首页 > 最新文献

Computer Science-AGH最新文献

英文 中文
Derin öğrenme ağları kullanılarak mısır yapraklarında hastalık tespiti
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2021-09-16 DOI: 10.53070/bbd.989305
M. Göksu, Kubilay Muhammed Sünnetci, Ahmet Alkan
— Nowadays, people need easy access to basic nutrients to live a healthy life. In addition to providing calories that can meet the physiological needs of human beings, maize, which is one of the basic foods, contains valuable minerals and vitamins such as vitamin B6, sodium, magnesium, zinc, potassium, calcium, vitamin A. As a result of the increase in the world population in the world and our country, the need for maize is increasing day by day. Herein, it is important to detect the diseases seen in maize leaves that reduce the efficiency of maize production. Thanks to the developing technologies, producers should be encouraged by using technological opportunities in maize cultivation. In the study, it is aimed to detect maize rust, gray leaf spot, and leaf blight on maize leaves. In addition, two models based on the EfficientNetB5 network and convolutional neural network have been developed to detect diseases found in maize leaves using deep learning methods. To increase the performance metrics of created models, the number of images has been increased by using data augmentation techniques (mirror, rotation, scale). From the results, it is seen that the prediction success rates obtained in the EfficientNetB5 transfer learning model and the developed deep learning model are equal to 92.12% and 89.88%, respectively.
--如今,人们需要方便地获得基本营养才能过上健康的生活。玉米作为基本食物之一,除了提供能够满足人类生理需求的热量外,还含有宝贵的矿物质和维生素,如维生素B6、钠、镁、锌、钾、钙、维生素A。随着世界人口和我国人口的增加,对玉米的需求与日俱增。在此,重要的是检测玉米叶片中出现的降低玉米生产效率的疾病。由于技术的发展,应该鼓励生产者利用玉米种植的技术机会。本研究旨在检测玉米叶片上的锈病、灰斑病和叶枯病。此外,还开发了两个基于EfficientNetB5网络和卷积神经网络的模型,用于使用深度学习方法检测玉米叶片中发现的疾病。为了提高已创建模型的性能指标,通过使用数据增强技术(镜像、旋转、缩放)增加了图像数量。从结果可以看出,EfficientNetB5迁移学习模型和所开发的深度学习模型的预测成功率分别为92.12%和89.88%。
{"title":"Derin öğrenme ağları kullanılarak mısır yapraklarında hastalık tespiti","authors":"M. Göksu, Kubilay Muhammed Sünnetci, Ahmet Alkan","doi":"10.53070/bbd.989305","DOIUrl":"https://doi.org/10.53070/bbd.989305","url":null,"abstract":"— Nowadays, people need easy access to basic nutrients to live a healthy life. In addition to providing calories that can meet the physiological needs of human beings, maize, which is one of the basic foods, contains valuable minerals and vitamins such as vitamin B6, sodium, magnesium, zinc, potassium, calcium, vitamin A. As a result of the increase in the world population in the world and our country, the need for maize is increasing day by day. Herein, it is important to detect the diseases seen in maize leaves that reduce the efficiency of maize production. Thanks to the developing technologies, producers should be encouraged by using technological opportunities in maize cultivation. In the study, it is aimed to detect maize rust, gray leaf spot, and leaf blight on maize leaves. In addition, two models based on the EfficientNetB5 network and convolutional neural network have been developed to detect diseases found in maize leaves using deep learning methods. To increase the performance metrics of created models, the number of images has been increased by using data augmentation techniques (mirror, rotation, scale). From the results, it is seen that the prediction success rates obtained in the EfficientNetB5 transfer learning model and the developed deep learning model are equal to 92.12% and 89.88%, respectively.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44694138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Hibrid 3B-2B ESA Mimarisi Kullanılarak Hiperspektral Uzaktan Algılama Görüntülerinin Sınıflandırılması
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2021-09-16 DOI: 10.53070/bbd.989159
Hüseyin Fırat, M. Uçan, D. Hanbay
{"title":"Hibrid 3B-2B ESA Mimarisi Kullanılarak Hiperspektral Uzaktan Algılama Görüntülerinin Sınıflandırılması","authors":"Hüseyin Fırat, M. Uçan, D. Hanbay","doi":"10.53070/bbd.989159","DOIUrl":"https://doi.org/10.53070/bbd.989159","url":null,"abstract":"","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44357661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Derinlemesine Özellik Piramit Ağı Kullanarak Yüzey Hata Tespiti DerinlemesineÖzellik Piramit AğıKullanaak Yüzey Hata Tespiti
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2021-09-16 DOI: 10.53070/bbd.990950
Hüseyin Üzen, İlhami Sel, Muammer Türkoğlu, D. Hanbay
Surface defect detection is one of the most important quality control components in manufacturing systems. The application of automatic surface defect detection methods in production systems is an important factor in ensuring high-quality products. In this study, depthwise separable convolution-based Deep Feature Pyramid Network (DÖPA) architecture was developed for automatic surface defect detection. In this network architecture, the learned parameters of the pre-trained VGG19 network architecture were used. MT dataset with defect detection images was used to test the performance of the proposed model. In experimental studies, 86.86% F1-score was obtained using the proposed DOPA architecture. These results showed that the proposed model was more successful than the existing studies.
表面缺陷检测是制造系统质量控制的重要组成部分之一。在生产系统中应用表面缺陷自动检测方法是保证产品质量的重要因素。本文提出了一种基于深度可分卷积的深度特征金字塔网络(DÖPA)结构,用于表面缺陷自动检测。在该网络体系结构中,使用了预先训练好的VGG19网络体系结构的学习参数。使用带有缺陷检测图像的MT数据集来测试所提模型的性能。在实验研究中,采用所提出的DOPA结构获得了86.86%的f1评分。这些结果表明,所提出的模型比已有的研究更成功。
{"title":"Derinlemesine Özellik Piramit Ağı Kullanarak Yüzey Hata Tespiti","authors":"Hüseyin Üzen, İlhami Sel, Muammer Türkoğlu, D. Hanbay","doi":"10.53070/bbd.990950","DOIUrl":"https://doi.org/10.53070/bbd.990950","url":null,"abstract":"Surface defect detection is one of the most important quality control components in manufacturing systems. The application of automatic surface defect detection methods in production systems is an important factor in ensuring high-quality products. In this study, depthwise separable convolution-based Deep Feature Pyramid Network (DÖPA) architecture was developed for automatic surface defect detection. In this network architecture, the learned parameters of the pre-trained VGG19 network architecture were used. MT dataset with defect detection images was used to test the performance of the proposed model. In experimental studies, 86.86% F1-score was obtained using the proposed DOPA architecture. These results showed that the proposed model was more successful than the existing studies.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46103596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Merkezi Simetrik Yerel İkili Örüntü Temelli Görüntü Sahteciliği Tespiti 中心对称本地次映像基础映像身份验证桌面
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2021-09-16 DOI: 10.53070/bbd.990064
Bilgehan Gürünlü, Serkan Öztürk
{"title":"Merkezi Simetrik Yerel İkili Örüntü Temelli Görüntü Sahteciliği Tespiti","authors":"Bilgehan Gürünlü, Serkan Öztürk","doi":"10.53070/bbd.990064","DOIUrl":"https://doi.org/10.53070/bbd.990064","url":null,"abstract":"","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46603127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizasyonun Optimizasyonu Yaklaşımıyla Dağılım Fonksiyonu Tabanlı Kral Kelebeği Optimizasyon Algoritmasının Performansının Artırılması 加强基于King’s Club分布函数的优化算法的性能逼近优化
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2021-09-16 DOI: 10.53070/bbd.990245
Mehmet Akpamukçu, Abdullah Ateş
In this study, the parameters of the distribution functions were adjusted with the optimization to optimization approach to improve the performance of the distribution function-based monarch butterfly optimization algorithm (MBO). For this, the random number generation processes, which greatly affect the flow of stochastic algorithms, were examined and the effect of distribution functions on these processes was determined. Then, the importance of parameter selection in the operation of distribution functions has been determined. It has been seen that the distribution function will be more effective with appropriate parameter selections. At this point, the distribution functions that can be used in the random number generation in the main target algorithm were tried to be determined with appropriate parameters with an upper auxiliary optimization algorithm. In conclusion; with the approach of optimization to optimization, the performance of the target algorithm has been tried to be increased and concrete results are presented in comparison with the tests made on the most used benchmark functions in the literature.
在本研究中,采用优化到优化的方法对分布函数的参数进行调整,以提高基于分布函数的帝王蝶优化算法(MBO)的性能。为此,研究了对随机算法流有很大影响的随机数生成过程,并确定了分布函数对这些过程的影响。然后,确定了参数选择在分布函数运算中的重要性。已经看到,通过适当的参数选择,分布函数将更加有效。在这一点上,可以在主目标算法中的随机数生成中使用的分布函数试图通过上部辅助优化算法以适当的参数来确定。总之;通过从优化到优化的方法,试图提高目标算法的性能,并与文献中最常用的基准函数的测试结果进行了比较,给出了具体的结果。
{"title":"Optimizasyonun Optimizasyonu Yaklaşımıyla Dağılım Fonksiyonu Tabanlı Kral Kelebeği Optimizasyon Algoritmasının Performansının Artırılması","authors":"Mehmet Akpamukçu, Abdullah Ateş","doi":"10.53070/bbd.990245","DOIUrl":"https://doi.org/10.53070/bbd.990245","url":null,"abstract":"In this study, the parameters of the distribution functions were adjusted with the optimization to optimization approach to improve the performance of the distribution function-based monarch butterfly optimization algorithm (MBO). For this, the random number generation processes, which greatly affect the flow of stochastic algorithms, were examined and the effect of distribution functions on these processes was determined. Then, the importance of parameter selection in the operation of distribution functions has been determined. It has been seen that the distribution function will be more effective with appropriate parameter selections. At this point, the distribution functions that can be used in the random number generation in the main target algorithm were tried to be determined with appropriate parameters with an upper auxiliary optimization algorithm. In conclusion; with the approach of optimization to optimization, the performance of the target algorithm has been tried to be increased and concrete results are presented in comparison with the tests made on the most used benchmark functions in the literature.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43550653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Makine Öğrenmesi Yöntemlerinin Felç Riskinin Belirlenmesinde Performansı: Karşılaştırmalı bir çalışma 机器学习方法常见风险的定义:比较研究
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2021-09-16 DOI: 10.53070/bbd.990530
Özer Oğuz, Suat Bayir, Hasan Badem
{"title":"Makine Öğrenmesi Yöntemlerinin Felç Riskinin Belirlenmesinde Performansı: Karşılaştırmalı bir çalışma","authors":"Özer Oğuz, Suat Bayir, Hasan Badem","doi":"10.53070/bbd.990530","DOIUrl":"https://doi.org/10.53070/bbd.990530","url":null,"abstract":"","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45429048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Derin Öğrenme Yöntemleri ile Sıcaklık Tahmini: Diyarbakır İli Örneği
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2021-09-16 DOI: 10.53070/bbd.990966
Aynur Sevinç, Buket Kaya
{"title":"Derin Öğrenme Yöntemleri ile Sıcaklık Tahmini: Diyarbakır İli Örneği","authors":"Aynur Sevinç, Buket Kaya","doi":"10.53070/bbd.990966","DOIUrl":"https://doi.org/10.53070/bbd.990966","url":null,"abstract":"","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42792299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Comparative Performance Evaluations of SC and MC VLC Systems in Underwater Environments 水下环境下SC与MC VLC系统性能比较研究
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2021-09-16 DOI: 10.53070/bbd.990734
M. Güçlü, Burak Besceli, E. Polat, Timurhan Devellioglu, Gökberk Tamer, Nuh Mehmet Küçükusta, Enver Faruk Tanrikulu, A. Özen
{"title":"A Comparative Performance Evaluations of SC and MC VLC Systems in Underwater Environments","authors":"M. Güçlü, Burak Besceli, E. Polat, Timurhan Devellioglu, Gökberk Tamer, Nuh Mehmet Küçükusta, Enver Faruk Tanrikulu, A. Özen","doi":"10.53070/bbd.990734","DOIUrl":"https://doi.org/10.53070/bbd.990734","url":null,"abstract":"","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45535363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Konu benzerliğine dayalı makale tavsiye sistemi
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2021-09-16 DOI: 10.53070/bbd.990438
Esra Gündoğan, M. Kaya
{"title":"Konu benzerliğine dayalı makale tavsiye sistemi","authors":"Esra Gündoğan, M. Kaya","doi":"10.53070/bbd.990438","DOIUrl":"https://doi.org/10.53070/bbd.990438","url":null,"abstract":"","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44087287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yapay Sinir Ağı (YSA) Kullanarak Farklı Kaynaklardan Türkiye’de Elektrik Enerjisi Üretim Potansiyelinin Tahmini 使用Yapay Sinir网络(YSA)估计土耳其不同来源的发电潜力
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2021-09-16 DOI: 10.53070/bbd.991039
Harun Işık, Mustafa Şeker
— The demand for electrical energy in the world is increasing day by day. It is of great importance to make long-term electricity production forecasts in terms of meeting the increasing demand and determining the economic value of the generation investments that will be planned to be realized. In this study, an artificial neural network (ANN) based estimation methodology is presented for energy production forecasting using energy indicators such as Turkey's installed power capacity, gross electricity production
--世界上对电能的需求与日俱增。就满足日益增长的需求和确定计划实现的发电投资的经济价值而言,进行长期电力生产预测至关重要。在这项研究中,提出了一种基于人工神经网络(ANN)的能源生产预测方法,该方法使用土耳其的装机容量、总发电量等能源指标
{"title":"Yapay Sinir Ağı (YSA) Kullanarak Farklı Kaynaklardan Türkiye’de Elektrik Enerjisi Üretim Potansiyelinin Tahmini","authors":"Harun Işık, Mustafa Şeker","doi":"10.53070/bbd.991039","DOIUrl":"https://doi.org/10.53070/bbd.991039","url":null,"abstract":"— The demand for electrical energy in the world is increasing day by day. It is of great importance to make long-term electricity production forecasts in terms of meeting the increasing demand and determining the economic value of the generation investments that will be planned to be realized. In this study, an artificial neural network (ANN) based estimation methodology is presented for energy production forecasting using energy indicators such as Turkey's installed power capacity, gross electricity production","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45819829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computer Science-AGH
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1