首页 > 最新文献

Computer Science-AGH最新文献

英文 中文
Olayla İlgili Potansiyel Sinyalleri Kullanarak Şizofreninin Analizi ve Sınıflandırılması 精神分裂症的即时信息分析与分类
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2022-09-16 DOI: 10.53070/bbd.1173093
Anıl Aksöz, Doğukan Akyüz, Furkan Bayir, Nevzat Yildiz, Fırat Orhanbulucu, Fatma Latifoğlu
Şizofreni (SZ), dünya çapında birçok insanı etkileyen ve erken teşhis ve tedavi edilmediği takdirde ölüme neden olan nöropsikiyatrik bir hastalıktır. Erken tanı için yaygın olarak kullanılan yöntemlerden biri elektroensefalografidir (EEG). Sinyal işleme ve makine öğrenme yöntemlerinin EEG sinyallerine uygulanması, SZ hastalığını belirlemek isteyen uzmanlara ve araştırmacılara destek olabilir. Bu çalışmada, SZ hastası ve sağlıklı kontrol grubuna işitsel uyaranların gönderilmesi sonucunda kaydedilen EEG sinyallerinden olaya bağlı potansiyel (OİP) sinyalleri elde edilmiştir. Bu sinyallerden öznitelikler olarak P300 genlik-gecikme, hjorth parametreleri ve entropi değerleri hesaplanmıştır. Elde edilen özellikler, SZ hastalarını sağlıklı kontrol grubundan ayırt etmek için Destek Vektör Makineleri (DVM), K-En Yakın Komşu (KEYK) ve Yapay Sinir Ağları (YSA) sınıflandırıcıları ile değerlendirildi. Bu çalışmada en başarılı sonuç %93,9 doğruluk oranı ile YSA sınıflandırıcısında elde edilmiştir.
精神分裂症(SZ)是一种影响世界各地许多人的神经精神疾病,并且没有得到早期诊断和治愈。早期检测的常见用途之一是电描记术(EEG)。信号处理和机器学习方法在脑电信号中的应用,可以得到想要识别SZ疾病的专家和研究人员的支持。在这项研究中,SZ患者和健康对照组收到了与作为听觉警报传输结果记录的EEG信号发生率相关的潜在信号。这些信号的特征是通过P300青年延迟、激素参数和熵值来计算的。通过支持向量机(DVM)、K-最近邻居(KEYK)和Yapay Sinir网络(YSA)类评估所接收的特征,以区分SZ患者和健康对照组。这项研究中最成功的结果是在YSA课堂上的93.9%。
{"title":"Olayla İlgili Potansiyel Sinyalleri Kullanarak Şizofreninin Analizi ve Sınıflandırılması","authors":"Anıl Aksöz, Doğukan Akyüz, Furkan Bayir, Nevzat Yildiz, Fırat Orhanbulucu, Fatma Latifoğlu","doi":"10.53070/bbd.1173093","DOIUrl":"https://doi.org/10.53070/bbd.1173093","url":null,"abstract":"Şizofreni (SZ), dünya çapında birçok insanı etkileyen ve erken teşhis ve tedavi edilmediği takdirde ölüme neden olan nöropsikiyatrik bir hastalıktır. Erken tanı için yaygın olarak kullanılan yöntemlerden biri elektroensefalografidir (EEG). Sinyal işleme ve makine öğrenme yöntemlerinin EEG sinyallerine uygulanması, SZ hastalığını belirlemek isteyen uzmanlara ve araştırmacılara destek olabilir. Bu çalışmada, SZ hastası ve sağlıklı kontrol grubuna işitsel uyaranların gönderilmesi sonucunda kaydedilen EEG sinyallerinden olaya bağlı potansiyel (OİP) sinyalleri elde edilmiştir. Bu sinyallerden öznitelikler olarak P300 genlik-gecikme, hjorth parametreleri ve entropi değerleri hesaplanmıştır. Elde edilen özellikler, SZ hastalarını sağlıklı kontrol grubundan ayırt etmek için Destek Vektör Makineleri (DVM), K-En Yakın Komşu (KEYK) ve Yapay Sinir Ağları (YSA) sınıflandırıcıları ile değerlendirildi. Bu çalışmada en başarılı sonuç %93,9 doğruluk oranı ile YSA sınıflandırıcısında elde edilmiştir.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47458233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mini U-Net Tabanlı Göz bebeği Merkezi Yerelleştirmesi 基于迷你U-Net的婴儿中心本地化
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2022-09-16 DOI: 10.53070/bbd.1173482
Kenan Donuk, D. Hanbay
Göz takip algoritmalarında önemli bir yere sahip olan göz bebeği merkezinin yerini belirlemek için geçmişten günümüze birçok yöntem kullanılmıştır. Bu yöntemler genellikle şekil-özellik ve görünüm temellidir. Şekil-özellik tabanlı yöntemler, iris ve göz bebeğinin yerini belirlemek için morfolojik görüntü işleme tekniklerini, gözün değişmez geometrik özelliklerini ve kızılötesi ışığı kullanır. Bu yöntemler ışık, düşük çözünürlük gibi gerçek dünya koşullarından etkilenir. Buna karşılık, görünüm temelli yöntemler bu koşullara daha az duyarlıdır. Bu çalışmada, göz özelliklerini otomatik olarak öğrenen ve göz bebeği merkezi lokalizasyonu gerçekleştiren görünüm tabanlı yöntemlerden biri olan Mini U-Net ağı önerilmiştir. Önerilen ağ, göz bebeği merkezi yerelleştirmesi için halka açık GI4E veri seti kullanılarak değerlendirildi. Ağın test sonuçlarında maksimum normalize edilmiş hata kriterine göre ölçümler yapılmıştır. Buna göre göz bebeğinin merkezi %98,40 doğrulukla belirlendi. Önerilen ağ, en son teknolojik yöntemlerle karşılaştırılmış ve önerilen ağın performansı ortaya konmuştur.
眼睛跟踪算法一直以来都在以多种方式用于识别婴儿眼睛中心的位置。这些方法通常基于形状和外观。基于设计的方法,虹膜和眼睛使用形态学图像处理技术来识别孩子的位置、不透明的几何特性和红外光。Bu yöntemlerışık,düşükçözünürlük gibi gerçek dünya koşullarından etkilenir。相反,基本的外观方式对这些条件不那么敏感。在这项研究中,迷你U-Net网络是最复杂的视觉特征之一,可以自动发现和执行眼睛婴儿的位置。使用开放的GI4E数据库集对所提出的网络进行评估,以定位儿童的眼睛中心。根据网络测试结果中的最大归一化误差标准进行测量。因此,婴儿眼睛的中心已经确定了98.40%的准确率。将提出的网络与最新的技术方法进行了比较,并得出了提出的网络性能。
{"title":"Mini U-Net Tabanlı Göz bebeği Merkezi Yerelleştirmesi","authors":"Kenan Donuk, D. Hanbay","doi":"10.53070/bbd.1173482","DOIUrl":"https://doi.org/10.53070/bbd.1173482","url":null,"abstract":"Göz takip algoritmalarında önemli bir yere sahip olan göz bebeği merkezinin yerini belirlemek için geçmişten günümüze birçok yöntem kullanılmıştır. Bu yöntemler genellikle şekil-özellik ve görünüm temellidir. Şekil-özellik tabanlı yöntemler, iris ve göz bebeğinin yerini belirlemek için morfolojik görüntü işleme tekniklerini, gözün değişmez geometrik özelliklerini ve kızılötesi ışığı kullanır. Bu yöntemler ışık, düşük çözünürlük gibi gerçek dünya koşullarından etkilenir. Buna karşılık, görünüm temelli yöntemler bu koşullara daha az duyarlıdır. Bu çalışmada, göz özelliklerini otomatik olarak öğrenen ve göz bebeği merkezi lokalizasyonu gerçekleştiren görünüm tabanlı yöntemlerden biri olan Mini U-Net ağı önerilmiştir. Önerilen ağ, göz bebeği merkezi yerelleştirmesi için halka açık GI4E veri seti kullanılarak değerlendirildi. Ağın test sonuçlarında maksimum normalize edilmiş hata kriterine göre ölçümler yapılmıştır. Buna göre göz bebeğinin merkezi %98,40 doğrulukla belirlendi. Önerilen ağ, en son teknolojik yöntemlerle karşılaştırılmış ve önerilen ağın performansı ortaya konmuştur.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47040951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jansen Bağlantısının Kinematik Analizi için Araç Kutusu Tasarımı 詹森连接化学分析工具箱的设计
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2022-09-16 DOI: 10.53070/bbd.1173829
Semir Sünkün, Berke Oğulcan Parlak, alper yıldırım, H. Yavaşoğlu
Endüstriyel robotları kullanmak, işgücü krizini ele almak ve endüstriyel teknolojileri ilerletmek için etkili bir yöntemdir. Sonuç olarak, endüstriyel robotlar giderek daha popüler hale geliyor. Ayrıca endüstriyel robotların yaygınlaşması robot tahrik mekanizmalarına olan ilgiyi artıracaktır. Bacaklı robotlar, potansiyel avantajları nedeniyle öncelikle araştırılmalıdır. Bacak mekanizmaları arasında, Jansen'in bağlantısı (JL), organik yürüme hareketi, ölçeklenebilir tasarımı ve döner girdi ile basit sürüşü nedeniyle popülerlik kazanmıştır. Bununla birlikte, JL'nin oldukça doğrusal olmayan doğası, analizini zorlaştırmaktadır. Araştırma, ayak yörüngesini görselleştiren ve kullanıcı tarafından sağlanan bağlantı uzunluklarını kullanarak JL'nin kinematik analizini gerçekleştirerek adım yüksekliğini aynı anda hesaplayan kullanıcı dostu bir araç kutusu tasarımı sağlar. Bu sayede çalışma, bacaklı robotların tasarım aşamasına önemli ölçüde katkı sağlamakta ve gereken süreyi azaltmaktadır.
这是使用工业机器人、应对压力危机和推进工业技术的有效方法。因此,工业机器人变得更加流行。此外,工业机器人的普及将增加人们对机器人通风机制的兴趣。由于潜在的优势,应该首先研究腿部机器人。在腿部机构中,詹森的连接(JL)、有机运动、可测量的设计和回位由于简单的驾驶而广受欢迎。然而,JL的性质并不完全正确,很难使其分析复杂化。该研究提供了一个用户友好的工具箱,可以使用观看者和用户提供的连接长度同时计算台阶的高度。通过这种方式,工作对于腿部机器人的设计和减少所需时间非常重要。
{"title":"Jansen Bağlantısının Kinematik Analizi için Araç Kutusu Tasarımı","authors":"Semir Sünkün, Berke Oğulcan Parlak, alper yıldırım, H. Yavaşoğlu","doi":"10.53070/bbd.1173829","DOIUrl":"https://doi.org/10.53070/bbd.1173829","url":null,"abstract":"Endüstriyel robotları kullanmak, işgücü krizini ele almak ve endüstriyel teknolojileri ilerletmek için etkili bir yöntemdir. Sonuç olarak, endüstriyel robotlar giderek daha popüler hale geliyor. Ayrıca endüstriyel robotların yaygınlaşması robot tahrik mekanizmalarına olan ilgiyi artıracaktır. Bacaklı robotlar, potansiyel avantajları nedeniyle öncelikle araştırılmalıdır. Bacak mekanizmaları arasında, Jansen'in bağlantısı (JL), organik yürüme hareketi, ölçeklenebilir tasarımı ve döner girdi ile basit sürüşü nedeniyle popülerlik kazanmıştır. Bununla birlikte, JL'nin oldukça doğrusal olmayan doğası, analizini zorlaştırmaktadır. Araştırma, ayak yörüngesini görselleştiren ve kullanıcı tarafından sağlanan bağlantı uzunluklarını kullanarak JL'nin kinematik analizini gerçekleştirerek adım yüksekliğini aynı anda hesaplayan kullanıcı dostu bir araç kutusu tasarımı sağlar. Bu sayede çalışma, bacaklı robotların tasarım aşamasına önemli ölçüde katkı sağlamakta ve gereken süreyi azaltmaktadır.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49623869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Study on Dynamic Energy Pricing in Smart Grids 智能电网动态电价研究
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2022-09-16 DOI: 10.53070/bbd.1174257
Zehva Yalçinöz, A. Kaygusuz
Üreticiler ve tüketiciler arasında karşılıklı haberleşmenin sağlandığı akıllı şebekelerde (SG) talep tarafı yük yönetimi (DSLM), yük tahmini ve bunlarla bağlantılı olan dinamik enerji fiyatlandırması günümüzde ve gelecekte büyük önem arz etmektedir. Dinamik enerji fiyatlandırması ile elde edilen sinyallerin sunucular aracılığıyla yayınlanması talep tarafı yönetim ve enerji piyasası için çok önemli bir başlıktır. Dinamik enerji fiyatlandırması tabanlı çalışmaların genelinde dağıtık üretim koşullarına rağmen enerji dengesi talep tarafı yönetim ile korunmaktadır. Enerji fiyat sinyallerinin dinamik yapıda olmasıyla ve yük tahmini ile dağıtık üretimden kaynaklanan belirsizliklere yanıt verilmektedir. Bu çalışmada talep yanıtı (DR) yöntemleri ve akıllı fiyatlandırma planları olan kullanım süresi (ToU), kritik tepe fiyatlandırması (CPP) ve gerçek zamanlı fiyatlandırma (RTP) ayrıntılı olarak incelenmiştir. Akıllı şebekelerde yapılan çalışmalar, avantajları, dezavantajları incelenmiş ve akıllı fiyat planları karşılaştırılmıştır.
在制造商和消费者之间相互通信的智能网络中,需求管理(DSLM)是当今和未来动态能源定价、预测和影响的主要挑战。这是管理需求和能源市场方面通过动态能源定价获得的信号分布的主要标题。尽管基于能源的动态活动全面扩散,但基于能源的需求管理保护了能源平衡。能源价格信号是对动态结构中能源价格分布和负荷预测所引起的不确定性的响应。在本研究中,详细分析了应用时间(ToU)、临界最高价格(CPP)和实时价格(RTP)以及响应和智能价格计划。对智能网络的工作、进展、缺点和智能成本计划进行了回顾。
{"title":"A Study on Dynamic Energy Pricing in Smart Grids","authors":"Zehva Yalçinöz, A. Kaygusuz","doi":"10.53070/bbd.1174257","DOIUrl":"https://doi.org/10.53070/bbd.1174257","url":null,"abstract":"Üreticiler ve tüketiciler arasında karşılıklı haberleşmenin sağlandığı akıllı şebekelerde (SG) talep tarafı yük yönetimi (DSLM), yük tahmini ve bunlarla bağlantılı olan dinamik enerji fiyatlandırması günümüzde ve gelecekte büyük önem arz etmektedir. Dinamik enerji fiyatlandırması ile elde edilen sinyallerin sunucular aracılığıyla yayınlanması talep tarafı yönetim ve enerji piyasası için çok önemli bir başlıktır. Dinamik enerji fiyatlandırması tabanlı çalışmaların genelinde dağıtık üretim koşullarına rağmen enerji dengesi talep tarafı yönetim ile korunmaktadır. Enerji fiyat sinyallerinin dinamik yapıda olmasıyla ve yük tahmini ile dağıtık üretimden kaynaklanan belirsizliklere yanıt verilmektedir. Bu çalışmada talep yanıtı (DR) yöntemleri ve akıllı fiyatlandırma planları olan kullanım süresi (ToU), kritik tepe fiyatlandırması (CPP) ve gerçek zamanlı fiyatlandırma (RTP) ayrıntılı olarak incelenmiştir. Akıllı şebekelerde yapılan çalışmalar, avantajları, dezavantajları incelenmiş ve akıllı fiyat planları karşılaştırılmıştır.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43029066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Novel Covid-19 Detection System Based on PSO and Hybrid Feature Using Support Vector Machines 基于支持向量机粒子群和混合特征的新型Covid-19检测系统
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2022-09-16 DOI: 10.53070/bbd.1172671
M. Ozdemir, D. Hanbay
The world first met the coronavirus (COVID-19) in Wuhan, China in December 2019. It has continued to increase its influence from the first encounter until today. The detection of this virus, which has caused the death of many, is of great importance today. There are many approaches to the detection of this disease. One of the most effective of these approaches is the detection of COVID-19 disease using chest X-Ray images. In this paper, an intelligent system was proposed to classify normal, pneumonia patients and COVID-19 patients using chest X-Ray images. The proposed system was composed of four stage. At first, all images in the dataset were pre-processed. Then for the feature extraction uniform Local Binary Pattern (LBP) and DenseNet201 deep learning models were used. Particle swarm optimization (PSO) algorithm was used to select effective features. The determined effective features were classified by support vector machine (SVM). Accuracy and AUC parameters were used as performance criteria. Evaluated accuracy and AUC values were 99.9%, 1.00, respectively. The dataset and proposed model codes are made publicly available at: https://github.com/mfatiho/covid-detection-chest-xray
2019年12月,世界首次在中国武汉遭遇冠状病毒(COVID-19)。从第一次相遇到今天,它的影响力一直在不断增加。这种已造成许多人死亡的病毒的发现在今天具有重大意义。有许多方法可以检测这种疾病。其中最有效的方法之一是使用胸部x射线图像检测COVID-19疾病。本文提出了一种利用胸部x线图像对正常人、肺炎患者和COVID-19患者进行分类的智能系统。该系统分为四个阶段。首先,对数据集中的所有图像进行预处理。然后使用均匀局部二值模式(LBP)和DenseNet201深度学习模型进行特征提取。采用粒子群优化(PSO)算法选择有效特征。利用支持向量机(SVM)对确定的有效特征进行分类。准确度和AUC参数作为性能标准。评估准确率和AUC值分别为99.9%和1.00。数据集和建议的模型代码在:https://github.com/mfatiho/covid-detection-chest-xray上公开提供
{"title":"A Novel Covid-19 Detection System Based on PSO and Hybrid Feature Using Support Vector Machines","authors":"M. Ozdemir, D. Hanbay","doi":"10.53070/bbd.1172671","DOIUrl":"https://doi.org/10.53070/bbd.1172671","url":null,"abstract":"The world first met the coronavirus (COVID-19) in Wuhan, China in December 2019. It has continued to increase its influence from the first encounter until today. The detection of this virus, which has caused the death of many, is of great importance today. There are many approaches to the detection of this disease. One of the most effective of these approaches is the detection of COVID-19 disease using chest X-Ray images. In this paper, an intelligent system was proposed to classify normal, pneumonia patients and COVID-19 patients using chest X-Ray images. The proposed system was composed of four stage. At first, all images in the dataset were pre-processed. Then for the feature extraction uniform Local Binary Pattern (LBP) and DenseNet201 deep learning models were used. Particle swarm optimization (PSO) algorithm was used to select effective features. The determined effective features were classified by support vector machine (SVM). Accuracy and AUC parameters were used as performance criteria. Evaluated accuracy and AUC values were 99.9%, 1.00, respectively. The dataset and proposed model codes are made publicly available at: https://github.com/mfatiho/covid-detection-chest-xray","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43397942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
5G Sistemleri için DL Tabanlı Kanal Tahmini 基于DL的5G系统信道访客
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2022-09-16 DOI: 10.53070/bbd.1173848
Bircan Çalişir
Bu çalışma, Derin Öğrenme ve 5G ile oluşturulan veriler kullanılarak kanal tahmini için bir evrişimsel sinir ağının (CNN) nasıl eğitileceğini gösterir. Eğitilmiş CNN, fiziksel aşağı bağlantı paylaşılan kanal (PDSCH) demodülasyon referans sinyalini (DM-RS) kullanarak tek girişli tek çıkışlı (SISO) modunda kanal tahmini gerçekleştirilmiştir. Kanal tahmini için genel yaklaşım, iletim kanalı içine değeri bilinen referans pilot sembolleri eklemek ve daha sonra bu pilot sembolleri kullanarak kanal yanıtının geri kalanını enterpolasyon yapmaktır. Kanal tahmini yapmak için derin öğrenme teknikleri de kullanılabilir. Örneğin, PDSCH kaynak ızgarasını 2 boyutlu bir görüntü olarak görüntüleyerek, kanal tahmini problemini, CNN'lerin etkili olduğu gürültü giderme veya süper çözünürlüğe benzer bir görüntü işleme problemine dönüştürebilir. Bu çalışma, bu tür eğitim verilerinin nasıl oluşturulacağını ve bir kanal tahmini uygulamasında CNN'nin nasıl eğitileceğini gösterir. Ayrıca, lineer enterpolasyon ile alınan pilot sembolleri içeren görüntüleri işlemek için CNN kanal tahmininin nasıl kullanılacağını gösterir. Bu çalışma, pratik ve mükemmel tahmin edicilere kıyasla sinir ağı kanal tahmincisinin sonuçlarını görselleştirerek sona ermektedir.
这项研究展示了如何训练进化神经网络(CNN)使用深度学习和5G生成的数据进行估计。训练后的CNN使用信道(PDSCH)演示参考信号(DM-RS)共享物理下行链路在单输入模式(SISO)中进行信道预测。信道的一般方法是将已知的参考导频符号添加到通信信道,然后使用这些导频符号输入信道的其余响应。深度学习技术也可以用于预测渠道。Örneğin、PDSCH kaynakızgarasını2 boyutlu bir görüntüolarak görünüleyerek、kanal tahmini problemini、CNN'lerin etkili olduğu gürürültügiderme veya süperçözünúrlüğe benzer bir gèrü。这项研究显示了CNN将如何在这样的训练数据和频道预测中进行训练。它还展示了CNN信道估计将如何用于处理包含线性插值的图像。这将通过将神经网络投影仪的结果与工作、实践和优秀预测结果进行比较来实现可视化。
{"title":"5G Sistemleri için DL Tabanlı Kanal Tahmini","authors":"Bircan Çalişir","doi":"10.53070/bbd.1173848","DOIUrl":"https://doi.org/10.53070/bbd.1173848","url":null,"abstract":"Bu çalışma, Derin Öğrenme ve 5G ile oluşturulan veriler kullanılarak kanal tahmini için bir evrişimsel sinir ağının (CNN) nasıl eğitileceğini gösterir. Eğitilmiş CNN, fiziksel aşağı bağlantı paylaşılan kanal (PDSCH) demodülasyon referans sinyalini (DM-RS) kullanarak tek girişli tek çıkışlı (SISO) modunda kanal tahmini gerçekleştirilmiştir. Kanal tahmini için genel yaklaşım, iletim kanalı içine değeri bilinen referans pilot sembolleri eklemek ve daha sonra bu pilot sembolleri kullanarak kanal yanıtının geri kalanını enterpolasyon yapmaktır. Kanal tahmini yapmak için derin öğrenme teknikleri de kullanılabilir. Örneğin, PDSCH kaynak ızgarasını 2 boyutlu bir görüntü olarak görüntüleyerek, kanal tahmini problemini, CNN'lerin etkili olduğu gürültü giderme veya süper çözünürlüğe benzer bir görüntü işleme problemine dönüştürebilir. Bu çalışma, bu tür eğitim verilerinin nasıl oluşturulacağını ve bir kanal tahmini uygulamasında CNN'nin nasıl eğitileceğini gösterir. Ayrıca, lineer enterpolasyon ile alınan pilot sembolleri içeren görüntüleri işlemek için CNN kanal tahmininin nasıl kullanılacağını gösterir. Bu çalışma, pratik ve mükemmel tahmin edicilere kıyasla sinir ağı kanal tahmincisinin sonuçlarını görselleştirerek sona ermektedir.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46090932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evrişimsel Sinir Ağları ile Konuşmadan Duygu Tanıma Sistemi 基于虚拟正弦网络的无对话敏感识别系统
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2022-09-16 DOI: 10.53070/bbd.1174033
Metehan Aydi̇n, Bülent Tuğrul, Yilmaz Ar
Duygular insan davranışlarını doğrudan etkileyebilir. Bu durum kişilerin iletişimde oldukları diğer kişilerin duygu durumlarını öğrenmek istemelerine neden olur. Duygu durumu bilgisi, verimliliği artırmak için birçok alanda kullanılabilir. Bu zorlu bir iştir ve veri toplamadan sınıflandırmaya kadar geniş bir çalışma süreci gerektirir. Günümüzde birçok araştırmacı, metin analizi, vücut hareketi analizi, yüz ifadeleri ve ses gibi farklı teknikleri kullanarak duyguları tanımak için çalışmaktadır. Bu çalışmada, bu problem için bir yaklaşım önerdik. Yaklaşımımız insan sesini ve evrişimsel bir sinir ağını kullanarak sınıflandırma yapar. Makalemiz tanıma sürecinin nasıl oluşturulduğunu ve nasıl çalıştığını ayrıntılı olarak açıklamaktadır.
情绪可以直接影响人类的行为。这就是为什么人们想了解接触中其他人的情绪。关于情绪的信息可以用于许多领域以提高效率。这是一项艰巨的工作,需要一个广泛的过程来对数据收集进行分类。如今,许多研究人员通过文本分析、身体运动分析、面对面和声音技术来识别情绪。在这项研究中,我们提供了一种解决这个问题的方法。Yaklaşımımşz insan sesini ve evrişimsel bir sinir ağınıkullanaak sınşflandırma yapar。我们的文章详细解释了定义过程是如何创建的以及它是如何工作的。
{"title":"Evrişimsel Sinir Ağları ile Konuşmadan Duygu Tanıma Sistemi","authors":"Metehan Aydi̇n, Bülent Tuğrul, Yilmaz Ar","doi":"10.53070/bbd.1174033","DOIUrl":"https://doi.org/10.53070/bbd.1174033","url":null,"abstract":"Duygular insan davranışlarını doğrudan etkileyebilir. Bu durum kişilerin iletişimde oldukları diğer kişilerin duygu durumlarını öğrenmek istemelerine neden olur. Duygu durumu bilgisi, verimliliği artırmak için birçok alanda kullanılabilir. Bu zorlu bir iştir ve veri toplamadan sınıflandırmaya kadar geniş bir çalışma süreci gerektirir. Günümüzde birçok araştırmacı, metin analizi, vücut hareketi analizi, yüz ifadeleri ve ses gibi farklı teknikleri kullanarak duyguları tanımak için çalışmaktadır. Bu çalışmada, bu problem için bir yaklaşım önerdik. Yaklaşımımız insan sesini ve evrişimsel bir sinir ağını kullanarak sınıflandırma yapar. Makalemiz tanıma sürecinin nasıl oluşturulduğunu ve nasıl çalıştığını ayrıntılı olarak açıklamaktadır.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43632018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification of Skin Cancer with Deep Transfer Learning Method 应用深度迁移学习方法对皮肤癌症进行分类
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2022-09-16 DOI: 10.53070/bbd.1172782
Doaa Khalid Abdulridha AL-SAEDİ, Serkan Savaş
Skin cancer is a serious health hazard for human society. This disease is developed when the pigments that produce skin color become cancerous. Dermatologists face difficulties in diagnosing skin cancer since many skin cancer colors seem identical. As a result, early diagnosis of lesions (the foundation of skin cancer) is very crucial and beneficial in totally curing skin cancer patients. Significant progress has been made in creating automated methods with the development of artificial intelligence (AI) technologies to aid dermatologists in the identification of skin cancer. The widespread acceptance of AI-powered technologies has enabled the use of a massive collection of photos of lesions and benign sores authorized by histology. This research compares six alternative transfer learning networks (deep networks) for skin cancer classification using the International Skin Imaging Collaboration (ISIC) dataset. DenseNet, Xception, InceptionResNetV2, ResNet50, and MobileNet were the transfer learning networks employed in the investigation which were successful in different studies recently. To compensate for the imbalance in the ISIC dataset, the photos of classes with low frequencies are augmented. The results show that augmentation is appropriate for the classification success, with high classification accuracies and F-scores with decreased false negatives. With an accuracy rate of 98.35%, modified DenseNet121 was the most successful model against the rest of the transfer learning nets utilized in the study.
皮肤癌是人类社会严重的健康危害。当产生皮肤颜色的色素癌变时,这种疾病就会发展起来。皮肤科医生在诊断皮肤癌时面临困难,因为许多皮肤癌的颜色似乎相同。因此,早期诊断病变(皮肤癌的基础)对于彻底治愈皮肤癌患者是至关重要和有益的。随着人工智能(AI)技术的发展,在创建自动化方法方面取得了重大进展,以帮助皮肤科医生识别皮肤癌。人工智能技术的广泛接受,使得大量病变和良性溃疡照片的使用得到了组织学的授权。本研究使用国际皮肤成像协作(ISIC)数据集比较了六种用于皮肤癌分类的可选迁移学习网络(深度网络)。DenseNet、Xception、InceptionResNetV2、ResNet50和MobileNet是研究中使用的迁移学习网络,最近在不同的研究中取得了成功。为了弥补ISIC数据集的不平衡,对低频类的照片进行了增强。结果表明,增强方法对分类成功是合适的,分类准确率高,f分数降低了假阴性。修正后的DenseNet121是研究中使用的其他迁移学习网络中最成功的模型,准确率为98.35%。
{"title":"Classification of Skin Cancer with Deep Transfer Learning Method","authors":"Doaa Khalid Abdulridha AL-SAEDİ, Serkan Savaş","doi":"10.53070/bbd.1172782","DOIUrl":"https://doi.org/10.53070/bbd.1172782","url":null,"abstract":"Skin cancer is a serious health hazard for human society. This disease is developed when the pigments that produce skin color become cancerous. Dermatologists face difficulties in diagnosing skin cancer since many skin cancer colors seem identical. As a result, early diagnosis of lesions (the foundation of skin cancer) is very crucial and beneficial in totally curing skin cancer patients. Significant progress has been made in creating automated methods with the development of artificial intelligence (AI) technologies to aid dermatologists in the identification of skin cancer. The widespread acceptance of AI-powered technologies has enabled the use of a massive collection of photos of lesions and benign sores authorized by histology. This research compares six alternative transfer learning networks (deep networks) for skin cancer classification using the International Skin Imaging Collaboration (ISIC) dataset. DenseNet, Xception, InceptionResNetV2, ResNet50, and MobileNet were the transfer learning networks employed in the investigation which were successful in different studies recently. To compensate for the imbalance in the ISIC dataset, the photos of classes with low frequencies are augmented. The results show that augmentation is appropriate for the classification success, with high classification accuracies and F-scores with decreased false negatives. With an accuracy rate of 98.35%, modified DenseNet121 was the most successful model against the rest of the transfer learning nets utilized in the study.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44133488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
An Effective Image Augmenting Technique in Detection of Lung Cancer Types 一种检测肺癌类型的有效图像增强技术
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2022-09-16 DOI: 10.53070/bbd.1173074
B. Ari, Ö. Alçin, A. Şengür
Son yıllarda derin öğrenme mimarilerinin sınıflama ve tahmin üzerine yüksek başarımlara sahip olması bu alanlara ilgiyi artırmıştır. Özellikle medikal alanlarda hastalık tanısında bilgisayar tabanlı karar destek sistemlerinin yaygınlaşması ile veri setlerinin önemi ve paylaşılması da ön plana çıkmıştır. Ancak oluşturulan veri setlerinin derin mimariler için yeterli veri sayısına sahip olmaması sınıflama performansı açısından sorun olabilmektedir. Veri miktarının artırılması ise çoğu zaman maliyetli, zaman alıcı ve ilgili uzmanın her zaman bulunamaması sebebiyle mümkün olamamaktadır. Bahsedilen durumlar veri çoğullama yöntemlerinin devreye girmesini ve bu alana yönelmeyi gerektirmiştir. Bu çalışmada Dalgacık aktivasyon fonksiyonlu Aşırı Öğrenme Makinası Oto Kodlayıcı (D-AÖM-OK) tabanlı veri artırma yöntemi önerilmiştir. Önerilen yöntem dünyadaki kanser oranının en büyük yüzdesini içeren akciğer kanser sınıflaması üzerinde test edilmiştir. Çoğullanan eğitim veri seti GoogLeNet mimarisine giriş olarak uygulanmıştır. D-AÖM-OK’ın performansı çoğullanmamış ve geleneksel çoğullama yöntemleri ile karşılaştırılmıştır. Önerilen yöntem çoğullanmamış duruma kıyasla %11,12, klasik yöntemlerle çoğullanmış veri setine göre ise %2,55 oranında daha yüksek başarım göstermektedir.
在过去的几年里,它增加了人们对这些领域的兴趣,比如深度学习架构师的课程和预测。Özellikle medikal alanlada hastalık tanısında bilgisayar tabanlıkarar destek systemtemlerinin yaygınlaşmasıile veri setlerininönemi ve paylaşılmasıdaön planaçıkmıştır。然而,由于类性能的原因,数据集的创建可能没有足够的数据供深度架构师使用。数据的增加并不总是可能的,因为大部分时间都是成本,时间接收器和专家都不可用。目前的情况是,大多数儿童的数据方法应该在这一领域进行传播和管理。在本研究中,Dalgavik激活函数提供了一种基于D-AÖM-OK的自动数据增量方法。所提出的方法在世界上癌症类癌症的最高百分比上进行了测试。最常用的教育数据集被用作GoogLeNet架构的输入。将D-AÖM-OK的性能与非增殖和传统乘法方法进行了比较。根据一系列经典数据集,所提出的方法是未使用状态的11.12%,高于2.55%。
{"title":"An Effective Image Augmenting Technique in Detection of Lung Cancer Types","authors":"B. Ari, Ö. Alçin, A. Şengür","doi":"10.53070/bbd.1173074","DOIUrl":"https://doi.org/10.53070/bbd.1173074","url":null,"abstract":"Son yıllarda derin öğrenme mimarilerinin sınıflama ve tahmin üzerine yüksek başarımlara sahip olması bu alanlara ilgiyi artırmıştır. Özellikle medikal alanlarda hastalık tanısında bilgisayar tabanlı karar destek sistemlerinin yaygınlaşması ile veri setlerinin önemi ve paylaşılması da ön plana çıkmıştır. Ancak oluşturulan veri setlerinin derin mimariler için yeterli veri sayısına sahip olmaması sınıflama performansı açısından sorun olabilmektedir. Veri miktarının artırılması ise çoğu zaman maliyetli, zaman alıcı ve ilgili uzmanın her zaman bulunamaması sebebiyle mümkün olamamaktadır. Bahsedilen durumlar veri çoğullama yöntemlerinin devreye girmesini ve bu alana yönelmeyi gerektirmiştir. Bu çalışmada Dalgacık aktivasyon fonksiyonlu Aşırı Öğrenme Makinası Oto Kodlayıcı (D-AÖM-OK) tabanlı veri artırma yöntemi önerilmiştir. Önerilen yöntem dünyadaki kanser oranının en büyük yüzdesini içeren akciğer kanser sınıflaması üzerinde test edilmiştir. Çoğullanan eğitim veri seti GoogLeNet mimarisine giriş olarak uygulanmıştır. D-AÖM-OK’ın performansı çoğullanmamış ve geleneksel çoğullama yöntemleri ile karşılaştırılmıştır. Önerilen yöntem çoğullanmamış duruma kıyasla %11,12, klasik yöntemlerle çoğullanmış veri setine göre ise %2,55 oranında daha yüksek başarım göstermektedir.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42267632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Konuşma Duygu Tanıma için Akustik Özelliklere Dayalı LSTM Tabanlı Bir Yaklaşım 基于LSTM的登录声学属性确定语音表情
IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2022-06-21 DOI: 10.53070/bbd.1113379
Kenan Donuk, D. Hanbay
Konuşma duygu tanıma, konuşma sinyallerinden insan duygularını gerçek zamanlı olarak tanıyabilen aktif bir insan-bilgisayar etkileşimi alanıdır. Bu alanda yapılan tanıma görevi, duyguların karmaşıklığı nedeniyle zorlu bir sınıflandırma örneğidir. Etkili bir sınıflandırma işleminin yapılabilmesi yüksek seviyeli derin özelliklere ve uygun bir derin öğrenme modeline bağlıdır. Konuşma duygu tanıma alanında yapılmış birçok sınıflandırma çalışması mevcuttur. Bu çalışmalarda konuşma verilerinden duyguların doğru bir şekilde çıkarılması için birçok farklı model ve özellik birleşimi önerilmiştir. Bu makalede konuşma duygu tanıma görevi için bir sistem önerilmektedir. Bu sistemde konuşma duygu tanıma için uzun-kısa süreli bellek tabanlı bir derin öğrenme modeli önerilmiştir. Önerilen sistem ön-işlem, özellik çıkarma, özellik birleşimi, uzun-kısa süreli bellek ve sınıflandırma olmak üzere dört aşamadan oluşmaktadır. Önerilen sistemde konuşma verilerine ilk olarak kırpma ve ön-vurgu ön-işlemleri uygulanır. Bu işlemlerden sonra elde edilen konuşma verilerinden Mel Frekans Kepstrum Katsayıları, Sıfır Geçiş Oranı ve Kök Ortalama Kare Enerji akustik özellikleri çıkarılarak birleştirilir. Birleştirilen bu özelliklerin uzamsal bilgilerinin yanında zaman içindeki akustik değişimleri sistemde önerilen uzun-kısa süreli bellek ve buna bağlı bir derin sinir ağı modeliyle öğrenilir. Son olarak softmax aktivasyon fonksiyonu ile öğrenilen bilgiler 8 farklı duyguya sınıflandırılır. Önerilen sistem RAVDESS ve TESS veri setlerinin birlikte kullanıldığı bir veri kümesinde test edilmiştir. Eğitim, doğrulama ve test sonuçlarında sırasıyla %99.87 , %85.14 , %88.92 oranlarında doğruluklar ölçülmüştür. Sonuçlar, son teknoloji çalışmalardaki doğruluklarla kıyaslanmış önerilen sistemin başarısı ortaya konmuştur.
语音的定义是一种主动的人机交互,它实际上可以从语音信号中识别人类的情绪。这个领域的定义是一个由于情感的复杂性而导致的困难类别的例子。主动课堂过程的表现取决于高水平的深度特征和合适的深度学习模型。Konuşma duygu tanıma alanında yapılmışbirçok sınıflandırmaçalışsımevcuttur。在这些研究中,已经提出了许多不同的模型和特征来校正语音数据中的情绪。这是一个系统。在该系统中,提出了一种基于长期记忆的学习模型来定义语音的情感。该系统由预处理、属性去除、属性组合、长期记忆和分类四个阶段组成。所提出的系统将首次崩溃和预调应用于语音数据。在这些程序之后,梅尔频率Kepstrum大教堂将与零过渡区的声学特征和Kare Energy的核心调解相结合。随着这些特征的空间信息的结合,声学随时间的变化将通过长期记忆和系统上提供的深度神经网络模型来学习。最后,从softmax激活函数学习到的信息以8种不同的方式进行分类。在RAVDESS和TESS数据集的数据集上对所提出的系统进行了测试。Eğitim,doğrulama ve测试sonuçlarında sırasıyla%99.87,%85.14,%88.92 oralarıanda doğruluklarölçülmüştür。结果是所提出的系统的成功与最新技术工作的真实性相比较。
{"title":"Konuşma Duygu Tanıma için Akustik Özelliklere Dayalı LSTM Tabanlı Bir Yaklaşım","authors":"Kenan Donuk, D. Hanbay","doi":"10.53070/bbd.1113379","DOIUrl":"https://doi.org/10.53070/bbd.1113379","url":null,"abstract":"Konuşma duygu tanıma, konuşma sinyallerinden insan duygularını gerçek zamanlı olarak tanıyabilen aktif bir insan-bilgisayar etkileşimi alanıdır. Bu alanda yapılan tanıma görevi, duyguların karmaşıklığı nedeniyle zorlu bir sınıflandırma örneğidir. Etkili bir sınıflandırma işleminin yapılabilmesi yüksek seviyeli derin özelliklere ve uygun bir derin öğrenme modeline bağlıdır. Konuşma duygu tanıma alanında yapılmış birçok sınıflandırma çalışması mevcuttur. Bu çalışmalarda konuşma verilerinden duyguların doğru bir şekilde çıkarılması için birçok farklı model ve özellik birleşimi önerilmiştir. Bu makalede konuşma duygu tanıma görevi için bir sistem önerilmektedir. Bu sistemde konuşma duygu tanıma için uzun-kısa süreli bellek tabanlı bir derin öğrenme modeli önerilmiştir. Önerilen sistem ön-işlem, özellik çıkarma, özellik birleşimi, uzun-kısa süreli bellek ve sınıflandırma olmak üzere dört aşamadan oluşmaktadır. Önerilen sistemde konuşma verilerine ilk olarak kırpma ve ön-vurgu ön-işlemleri uygulanır. Bu işlemlerden sonra elde edilen konuşma verilerinden Mel Frekans Kepstrum Katsayıları, Sıfır Geçiş Oranı ve Kök Ortalama Kare Enerji akustik özellikleri çıkarılarak birleştirilir. Birleştirilen bu özelliklerin uzamsal bilgilerinin yanında zaman içindeki akustik değişimleri sistemde önerilen uzun-kısa süreli bellek ve buna bağlı bir derin sinir ağı modeliyle öğrenilir. Son olarak softmax aktivasyon fonksiyonu ile öğrenilen bilgiler 8 farklı duyguya sınıflandırılır. Önerilen sistem RAVDESS ve TESS veri setlerinin birlikte kullanıldığı bir veri kümesinde test edilmiştir. Eğitim, doğrulama ve test sonuçlarında sırasıyla %99.87 , %85.14 , %88.92 oranlarında doğruluklar ölçülmüştür. Sonuçlar, son teknoloji çalışmalardaki doğruluklarla kıyaslanmış önerilen sistemin başarısı ortaya konmuştur.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45460322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computer Science-AGH
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1