease progression, and pharmacological efficacy through diverse metabolic pathways. Gut bacterial β-glucuronidase (GUS) enzymes reverse host phase 2 metabolism, in turn releasing active hormones and drugs that can be reabsorbed into systemic circulation to affect homeostasis and promote toxic side effects. The FMN-binding and loop 1 gut microbial GUS proteins have been shown to drive drug and toxin reactivation. Here we report the structure–activity relationships of two selective piperazine-containing bacterial GUS inhibitors. We explore the potency and mechanism of action of novel compounds using purified GUS enzymes and co-crystal structures. Our results establish the importance of the piperazine nitrogen placement and nucleophilicity as well as the presence of a cyclohexyl moiety appended to the aromatic core. Using these insights, we synthesized an improved microbial GUS inhibitor, UNC10206581, that potently inhibits both the FMN-binding and loop 1 GUS enzymes in the human gut microbiome, does not inhibit bovine GUS, and is non-toxic within a relevant dosing range. Kinetic analyses demonstrate that UNC10206581 undergoes a slow-binding and substrate-dependent mechanism of inhibition similar to that of the parent scaffolds. Finally, we show that UNC10206581 displays potent activity within the physiologically relevant systems of microbial cultures and human fecal protein lysates examined by metagenomic and metaproteomic methods. Together, these results highlight the discovery of more effective bacterial GUS inhibitors for the alleviation of microbe-mediated homeostatic dysregulation and drug toxicities and potential therapeutic development.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" 9","pages":" 853-865"},"PeriodicalIF":4.2,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cb/d4cb00058g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
RSC Chemical Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1