{"title":"In memory of Dr. Ryuzo Yanagimachi (Yana) (1928–2023)","authors":"Teruhiko Wakayama, A. Ogura","doi":"10.1262/jrd.2024-E01","DOIUrl":"https://doi.org/10.1262/jrd.2024-E01","url":null,"abstract":"","PeriodicalId":416064,"journal":{"name":"The Journal of Reproduction and Development","volume":"176 11","pages":"i - vi"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140761728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Omnia Elgendy, G. Kitahara, S. Taniguchi, T. Osawa
High summer temperatures have deleterious effects on oocyte developmental competence. The antioxidant and autophagy-related properties of 5-aminolevulinic acid (5-ALA) gives the compound a broad range of biological activities. This study aimed to evaluate the effects of: 1) a high temperature-humidity index (THI) on the developmental competence of bovine oocytes, and 2) 5-ALA administration in combination with sodium ferrous citrate (SFC) during in vitro maturation (IVM) on bovine oocyte developmental competence evaluated at high THI. Bovine ovaries were collected from a local slaughterhouse at moderate environmental temperature (MT; THI of 56.2) and high environmental temperature (HT; THI of 76.7) periods; cumulus-oocyte complexes (COCs) were aspirated from medium-sized follicles, matured in vitro for 22 h, fertilized, and cultured for 10 days. For COCs collected during the HT period, 0 (control), 0.01, 0.1, 0.5, or 1 µM 5-ALA was added to the maturation medium in combination with SFC at a molar ratio of 1:0.125. The results showed that HT adversely affected blastocyst and hatching rates compared with MT. Adding 5-ALA/SFC (1 µM/0.125 µM) to the maturation medium of oocytes collected during the HT period improved cumulus cell expansion and blastocyst rates compared with the no-addition control. In conclusion, this study showed that high THI can disrupt bovine oocyte developmental competence. Adding 5-ALA to SFC ameliorates this negative effect of heat stress and improves subsequent embryo development.
{"title":"5-Aminolevulinic acid combined with sodium ferrous citrate mitigates effects of heat stress on bovine oocyte developmental competence","authors":"Omnia Elgendy, G. Kitahara, S. Taniguchi, T. Osawa","doi":"10.1262/jrd.2021-145","DOIUrl":"https://doi.org/10.1262/jrd.2021-145","url":null,"abstract":"High summer temperatures have deleterious effects on oocyte developmental competence. The antioxidant and autophagy-related properties of 5-aminolevulinic acid (5-ALA) gives the compound a broad range of biological activities. This study aimed to evaluate the effects of: 1) a high temperature-humidity index (THI) on the developmental competence of bovine oocytes, and 2) 5-ALA administration in combination with sodium ferrous citrate (SFC) during in vitro maturation (IVM) on bovine oocyte developmental competence evaluated at high THI. Bovine ovaries were collected from a local slaughterhouse at moderate environmental temperature (MT; THI of 56.2) and high environmental temperature (HT; THI of 76.7) periods; cumulus-oocyte complexes (COCs) were aspirated from medium-sized follicles, matured in vitro for 22 h, fertilized, and cultured for 10 days. For COCs collected during the HT period, 0 (control), 0.01, 0.1, 0.5, or 1 µM 5-ALA was added to the maturation medium in combination with SFC at a molar ratio of 1:0.125. The results showed that HT adversely affected blastocyst and hatching rates compared with MT. Adding 5-ALA/SFC (1 µM/0.125 µM) to the maturation medium of oocytes collected during the HT period improved cumulus cell expansion and blastocyst rates compared with the no-addition control. In conclusion, this study showed that high THI can disrupt bovine oocyte developmental competence. Adding 5-ALA to SFC ameliorates this negative effect of heat stress and improves subsequent embryo development.","PeriodicalId":416064,"journal":{"name":"The Journal of Reproduction and Development","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114148192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Horiguchi, K. Fujiwara, T. Tsukada, T. Nakakura, S. Yoshida, R. Hasegawa, S. Takigami
Sex-determining region Y-box 2 (SOX2)-positive cells are stem/progenitor cells in the adenohypophysis, comprising the anterior and intermediate lobes (AL and IL, respectively). The cells are located in the marginal cell layer (MCL) facing Rathke’s cleft (primary niche) and the parenchyma of the AL (secondary niche). We previously demonstrated in vitro that the tetraspanin superfamily CD9 and SOX2 double-positive (CD9/SOX2-positive) cells in the IL-side MCL migrate to the AL side and differentiate into hormone-producing and endothelial cells in the AL parenchyma. Here, we performed in vivo studies to evaluate the role of IL-side CD9/SOX2-positive cells in pregnancy, lactation, and treatment with diethylstilbestrol (DES; an estrogen analog) when an increased population of prolactin (PRL) cells was observed in the AL of the rat pituitary. The proportions of CD9/SOX2-, CD9/Ki67-, and PRL/TUNEL-positive cells decreased in the primary and secondary niches during pregnancy and DES treatment. In contrast, the number of CD9/PRL-positive cells increased in the AL-side MCL and AL parenchyma during pregnancy and during DES treatment. The proportion of PRL/Ki67-positive cells increased in the AL-side MCL and AL parenchyma in response to DES treatment. Next, we isolated CD9-positive cells from the IL-side MCL using an anti-CD9 antibody. During cell culture, the cells formed free-floating three-dimensional clusters (pituispheres). Furthermore, CD9-positive cells in the pituisphere differentiated into PRL cells, and their differentiation potential was promoted by DES. These findings suggest that CD9/SOX2-positive cells in the IL-side MCL may act as adult stem cells in the AL parenchyma that supply PRL cells under the influence of estrogen.
{"title":"Differentiation of stem progenitor CD9/SOX2-positive cells is promoted with increased prolactin-producing and endothelial cells in the pituitary","authors":"K. Horiguchi, K. Fujiwara, T. Tsukada, T. Nakakura, S. Yoshida, R. Hasegawa, S. Takigami","doi":"10.1262/jrd.2022-047","DOIUrl":"https://doi.org/10.1262/jrd.2022-047","url":null,"abstract":"Sex-determining region Y-box 2 (SOX2)-positive cells are stem/progenitor cells in the adenohypophysis, comprising the anterior and intermediate lobes (AL and IL, respectively). The cells are located in the marginal cell layer (MCL) facing Rathke’s cleft (primary niche) and the parenchyma of the AL (secondary niche). We previously demonstrated in vitro that the tetraspanin superfamily CD9 and SOX2 double-positive (CD9/SOX2-positive) cells in the IL-side MCL migrate to the AL side and differentiate into hormone-producing and endothelial cells in the AL parenchyma. Here, we performed in vivo studies to evaluate the role of IL-side CD9/SOX2-positive cells in pregnancy, lactation, and treatment with diethylstilbestrol (DES; an estrogen analog) when an increased population of prolactin (PRL) cells was observed in the AL of the rat pituitary. The proportions of CD9/SOX2-, CD9/Ki67-, and PRL/TUNEL-positive cells decreased in the primary and secondary niches during pregnancy and DES treatment. In contrast, the number of CD9/PRL-positive cells increased in the AL-side MCL and AL parenchyma during pregnancy and during DES treatment. The proportion of PRL/Ki67-positive cells increased in the AL-side MCL and AL parenchyma in response to DES treatment. Next, we isolated CD9-positive cells from the IL-side MCL using an anti-CD9 antibody. During cell culture, the cells formed free-floating three-dimensional clusters (pituispheres). Furthermore, CD9-positive cells in the pituisphere differentiated into PRL cells, and their differentiation potential was promoted by DES. These findings suggest that CD9/SOX2-positive cells in the IL-side MCL may act as adult stem cells in the AL parenchyma that supply PRL cells under the influence of estrogen.","PeriodicalId":416064,"journal":{"name":"The Journal of Reproduction and Development","volume":"45 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124385397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natsuki Ushigome, S. Wakayama, Kango Yamaji, D. Ito, Masatoshi Ooga, T. Wakayama
Freeze-dried sperm (FD sperm) are of great value because they can be stored at room temperature for long periods of time, However, the birth rate of offspring derived from FD sperm is low and the step in the freeze-drying process particularly responsible for low offspring production remains unknown. In this study, we determined whether the drying process was responsible for the low success rate of offspring by producing vacuum-dried sperm (VD sperm), using mouse spermatozoa dried in a vacuum without being frozen. Transfer of embryos fertilized with VD sperm to recipients resulted in the production of several successful offspring. However, the success rate was slightly lower than that of FD sperm. The volume, temperature, and viscosity of the medium were optimized to improve the birth rate. The results obtained from a comet assay indicated that decreasing the drying rate reduced the extent of DNA damage in VD sperm. Furthermore, even though the rate of blastocyst formation increased upon fertilization with VD sperm, full-term development was not improved. Analysis of chromosomal damage at the two-cell stage through an abnormal chromosome segregation (ACS) assay revealed that reduction in the drying rate failed to prevent chromosomal damage. These results indicate that the lower birth rate of offspring from FD sperm may result from the drying process rather than the freezing process.
{"title":"Production of offspring from vacuum-dried mouse spermatozoa and assessing the effect of drying conditions on sperm DNA and embryo development","authors":"Natsuki Ushigome, S. Wakayama, Kango Yamaji, D. Ito, Masatoshi Ooga, T. Wakayama","doi":"10.1262/jrd.2022-048","DOIUrl":"https://doi.org/10.1262/jrd.2022-048","url":null,"abstract":"Freeze-dried sperm (FD sperm) are of great value because they can be stored at room temperature for long periods of time, However, the birth rate of offspring derived from FD sperm is low and the step in the freeze-drying process particularly responsible for low offspring production remains unknown. In this study, we determined whether the drying process was responsible for the low success rate of offspring by producing vacuum-dried sperm (VD sperm), using mouse spermatozoa dried in a vacuum without being frozen. Transfer of embryos fertilized with VD sperm to recipients resulted in the production of several successful offspring. However, the success rate was slightly lower than that of FD sperm. The volume, temperature, and viscosity of the medium were optimized to improve the birth rate. The results obtained from a comet assay indicated that decreasing the drying rate reduced the extent of DNA damage in VD sperm. Furthermore, even though the rate of blastocyst formation increased upon fertilization with VD sperm, full-term development was not improved. Analysis of chromosomal damage at the two-cell stage through an abnormal chromosome segregation (ACS) assay revealed that reduction in the drying rate failed to prevent chromosomal damage. These results indicate that the lower birth rate of offspring from FD sperm may result from the drying process rather than the freezing process.","PeriodicalId":416064,"journal":{"name":"The Journal of Reproduction and Development","volume":"32 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121015055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Furukawa, C. Kanno, Y. Yanagawa, S. Katagiri, M. Nagano
We investigated the optimal timing of artificial insemination (AI) for achieving pregnancy according to the onset/end of estrus detected by an accelerometer system in Holstein cattle. The conception rates of conventional semen were used as a reference. The conception rate from AI of sex-sorted semen was higher at −4 to 4 h (57.1%) from the end of estrus than those at −12 to −4 h (37.7%) and 12–20 h (30.3%), whereas AI at 4–12 h showed an intermediate conception rate (47.4%). Conversely, conception rates were similar in AI performed between 0 and 32 h from the onset of estrus. Regarding conventional semen, the interval from the onset and end of estrus did not affect conception rates. The present results suggest that the time of the end of estrus is the better indicator of optimal AI timing for sex-sorted semen than the onset of estrus.
{"title":"Relationship between the timing of insemination based on estrus detected by the automatic activity monitoring system and conception rates using sex-sorted semen in Holstein dairy cattle","authors":"E. Furukawa, C. Kanno, Y. Yanagawa, S. Katagiri, M. Nagano","doi":"10.1262/jrd.2022-006","DOIUrl":"https://doi.org/10.1262/jrd.2022-006","url":null,"abstract":"We investigated the optimal timing of artificial insemination (AI) for achieving pregnancy according to the onset/end of estrus detected by an accelerometer system in Holstein cattle. The conception rates of conventional semen were used as a reference. The conception rate from AI of sex-sorted semen was higher at −4 to 4 h (57.1%) from the end of estrus than those at −12 to −4 h (37.7%) and 12–20 h (30.3%), whereas AI at 4–12 h showed an intermediate conception rate (47.4%). Conversely, conception rates were similar in AI performed between 0 and 32 h from the onset of estrus. Regarding conventional semen, the interval from the onset and end of estrus did not affect conception rates. The present results suggest that the time of the end of estrus is the better indicator of optimal AI timing for sex-sorted semen than the onset of estrus.","PeriodicalId":416064,"journal":{"name":"The Journal of Reproduction and Development","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126273759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yosuke Sugino, Taiki Sato, Yuki Yamamoto, K. Kimura
In ruminants, uterine glands play key roles in the establishment of pregnancy by secreting various factors into the uterine lumen. Although a three-dimensional (3D) culture system has been used for investigating cellular functions in vitro, the detailed functions of uterine gland have not been fully elucidated. In this study, we examined the benefits of 3D culture system to examine the innate functions of bovine uterine glands. Isolated bovine uterine glands were cultured on Matrigel (2D) or in Matrigel (3D), respectively, and the mRNA levels of secreted proteins (SERPINA14, MEP1B, APOA1, ARSA, CTGF, and SPP1) were measured in isolated and cultured uterine glands. The protein expression of estrogen receptor β (ERβ) and progesterone receptor (PR) and the establishment of apico-basal polarity were examined. In isolated uterine glands, the mRNA levels of secreted proteins changed during the estrous cycle. Although uterine glands cultured in both 2D and 3D expressed ERβ and PR, progesterone did not affect SERPINA14 mRNA expression. The expression of APOA1 mRNA in 2D cultured uterine glands did not respond to estrogen and progesterone. Additionally, the mRNA levels of secreted proteins in the 3D culture system were significantly higher than those in the 2D culture system, which might be attributed to the different cellular morphology between them. The locations of ZO-1 and β-catenin in 2D cultured uterine glands were disordered compared with 3D cultured uterine glands. These results showed that the hormonal responsiveness of secreted factor expression and cellular morphology were different between 2D and 3D cultured bovine uterine glands.
{"title":"Evaluation of bovine uterine gland functions in 2D and 3D culture system","authors":"Yosuke Sugino, Taiki Sato, Yuki Yamamoto, K. Kimura","doi":"10.1262/jrd.2022-029","DOIUrl":"https://doi.org/10.1262/jrd.2022-029","url":null,"abstract":"In ruminants, uterine glands play key roles in the establishment of pregnancy by secreting various factors into the uterine lumen. Although a three-dimensional (3D) culture system has been used for investigating cellular functions in vitro, the detailed functions of uterine gland have not been fully elucidated. In this study, we examined the benefits of 3D culture system to examine the innate functions of bovine uterine glands. Isolated bovine uterine glands were cultured on Matrigel (2D) or in Matrigel (3D), respectively, and the mRNA levels of secreted proteins (SERPINA14, MEP1B, APOA1, ARSA, CTGF, and SPP1) were measured in isolated and cultured uterine glands. The protein expression of estrogen receptor β (ERβ) and progesterone receptor (PR) and the establishment of apico-basal polarity were examined. In isolated uterine glands, the mRNA levels of secreted proteins changed during the estrous cycle. Although uterine glands cultured in both 2D and 3D expressed ERβ and PR, progesterone did not affect SERPINA14 mRNA expression. The expression of APOA1 mRNA in 2D cultured uterine glands did not respond to estrogen and progesterone. Additionally, the mRNA levels of secreted proteins in the 3D culture system were significantly higher than those in the 2D culture system, which might be attributed to the different cellular morphology between them. The locations of ZO-1 and β-catenin in 2D cultured uterine glands were disordered compared with 3D cultured uterine glands. These results showed that the hormonal responsiveness of secreted factor expression and cellular morphology were different between 2D and 3D cultured bovine uterine glands.","PeriodicalId":416064,"journal":{"name":"The Journal of Reproduction and Development","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114934129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naomi Jack, Tomoyuki Muto, Keigo Iemitsu, Tamaki Watanabe, K. Umeyama, J. Ohgane, H. Nagashima
Recent developments in reproductive biology have enabled the generation of genetically engineered pigs as models for inherited human diseases. Although a variety of such models for monogenic diseases are currently available, reproduction of human diseases caused by haploinsufficiency remains a major challenge. The present study compares the phenotypes of mouse and pig models of Marfan syndrome (MFS), with a special focus on the expressivity and penetrance of associated symptoms. Furthermore, investigation of the gene regulation mechanisms associated with haploinsufficiency will be of immense utility in developing faithful MFS pig models.
{"title":"Genetically engineered animal models for Marfan syndrome: challenges associated with the generation of pig models for diseases caused by haploinsufficiency","authors":"Naomi Jack, Tomoyuki Muto, Keigo Iemitsu, Tamaki Watanabe, K. Umeyama, J. Ohgane, H. Nagashima","doi":"10.1262/jrd.2022-027","DOIUrl":"https://doi.org/10.1262/jrd.2022-027","url":null,"abstract":"Recent developments in reproductive biology have enabled the generation of genetically engineered pigs as models for inherited human diseases. Although a variety of such models for monogenic diseases are currently available, reproduction of human diseases caused by haploinsufficiency remains a major challenge. The present study compares the phenotypes of mouse and pig models of Marfan syndrome (MFS), with a special focus on the expressivity and penetrance of associated symptoms. Furthermore, investigation of the gene regulation mechanisms associated with haploinsufficiency will be of immense utility in developing faithful MFS pig models.","PeriodicalId":416064,"journal":{"name":"The Journal of Reproduction and Development","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126664884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ovulation is an inflammation-like process, and cyclooxygenase-2 (COX-2)-dependent production of prostaglandin E2 (PGE2) is its key mediator. Balanced regulation of inflammatory processes in high-yielding dairy cows may be essential for physiological ovulation and fertility. This study aimed to elucidate the mechanisms underlying ovulation failure and cyst development after disturbing intrafollicular inflammatory cascades. Therefore, nonselective (indomethacin and flunixin-meglumine), COX-2 selective (meloxicam), and highly COX-2 selective (NS-398) inhibitors were injected into preovulatory follicles 16 h after administration of GnRH, and ovulation was monitored via ultrasound examination. Additionally, follicular fluid was collected after injection of indomethacin, meloxicam, and NS-398. Moreover, primary granulosa cell cultures from preovulatory follicles were prepared and treated with indomethacin, meloxicam, and NS-398. The concentrations of 17β-estradiol, progesterone, and prostaglandin E2 (PGE2) in the follicular fluid and cell supernatant were estimated. Indomethacin and flunixin-meglumine blocked ovulation, even at low doses, and led to ovarian cyst development. The selective and highly selective COX-2 inhibitors meloxicam and NS-398 were not effective in blocking ovulation. However, indomethacin, meloxicam, and NS-398 significantly and comparably reduced PGE2 concentration in vivo and in vitro (P < 0.05) but had no effect on estradiol or progesterone production. This may contradict the generally accepted hypothesis that PGE2 is a key mediator of ovulation and progesterone production. Our results suggest a connection between ovarian disorders and inflammatory actions in early postpartum cows.
{"title":"Effects of different cyclooxygenase inhibitors on prostaglandin E2 production, steroidogenesis and ovulation of bovine preovulatory follicles","authors":"A. Vernunft, R. Lapp, T. Viergutz, J. Weitzel","doi":"10.1262/jrd.2021-148","DOIUrl":"https://doi.org/10.1262/jrd.2021-148","url":null,"abstract":"Ovulation is an inflammation-like process, and cyclooxygenase-2 (COX-2)-dependent production of prostaglandin E2 (PGE2) is its key mediator. Balanced regulation of inflammatory processes in high-yielding dairy cows may be essential for physiological ovulation and fertility. This study aimed to elucidate the mechanisms underlying ovulation failure and cyst development after disturbing intrafollicular inflammatory cascades. Therefore, nonselective (indomethacin and flunixin-meglumine), COX-2 selective (meloxicam), and highly COX-2 selective (NS-398) inhibitors were injected into preovulatory follicles 16 h after administration of GnRH, and ovulation was monitored via ultrasound examination. Additionally, follicular fluid was collected after injection of indomethacin, meloxicam, and NS-398. Moreover, primary granulosa cell cultures from preovulatory follicles were prepared and treated with indomethacin, meloxicam, and NS-398. The concentrations of 17β-estradiol, progesterone, and prostaglandin E2 (PGE2) in the follicular fluid and cell supernatant were estimated. Indomethacin and flunixin-meglumine blocked ovulation, even at low doses, and led to ovarian cyst development. The selective and highly selective COX-2 inhibitors meloxicam and NS-398 were not effective in blocking ovulation. However, indomethacin, meloxicam, and NS-398 significantly and comparably reduced PGE2 concentration in vivo and in vitro (P < 0.05) but had no effect on estradiol or progesterone production. This may contradict the generally accepted hypothesis that PGE2 is a key mediator of ovulation and progesterone production. Our results suggest a connection between ovarian disorders and inflammatory actions in early postpartum cows.","PeriodicalId":416064,"journal":{"name":"The Journal of Reproduction and Development","volume":"159 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114005364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Riho Morikawa, Hirohisa Kyogoku, Jibak Lee, T. Miyano
Oocytes communicate with the surrounding somatic cells during follicular development. We examined the effects of two oocyte-derived growth factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), on the development of porcine oocyte–cumulus cell complexes (OCCs) in vitro. We collected OCCs from early antral follicles (1.2–1.5 mm) and prepared oocytectomized cumulus cell complexes (OXCs), which were then cultured in a growth medium supplemented with 0–100 ng/ml GDF9 and/or BMP15 for 7 days. In the medium without GDF9 or BMP15, OCCs developed during culture, and approximately 30% of them formed antrum-like structures. GDF9 promoted OCC development and structure formation in a dose-dependent manner. However, OXCs did not form antrum-like structures without growth factors. GDF9 promoted the development of OXCs, and 50 and 100 ng/ml GDF9 promoted the formation of the structures by 8% and 26%, respectively; however, BMP15 did not promote the formation of these structures. OXCs were then cultured with 100 ng/ml GDF9 and various concentrations of BMP15 to investigate their cooperative effects on the formation of antrum-like structures. BMP15 promoted the formation of antrum-like structures in a dose-dependent manner. In conclusion, GDF9 derived from oocytes is probably important for the formation of antrum-like structures in porcine OXCs, and BMP15 cooperates with GDF9 to form these structures.
{"title":"Oocyte-derived growth factors promote development of antrum-like structures by porcine cumulus granulosa cells in vitro","authors":"Riho Morikawa, Hirohisa Kyogoku, Jibak Lee, T. Miyano","doi":"10.1262/jrd.2022-023","DOIUrl":"https://doi.org/10.1262/jrd.2022-023","url":null,"abstract":"Oocytes communicate with the surrounding somatic cells during follicular development. We examined the effects of two oocyte-derived growth factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), on the development of porcine oocyte–cumulus cell complexes (OCCs) in vitro. We collected OCCs from early antral follicles (1.2–1.5 mm) and prepared oocytectomized cumulus cell complexes (OXCs), which were then cultured in a growth medium supplemented with 0–100 ng/ml GDF9 and/or BMP15 for 7 days. In the medium without GDF9 or BMP15, OCCs developed during culture, and approximately 30% of them formed antrum-like structures. GDF9 promoted OCC development and structure formation in a dose-dependent manner. However, OXCs did not form antrum-like structures without growth factors. GDF9 promoted the development of OXCs, and 50 and 100 ng/ml GDF9 promoted the formation of the structures by 8% and 26%, respectively; however, BMP15 did not promote the formation of these structures. OXCs were then cultured with 100 ng/ml GDF9 and various concentrations of BMP15 to investigate their cooperative effects on the formation of antrum-like structures. BMP15 promoted the formation of antrum-like structures in a dose-dependent manner. In conclusion, GDF9 derived from oocytes is probably important for the formation of antrum-like structures in porcine OXCs, and BMP15 cooperates with GDF9 to form these structures.","PeriodicalId":416064,"journal":{"name":"The Journal of Reproduction and Development","volume":"103 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134298126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Fulka, P. Loi, L. Palazzese, Michal Benc, J. Fulka
It is now approximately 25 years since the sheep Dolly, the first cloned mammal where the somatic cell nucleus from an adult donor was used for transfer, was born. So far, somatic cell nucleus transfer, where G1-phase nuclei are transferred into cytoplasts obtained by enucleation of mature metaphase II (MII) oocytes followed by the activation of the reconstructed cells, is the most efficient approach to reprogram/remodel the differentiated nucleus. In general, in an enucleated oocyte (cytoplast), the nuclear envelope (NE, membrane) of an injected somatic cell nucleus breaks down and chromosomes condense. This condensation phase is followed, after subsequent activation, by chromatin decondensation and formation of a pseudo-pronucleus (i) whose morphology should resemble the natural postfertilization pronuclei (PNs). Thus, the volume of the transferred nuclei increases considerably by incorporating the content released from the germinal vesicles (GVs). In parallel, the transferred nucleus genes must be reset and function similarly as the relevant genes in normal embryo reprogramming. This, among others, covers the relevant epigenetic modifications and the appropriate organization of chromatin in pseudo-pronuclei. While reprogramming in SCNT is often discussed, the remodeling of transferred nuclei is much less studied, particularly in the context of the developmental potential of SCNT embryos. It is now evident that correct reprogramming mirrors appropriate remodeling. At the same time, it is widely accepted that the process of rebuilding the nucleus following SCNT is instrumental to the overall success of this procedure. Thus, in our contribution, we will mostly focus on the remodeling of transferred nuclei. In particular, we discuss the oocyte organelles that are essential for the development of SCNT embryos.
{"title":"Nucleus reprogramming/remodeling through selective enucleation (SE) of immature oocytes and zygotes: a nucleolus point of view","authors":"H. Fulka, P. Loi, L. Palazzese, Michal Benc, J. Fulka","doi":"10.1262/jrd.2022-004","DOIUrl":"https://doi.org/10.1262/jrd.2022-004","url":null,"abstract":"It is now approximately 25 years since the sheep Dolly, the first cloned mammal where the somatic cell nucleus from an adult donor was used for transfer, was born. So far, somatic cell nucleus transfer, where G1-phase nuclei are transferred into cytoplasts obtained by enucleation of mature metaphase II (MII) oocytes followed by the activation of the reconstructed cells, is the most efficient approach to reprogram/remodel the differentiated nucleus. In general, in an enucleated oocyte (cytoplast), the nuclear envelope (NE, membrane) of an injected somatic cell nucleus breaks down and chromosomes condense. This condensation phase is followed, after subsequent activation, by chromatin decondensation and formation of a pseudo-pronucleus (i) whose morphology should resemble the natural postfertilization pronuclei (PNs). Thus, the volume of the transferred nuclei increases considerably by incorporating the content released from the germinal vesicles (GVs). In parallel, the transferred nucleus genes must be reset and function similarly as the relevant genes in normal embryo reprogramming. This, among others, covers the relevant epigenetic modifications and the appropriate organization of chromatin in pseudo-pronuclei. While reprogramming in SCNT is often discussed, the remodeling of transferred nuclei is much less studied, particularly in the context of the developmental potential of SCNT embryos. It is now evident that correct reprogramming mirrors appropriate remodeling. At the same time, it is widely accepted that the process of rebuilding the nucleus following SCNT is instrumental to the overall success of this procedure. Thus, in our contribution, we will mostly focus on the remodeling of transferred nuclei. In particular, we discuss the oocyte organelles that are essential for the development of SCNT embryos.","PeriodicalId":416064,"journal":{"name":"The Journal of Reproduction and Development","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128110382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}