Bilinear and bicubic interpolations were often used in digital elevation models (DEMs), image scaling, and image restoration, with the aid of spatial transform techniques. This paper resorts to bilinear and bicubic interpolations, along with the spatial transform of images, to present the temperature distribution on a plate with a circular hole. The Dirichlet boundary conditions were applied, a rectangular grid was created, and the nodal values were calculated using the finite difference method (FDM). These methods were also employed to represent the mechanical stress distribution on a plate with a circular hole, under the presence of uniaxial stress. In this case, the nodal values were calculated using the analytical method. Experimental results show that bicubic interpolation generated continuous contours, while bilinear interpolation had a discontinuity in some cases. The results were comparative to images for similar cases when solved through ANSYS.
{"title":"Bilinear and Bicubic Interpolations for Image Presentation of Mechanical Stress and Temperature Distribution","authors":"Manikanta B. Pithani, S. Sanyal, A. Shukla","doi":"10.56578/peet010103","DOIUrl":"https://doi.org/10.56578/peet010103","url":null,"abstract":"Bilinear and bicubic interpolations were often used in digital elevation models (DEMs), image scaling, and image restoration, with the aid of spatial transform techniques. This paper resorts to bilinear and bicubic interpolations, along with the spatial transform of images, to present the temperature distribution on a plate with a circular hole. The Dirichlet boundary conditions were applied, a rectangular grid was created, and the nodal values were calculated using the finite difference method (FDM). These methods were also employed to represent the mechanical stress distribution on a plate with a circular hole, under the presence of uniaxial stress. In this case, the nodal values were calculated using the analytical method. Experimental results show that bicubic interpolation generated continuous contours, while bilinear interpolation had a discontinuity in some cases. The results were comparative to images for similar cases when solved through ANSYS.","PeriodicalId":422845,"journal":{"name":"Power Engineering and Engineering Thermophysics","volume":"392 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126974390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to realize continuous, high efficiency defrosting of air-to-air heat pumps using the effect of outdoor warm air recycling, trying to improve the coefficient of performance (COP) and total heat capacity of traditional defrosting methods like hot bypass and Joule heating. The proposed patented method recovers heat from the air change system by mixing the warm discarded air with the incoming air of the external heat exchanger. The fan of the external unit sucks the indoor air with the depression obtained by a Venturi. The warm air is ducted to the Venturi through a hole in the wall. The amount of warm air mixed to the outside air is regulated by a butterfly valve installed on the pipe from the hole to the Venturi. In this way, the air entering the external coil is warm enough to avoid frost. The energy efficiency of the system is assured, for the warm indoor air is heated with the high COP of the heat pump. Our system can achieve defrosting with a limited amount of warm air, and realize a higher overall COP than the best traditional defrosting systems. Finally, the defrosting device can be added as an option to any existing split systems.
{"title":"Continuous, High Efficiency Defrosting of Air-to-Air Heat Pumps","authors":"L. Piancastelli","doi":"10.56578/peet010102","DOIUrl":"https://doi.org/10.56578/peet010102","url":null,"abstract":"This study aims to realize continuous, high efficiency defrosting of air-to-air heat pumps using the effect of outdoor warm air recycling, trying to improve the coefficient of performance (COP) and total heat capacity of traditional defrosting methods like hot bypass and Joule heating. The proposed patented method recovers heat from the air change system by mixing the warm discarded air with the incoming air of the external heat exchanger. The fan of the external unit sucks the indoor air with the depression obtained by a Venturi. The warm air is ducted to the Venturi through a hole in the wall. The amount of warm air mixed to the outside air is regulated by a butterfly valve installed on the pipe from the hole to the Venturi. In this way, the air entering the external coil is warm enough to avoid frost. The energy efficiency of the system is assured, for the warm indoor air is heated with the high COP of the heat pump. Our system can achieve defrosting with a limited amount of warm air, and realize a higher overall COP than the best traditional defrosting systems. Finally, the defrosting device can be added as an option to any existing split systems.","PeriodicalId":422845,"journal":{"name":"Power Engineering and Engineering Thermophysics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133846622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial to the Inaugural Issue","authors":"L. Piancastelli","doi":"10.56578/peet010101","DOIUrl":"https://doi.org/10.56578/peet010101","url":null,"abstract":"","PeriodicalId":422845,"journal":{"name":"Power Engineering and Engineering Thermophysics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124601310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}