{"title":"Effects of Fit Clearance and Viscosity of Lubricating Oil on Shaft Center Orbit of Camshaft","authors":"Zishan Zhang, Yu Wang","doi":"10.56578/peet020104","DOIUrl":"https://doi.org/10.56578/peet020104","url":null,"abstract":"","PeriodicalId":422845,"journal":{"name":"Power Engineering and Engineering Thermophysics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125890188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Semiconductor-Based Refrigeration System for Cooling of Water: Design, Construction, and Performance Tests","authors":"T. O. Oni, S. J. Aliyu, B. Adaramola, O. Rominiyi","doi":"10.56578/peet020102","DOIUrl":"https://doi.org/10.56578/peet020102","url":null,"abstract":"","PeriodicalId":422845,"journal":{"name":"Power Engineering and Engineering Thermophysics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130258021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heqiang Tian, Bin Tian, Debao Meng, Q. Xu, Xiaoqing Dang
{"title":"Influence of Cooling and Lubrication Parameters on Robot Bone Grinding Temperature and Prediction Modeling","authors":"Heqiang Tian, Bin Tian, Debao Meng, Q. Xu, Xiaoqing Dang","doi":"10.56578/peet020103","DOIUrl":"https://doi.org/10.56578/peet020103","url":null,"abstract":"","PeriodicalId":422845,"journal":{"name":"Power Engineering and Engineering Thermophysics","volume":"103 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117313526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental Investigation on the Effect of TiO2 Nanoparticles Emulsion in Water on Emissions and Performance Characteristics of DI Diesel Engine","authors":"Razieh Abbasgholi Rezaei","doi":"10.56578/peet020101","DOIUrl":"https://doi.org/10.56578/peet020101","url":null,"abstract":"","PeriodicalId":422845,"journal":{"name":"Power Engineering and Engineering Thermophysics","volume":" 41","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132075623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Given the geometric nonlinearity of the piezoelectric cantilever beam, this study establishes a distributed parameter model of the nonlinear bi-stable cantilever piezoelectric energy harvester, following the generalized Hamilton variational principle. The analytical expressions of the dynamic response were obtained for the energy harvesting system using Galerkin modal decomposition and the multi-scale method. The investigation focuses on how the performance of the energy harvesting system is influenced by the gap distance between magnets, external excited amplitude, mechanical damping ratio and external load resistance. The calculation results were compared with those obtained neglecting the geometric nonlinearity of the beam. The results show that the system responses contain jump and multiple solutions. The consideration of the geometrical nonlinearity significantly amplified the peak displacement and peak output power of the intra-well and inter-well motions. There is an evident hardening effect of the inter-well motion frequency response curve. By reasonable adjusting the parameters, it is possible to improve the output power of the piezoelectric energy harvesting system and broaden the operating frequency of the system.
{"title":"Parametric Analysis of Nonlinear Bi-Stable Piezoelectric Energy Harvester Based on Multi-Scale Method","authors":"Dawei Man, Gaozheng Xu, Huaiming Xu, Dehe Xu","doi":"10.56578/peet010104","DOIUrl":"https://doi.org/10.56578/peet010104","url":null,"abstract":"Given the geometric nonlinearity of the piezoelectric cantilever beam, this study establishes a distributed parameter model of the nonlinear bi-stable cantilever piezoelectric energy harvester, following the generalized Hamilton variational principle. The analytical expressions of the dynamic response were obtained for the energy harvesting system using Galerkin modal decomposition and the multi-scale method. The investigation focuses on how the performance of the energy harvesting system is influenced by the gap distance between magnets, external excited amplitude, mechanical damping ratio and external load resistance. The calculation results were compared with those obtained neglecting the geometric nonlinearity of the beam. The results show that the system responses contain jump and multiple solutions. The consideration of the geometrical nonlinearity significantly amplified the peak displacement and peak output power of the intra-well and inter-well motions. There is an evident hardening effect of the inter-well motion frequency response curve. By reasonable adjusting the parameters, it is possible to improve the output power of the piezoelectric energy harvesting system and broaden the operating frequency of the system.","PeriodicalId":422845,"journal":{"name":"Power Engineering and Engineering Thermophysics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127858005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During the operation of the ground source heat pump (GSHP) system, the operations of the chiller system should be controlled by adjusting the difference between water temperature and wet bulb temperature. Therefore, it is important to consider the control strategy for the switch time (ST) and wet bulb temperature difference (WBTD) of the chiller system. This paper sets up two control strategies, namely, the strategy to control the ST of system operations, and the strategy to control the WBTD. Then, theoretical modeling was carried out to compare the system energy consumption and borehole wall temperature under different strategies. The modeling results were referred to optimize the control strategy for composite GSHP systems. It was found that, under the ST control strategy, the best wet bulb temperature is 2℃, and the best chiller operation hours are 3h; under the WBTD control strategy, the best wet bulb temperature is 3.5℃, and the best WBTD is 1.5℃. In addition, the ST control strategy is superior to the WBTD control strategy, in terms of system energy consumption, borehole wall temperature and initial investment.
{"title":"Optimal Operation Control of Composite Ground Source Heat Pump System","authors":"Liang Wang, Shudan Deng","doi":"10.56578/peet010107","DOIUrl":"https://doi.org/10.56578/peet010107","url":null,"abstract":"During the operation of the ground source heat pump (GSHP) system, the operations of the chiller system should be controlled by adjusting the difference between water temperature and wet bulb temperature. Therefore, it is important to consider the control strategy for the switch time (ST) and wet bulb temperature difference (WBTD) of the chiller system. This paper sets up two control strategies, namely, the strategy to control the ST of system operations, and the strategy to control the WBTD. Then, theoretical modeling was carried out to compare the system energy consumption and borehole wall temperature under different strategies. The modeling results were referred to optimize the control strategy for composite GSHP systems. It was found that, under the ST control strategy, the best wet bulb temperature is 2℃, and the best chiller operation hours are 3h; under the WBTD control strategy, the best wet bulb temperature is 3.5℃, and the best WBTD is 1.5℃. In addition, the ST control strategy is superior to the WBTD control strategy, in terms of system energy consumption, borehole wall temperature and initial investment.","PeriodicalId":422845,"journal":{"name":"Power Engineering and Engineering Thermophysics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115949470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although many fluidized systems are not vertically oriented, little research has been done on fluidization within inclined channels. The fluidization of the gravitational force and the tensile force may be substantially opposing in the vertical system. The theory of gravitational field fluidization, which is related to industrial fluidization processes like coal gasification, iron ore reduction, and catalytic cracking and calls for the use of standing tubes or angled risers, has to be developed in order to encompass various orientations. Without underlying theories, engineers must rely on vertical fluidization equations to build these sloping systems. A significant barrier to improving the design and optimization of new solid circulation systems is the tendency of fluidization. Based on historical developments and theoretical progress, the study presents an overview of recent advancements of liquid-solid fluidized beds in inclined columns. The fluidized bed is investigated as a whole by looking at the governing factors.
{"title":"Two-Phase Liquid-Solid Hydrodynamics of Inclined Fluidized Beds","authors":"Huda Ridha, N. K. F. Al-Abboodi","doi":"10.56578/peet010105","DOIUrl":"https://doi.org/10.56578/peet010105","url":null,"abstract":"Although many fluidized systems are not vertically oriented, little research has been done on fluidization within inclined channels. The fluidization of the gravitational force and the tensile force may be substantially opposing in the vertical system. The theory of gravitational field fluidization, which is related to industrial fluidization processes like coal gasification, iron ore reduction, and catalytic cracking and calls for the use of standing tubes or angled risers, has to be developed in order to encompass various orientations. Without underlying theories, engineers must rely on vertical fluidization equations to build these sloping systems. A significant barrier to improving the design and optimization of new solid circulation systems is the tendency of fluidization. Based on historical developments and theoretical progress, the study presents an overview of recent advancements of liquid-solid fluidized beds in inclined columns. The fluidized bed is investigated as a whole by looking at the governing factors.","PeriodicalId":422845,"journal":{"name":"Power Engineering and Engineering Thermophysics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113966003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Fragassa, Marco Arru, F. Capelli, A. Pavlović, M. Gherardi
The atmospheric pressure air plasma technology is based on the general principle of transforming the air into an ideal conductor of plasma energy thanks to the application of an electric potential difference able to ionize the molecules. Applying the principle to the human surgery, it comes to be possible to assure an energy transfer from plasma-generator devices to the human tissue in a relatively simple way: passing through the air, with exceptionally limited effects in terms of tissue heating. Such a condition is very useful to assure effective treatments in surgery: less thermal damage, fewer side effects on the patient. This is also what emerged during the use of innovative devices embedding the Airplasma® technology (by Otech Industry S.r.l.), where temperatures on human tissues were measured stably below 50°C. However, the profiles assumed by the temperature along the different electrodes during the operating conditions are rather unclear. This knowledge is essential to improve the efficiency of the electrodes (through their redesign in shapes and materials) as well as to reduce the invasiveness of surgical interventions. The present work had the purpose of characterizing the most common electrodes thanks to temperature measurements carried out by infrared sensors respect to different operating conditions. A simplified finite element model was also developed to support the optimal redesign of electrodes.
大气压空气等离子体技术是基于将空气转化为等离子体能量的理想导体的一般原理,这要归功于能够电离分子的电位差的应用。将这一原理应用到人体手术中,就有可能以一种相对简单的方式确保能量从等离子体发生器设备转移到人体组织:通过空气,在组织加热方面的影响非常有限。这样的条件是非常有用的,以确保有效的治疗手术:更少的热损伤,更少的副作用,对病人。这也是在使用嵌入Airplasma®技术的创新设备(由Otech Industry S.r.l.)期间出现的,其中人体组织的温度稳定地测量在50°C以下。然而,在工作条件下,沿不同电极的温度所假设的曲线是相当不清楚的。这些知识对于提高电极的效率(通过重新设计电极的形状和材料)以及减少手术干预的侵入性至关重要。由于红外传感器在不同的工作条件下进行了温度测量,本工作的目的是表征最常见的电极。建立了简化的有限元模型,以支持电极的优化再设计。
{"title":"Measuring Temperatures Generated by Air Plasma Technology","authors":"C. Fragassa, Marco Arru, F. Capelli, A. Pavlović, M. Gherardi","doi":"10.56578/peet010108","DOIUrl":"https://doi.org/10.56578/peet010108","url":null,"abstract":"The atmospheric pressure air plasma technology is based on the general principle of transforming the air into an ideal conductor of plasma energy thanks to the application of an electric potential difference able to ionize the molecules. Applying the principle to the human surgery, it comes to be possible to assure an energy transfer from plasma-generator devices to the human tissue in a relatively simple way: passing through the air, with exceptionally limited effects in terms of tissue heating. Such a condition is very useful to assure effective treatments in surgery: less thermal damage, fewer side effects on the patient. This is also what emerged during the use of innovative devices embedding the Airplasma® technology (by Otech Industry S.r.l.), where temperatures on human tissues were measured stably below 50°C. However, the profiles assumed by the temperature along the different electrodes during the operating conditions are rather unclear. This knowledge is essential to improve the efficiency of the electrodes (through their redesign in shapes and materials) as well as to reduce the invasiveness of surgical interventions. The present work had the purpose of characterizing the most common electrodes thanks to temperature measurements carried out by infrared sensors respect to different operating conditions. A simplified finite element model was also developed to support the optimal redesign of electrodes.","PeriodicalId":422845,"journal":{"name":"Power Engineering and Engineering Thermophysics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115020860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper intends to improve the hydrogen production efficiency of the electrolysis cells, fully utilize wind energy, and ensure the reliability of power supply. For this purpose, the authors put forward a capacity optimization configuration for non-grid-connected wind-hydrogen hybrid energy storage system, in view of the features of hydrogen production efficiency. The working interval of the electrolytic cell was optimized by analyzing the said features. Considering the features of battery charge/discharge, equipment capacity and power, the authors formulated the energy management strategy applicable to six working conditions, established the quantitative multi-objective function of system cost and reliability, and solved the optimization model by the fast non-dominant sorting genetic algorithm (NSGA)-II. In this way, the optimal combination of energy storage capacity was determined. Next, the wind velocity data of a pastoral area in Inner Mongolia was measured, and analyzed in details. The analysis results show that the electrolytic cell always operates in the optimal working area, and the optimized wind-hydrogen system is economic and reliable in power supply. The research provides a reference for practical engineering applications.
{"title":"Energy Storage Capacity Optimization of Non-Grid-Connected Wind-Hydrogen Systems: From the Perspective of Hydrogen Production Features","authors":"Xinyu Zhang, Hua Li, Jikang Wang","doi":"10.56578/peet010106","DOIUrl":"https://doi.org/10.56578/peet010106","url":null,"abstract":"This paper intends to improve the hydrogen production efficiency of the electrolysis cells, fully utilize wind energy, and ensure the reliability of power supply. For this purpose, the authors put forward a capacity optimization configuration for non-grid-connected wind-hydrogen hybrid energy storage system, in view of the features of hydrogen production efficiency. The working interval of the electrolytic cell was optimized by analyzing the said features. Considering the features of battery charge/discharge, equipment capacity and power, the authors formulated the energy management strategy applicable to six working conditions, established the quantitative multi-objective function of system cost and reliability, and solved the optimization model by the fast non-dominant sorting genetic algorithm (NSGA)-II. In this way, the optimal combination of energy storage capacity was determined. Next, the wind velocity data of a pastoral area in Inner Mongolia was measured, and analyzed in details. The analysis results show that the electrolytic cell always operates in the optimal working area, and the optimized wind-hydrogen system is economic and reliable in power supply. The research provides a reference for practical engineering applications.","PeriodicalId":422845,"journal":{"name":"Power Engineering and Engineering Thermophysics","volume":"142 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121758044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}