首页 > 最新文献

Superficies y Vacío最新文献

英文 中文
Estudio del proceso de secado en un secador de halógeno de los granos de maíz nixtamalizados 用卤素干燥机对硝化玉米颗粒进行干燥过程的研究
Pub Date : 2013-12-15 DOI: 10.47566/2013_syv26_1-040139
J. Fernández Muñoz, M. A. Gruintal Santos, O. Zelaya Ángel, H. E. Martinez Flores
Se analizó y ajustó el modelo asintótico a los datos experimentales del proceso de deshidratación de granos de maíz nixtamalizado a 50 °C en un analizador de humedad modelo HR83 Mettler-Toledo. Las muestras fueron granos de maíz con cocción alcalina de 0.8% Ca(OH)2 a 92 °C con y sin reposo en su agua de cocción a tiempos de 0, 2, 4, 6, y 8 h. La ecuación asintótica se ajustó adecuadamente con los datos experimentales y permitió calcular la velocidad de hidratación en función del tiempo con su primera derivada. Encontramos que la velocidad de hidratación decrece rápidamente con el incremento del tiempo de deshidratación.
摘要本研究的目的是评估玉米籽粒在50℃下脱水的实验数据的渐近模型。被烘焙烤玉米样品电池0.8%的Ca (OH) 2 - 92°C和无水躺在他的烹饪时代0、2、4、6和8小时。公式asintótica充分巩固了与试验数据并被允许在计算速度的水化作用时间与派生的第一次。我们发现水合速率随脱水时间的增加而迅速下降。
{"title":"Estudio del proceso de secado en un secador de halógeno de los granos de maíz nixtamalizados","authors":"J. Fernández Muñoz, M. A. Gruintal Santos, O. Zelaya Ángel, H. E. Martinez Flores","doi":"10.47566/2013_syv26_1-040139","DOIUrl":"https://doi.org/10.47566/2013_syv26_1-040139","url":null,"abstract":"Se analizó y ajustó el modelo asintótico a los datos experimentales del proceso de deshidratación de granos de maíz nixtamalizado a 50 °C en un analizador de humedad modelo HR83 Mettler-Toledo. Las muestras fueron granos de maíz con cocción alcalina de 0.8% Ca(OH)2 a 92 °C con y sin reposo en su agua de cocción a tiempos de 0, 2, 4, 6, y 8 h. La ecuación asintótica se ajustó adecuadamente con los datos experimentales y permitió calcular la velocidad de hidratación en función del tiempo con su primera derivada. Encontramos que la velocidad de hidratación decrece rápidamente con el incremento del tiempo de deshidratación.","PeriodicalId":423848,"journal":{"name":"Superficies y Vacío","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126144366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Au doping of CdS polycrystalline films prepared by co-sputtering of CdS–Cd-Au targets 共溅射制备cd - cd -Au多晶薄膜的Au掺杂研究
Pub Date : 2012-12-01 DOI: 10.47566/2012_syv25_1-040214
M. Becerril, H. Silva-Lopez, O. Zelaya-Ángel, J. R. Vargas-Garcia
Au doped CdS polycrystalline films were grown on Corning glass substrates at room temperature by co-sputtering from a CdS–Cd–Au target. Elemental Cd and Au were placed onto the CdS target covering small areas. The electrical, structural, and optical properties were analyzed as a function of Au content. The Au doped CdS polycrystalline films showed a p-type semiconductor nature. It was found that the electrical resistivity drops and the carrier concentration increases as a consequence of Au incorporation within the CdS lattice. In both cases, the changes were of several orders of magnitude. 
采用室温共溅射的方法,在康宁玻璃衬底上生长了金掺杂CdS多晶薄膜。元素Cd和Au被放置在覆盖小区域的Cd靶上。分析了其电学、结构和光学性质与Au含量的关系。金掺杂CdS多晶薄膜呈现p型半导体性质。结果发现,由于Au在CdS晶格内的掺入,其电阻率下降,载流子浓度增加。在这两种情况下,变化都是几个数量级。
{"title":"Au doping of CdS polycrystalline films prepared by co-sputtering of CdS–Cd-Au targets","authors":"M. Becerril, H. Silva-Lopez, O. Zelaya-Ángel, J. R. Vargas-Garcia","doi":"10.47566/2012_syv25_1-040214","DOIUrl":"https://doi.org/10.47566/2012_syv25_1-040214","url":null,"abstract":"Au doped CdS polycrystalline films were grown on Corning glass substrates at room temperature by co-sputtering from a CdS–Cd–Au target. Elemental Cd and Au were placed onto the CdS target covering small areas. The electrical, structural, and optical properties were analyzed as a function of Au content. The Au doped CdS polycrystalline films showed a p-type semiconductor nature. It was found that the electrical resistivity drops and the carrier concentration increases as a consequence of Au incorporation within the CdS lattice. In both cases, the changes were of several orders of magnitude. ","PeriodicalId":423848,"journal":{"name":"Superficies y Vacío","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127395377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Influence of Te layer on CdTe thin films and their performance on CdS/CdTe solar cells Te层对CdTe薄膜及其在CdS/CdTe太阳能电池上性能的影响
Pub Date : 1900-01-01 DOI: 10.47566/2021_syv34_1-210901
C. Hernández-Vásquez, M. Gonzalez-Trujillo, Lucero Alejandra Esquivel Méndez, J. Aguilar-Hernandez, M. Albor-Aguilera
CdTe semiconductor is an absorbent material used in “tandem” photovoltaic solar cells. This material is commonly deposited by thermal evaporation presenting electrical resistivity values about of 105 W·cm to 109 W·cm. CdTe is applied in thin solar cells as p-type layer which is in contact with metal back electrode in solar cells. In the CdTe/metal junction a Schottky barrier exits; and small number of charge carriers have enough energy to get over the barrier and cross to the metal back contact. To solve part of this problem, nanostructured Te thin films were used as intermediate layers between CdTe and metal contact. Te layers whit different physical properties were deposited on CdS/CdTe structure by thermal evaporation employing different growth parameters. The electrical parameters of CdTe solar cells were influenced by p+ Te regions. p+ Te regions used as intermediate layer with large deposition time increases the FF and VOC values from 30% to 60% and 560 mV to 730 mV respectively. Also, the electrical resistivity is reduced from 106 W·cm to 103 W·cm. In this sense, Te region implemented as nanostructure allows to reduce the series resistance from 99 W to 20 W and increases the shunt resistance from 1445 W to 4424 W;  Te region as thin films demonstrated not be adequate.
CdTe半导体是一种用于“串联”光伏太阳能电池的吸收材料。这种材料通常通过热蒸发沉积,其电阻率值约为105 W·cm至109 W·cm。CdTe作为p型层与金属背电极接触,应用于太阳能电池中。在CdTe/金属结中存在肖特基势垒;少数载流子有足够的能量越过障壁,到达金属背触点。为了解决这个问题,纳米结构的Te薄膜被用作CdTe和金属接触之间的中间层。采用不同生长参数的热蒸发方法在CdS/CdTe结构上沉积了具有不同物理性质的层。p+ Te区对CdTe太阳能电池的电学参数有影响。p+ Te区作为中间层,沉积时间长,使FF和VOC值分别从30%增加到60%,从560 mV增加到730 mV。电阻率由106 W·cm降低到103 W·cm。从这个意义上说,采用纳米结构实现的区域允许将串联电阻从99 W降低到20 W,并将并联电阻从1445 W增加到4424 W;该区域作为薄膜表现不充分。
{"title":"Influence of Te layer on CdTe thin films and their performance on CdS/CdTe solar cells","authors":"C. Hernández-Vásquez, M. Gonzalez-Trujillo, Lucero Alejandra Esquivel Méndez, J. Aguilar-Hernandez, M. Albor-Aguilera","doi":"10.47566/2021_syv34_1-210901","DOIUrl":"https://doi.org/10.47566/2021_syv34_1-210901","url":null,"abstract":"CdTe semiconductor is an absorbent material used in “tandem” photovoltaic solar cells. This material is commonly deposited by thermal evaporation presenting electrical resistivity values about of 105 W·cm to 109 W·cm. CdTe is applied in thin solar cells as p-type layer which is in contact with metal back electrode in solar cells. In the CdTe/metal junction a Schottky barrier exits; and small number of charge carriers have enough energy to get over the barrier and cross to the metal back contact. To solve part of this problem, nanostructured Te thin films were used as intermediate layers between CdTe and metal contact. Te layers whit different physical properties were deposited on CdS/CdTe structure by thermal evaporation employing different growth parameters. The electrical parameters of CdTe solar cells were influenced by p+ Te regions. p+ Te regions used as intermediate layer with large deposition time increases the FF and VOC values from 30% to 60% and 560 mV to 730 mV respectively. Also, the electrical resistivity is reduced from 106 W·cm to 103 W·cm. In this sense, Te region implemented as nanostructure allows to reduce the series resistance from 99 W to 20 W and increases the shunt resistance from 1445 W to 4424 W;  Te region as thin films demonstrated not be adequate.","PeriodicalId":423848,"journal":{"name":"Superficies y Vacío","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115022128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Superficies y Vacío
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1