Pub Date : 2013-12-15DOI: 10.47566/2013_syv26_1-040139
J. Fernández Muñoz, M. A. Gruintal Santos, O. Zelaya Ángel, H. E. Martinez Flores
Se analizó y ajustó el modelo asintótico a los datos experimentales del proceso de deshidratación de granos de maíz nixtamalizado a 50 °C en un analizador de humedad modelo HR83 Mettler-Toledo. Las muestras fueron granos de maíz con cocción alcalina de 0.8% Ca(OH)2 a 92 °C con y sin reposo en su agua de cocción a tiempos de 0, 2, 4, 6, y 8 h. La ecuación asintótica se ajustó adecuadamente con los datos experimentales y permitió calcular la velocidad de hidratación en función del tiempo con su primera derivada. Encontramos que la velocidad de hidratación decrece rápidamente con el incremento del tiempo de deshidratación.
{"title":"Estudio del proceso de secado en un secador de halógeno de los granos de maíz nixtamalizados","authors":"J. Fernández Muñoz, M. A. Gruintal Santos, O. Zelaya Ángel, H. E. Martinez Flores","doi":"10.47566/2013_syv26_1-040139","DOIUrl":"https://doi.org/10.47566/2013_syv26_1-040139","url":null,"abstract":"Se analizó y ajustó el modelo asintótico a los datos experimentales del proceso de deshidratación de granos de maíz nixtamalizado a 50 °C en un analizador de humedad modelo HR83 Mettler-Toledo. Las muestras fueron granos de maíz con cocción alcalina de 0.8% Ca(OH)2 a 92 °C con y sin reposo en su agua de cocción a tiempos de 0, 2, 4, 6, y 8 h. La ecuación asintótica se ajustó adecuadamente con los datos experimentales y permitió calcular la velocidad de hidratación en función del tiempo con su primera derivada. Encontramos que la velocidad de hidratación decrece rápidamente con el incremento del tiempo de deshidratación.","PeriodicalId":423848,"journal":{"name":"Superficies y Vacío","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126144366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-12-01DOI: 10.47566/2012_syv25_1-040214
M. Becerril, H. Silva-Lopez, O. Zelaya-Ángel, J. R. Vargas-Garcia
Au doped CdS polycrystalline films were grown on Corning glass substrates at room temperature by co-sputtering from a CdS–Cd–Au target. Elemental Cd and Au were placed onto the CdS target covering small areas. The electrical, structural, and optical properties were analyzed as a function of Au content. The Au doped CdS polycrystalline films showed a p-type semiconductor nature. It was found that the electrical resistivity drops and the carrier concentration increases as a consequence of Au incorporation within the CdS lattice. In both cases, the changes were of several orders of magnitude.
{"title":"Au doping of CdS polycrystalline films prepared by co-sputtering of CdS–Cd-Au targets","authors":"M. Becerril, H. Silva-Lopez, O. Zelaya-Ángel, J. R. Vargas-Garcia","doi":"10.47566/2012_syv25_1-040214","DOIUrl":"https://doi.org/10.47566/2012_syv25_1-040214","url":null,"abstract":"Au doped CdS polycrystalline films were grown on Corning glass substrates at room temperature by co-sputtering from a CdS–Cd–Au target. Elemental Cd and Au were placed onto the CdS target covering small areas. The electrical, structural, and optical properties were analyzed as a function of Au content. The Au doped CdS polycrystalline films showed a p-type semiconductor nature. It was found that the electrical resistivity drops and the carrier concentration increases as a consequence of Au incorporation within the CdS lattice. In both cases, the changes were of several orders of magnitude. ","PeriodicalId":423848,"journal":{"name":"Superficies y Vacío","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127395377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.47566/2021_syv34_1-210901
C. Hernández-Vásquez, M. Gonzalez-Trujillo, Lucero Alejandra Esquivel Méndez, J. Aguilar-Hernandez, M. Albor-Aguilera
CdTe semiconductor is an absorbent material used in “tandem” photovoltaic solar cells. This material is commonly deposited by thermal evaporation presenting electrical resistivity values about of 105 W·cm to 109 W·cm. CdTe is applied in thin solar cells as p-type layer which is in contact with metal back electrode in solar cells. In the CdTe/metal junction a Schottky barrier exits; and small number of charge carriers have enough energy to get over the barrier and cross to the metal back contact. To solve part of this problem, nanostructured Te thin films were used as intermediate layers between CdTe and metal contact. Te layers whit different physical properties were deposited on CdS/CdTe structure by thermal evaporation employing different growth parameters. The electrical parameters of CdTe solar cells were influenced by p+ Te regions. p+ Te regions used as intermediate layer with large deposition time increases the FF and VOC values from 30% to 60% and 560 mV to 730 mV respectively. Also, the electrical resistivity is reduced from 106 W·cm to 103 W·cm. In this sense, Te region implemented as nanostructure allows to reduce the series resistance from 99 W to 20 W and increases the shunt resistance from 1445 W to 4424 W; Te region as thin films demonstrated not be adequate.
{"title":"Influence of Te layer on CdTe thin films and their performance on CdS/CdTe solar cells","authors":"C. Hernández-Vásquez, M. Gonzalez-Trujillo, Lucero Alejandra Esquivel Méndez, J. Aguilar-Hernandez, M. Albor-Aguilera","doi":"10.47566/2021_syv34_1-210901","DOIUrl":"https://doi.org/10.47566/2021_syv34_1-210901","url":null,"abstract":"CdTe semiconductor is an absorbent material used in “tandem” photovoltaic solar cells. This material is commonly deposited by thermal evaporation presenting electrical resistivity values about of 105 W·cm to 109 W·cm. CdTe is applied in thin solar cells as p-type layer which is in contact with metal back electrode in solar cells. In the CdTe/metal junction a Schottky barrier exits; and small number of charge carriers have enough energy to get over the barrier and cross to the metal back contact. To solve part of this problem, nanostructured Te thin films were used as intermediate layers between CdTe and metal contact. Te layers whit different physical properties were deposited on CdS/CdTe structure by thermal evaporation employing different growth parameters. The electrical parameters of CdTe solar cells were influenced by p+ Te regions. p+ Te regions used as intermediate layer with large deposition time increases the FF and VOC values from 30% to 60% and 560 mV to 730 mV respectively. Also, the electrical resistivity is reduced from 106 W·cm to 103 W·cm. In this sense, Te region implemented as nanostructure allows to reduce the series resistance from 99 W to 20 W and increases the shunt resistance from 1445 W to 4424 W; Te region as thin films demonstrated not be adequate.","PeriodicalId":423848,"journal":{"name":"Superficies y Vacío","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115022128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}