We present the results of well-resolved large-eddy simulations (LES) of an asymmetrically heated high aspect ratio cooling duct (HARCD) with an aspect ratio of AR = 4.3 for two different wall temperatures. The temperature difference with respect to the bulk flow is ∆T = 40 K, respectively ∆T = 60 K. The HARCD is operated with liquid water at a Reynolds number of Reb = 110 ⋅ 103 based on bulk velocity and hydraulic diameter. The generic HARCD setup follows a reference experiment. The main goal of the present study is the numerical investigation of the interaction of turbulent heat transfer and the turbulent duct flow, specifically the heating induced changes in mean flow and turbulent statistics with a spatially developing temperature boundary layer. Furthermore, we investigate the influence of asymmetric wall heating on streamwise vorticity and its dynamics as well as the turbulent Prandtl number and the effect of the secondary flow on its distribution.
{"title":"LES of an Asymmetrically Heated High Aspect Ratio Duct at High Reynolds Number at Different Wall Temperatures","authors":"Thomas Kaller, S. Hickel, N. Adams","doi":"10.2514/6.2018-4287","DOIUrl":"https://doi.org/10.2514/6.2018-4287","url":null,"abstract":"We present the results of well-resolved large-eddy simulations (LES) of an asymmetrically heated high aspect ratio cooling duct (HARCD) with an aspect ratio of AR = 4.3 for two different wall temperatures. The temperature difference with respect to the bulk flow is ∆T = 40 K, respectively ∆T = 60 K. The HARCD is operated with liquid water at a Reynolds number of Reb = 110 ⋅ 103 based on bulk velocity and hydraulic diameter. The generic HARCD setup follows a reference experiment. The main goal of the present study is the numerical investigation of the interaction of turbulent heat transfer and the turbulent duct flow, specifically the heating induced changes in mean flow and turbulent statistics with a spatially developing temperature boundary layer. Furthermore, we investigate the influence of asymmetric wall heating on streamwise vorticity and its dynamics as well as the turbulent Prandtl number and the effect of the secondary flow on its distribution.","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133316135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dan Zhang, Song Lu, Heping Zhang, Changcheng Liu, Cao Chengyang, Lin Jiang, Z. Gao
{"title":"Insights into Catalytic Mechanism of 4MgCO3Mg(OH)25H2O on Thermal Kinetics and Combustion Behavior of 5-amino-1h-tetrazole Based Propellant","authors":"Dan Zhang, Song Lu, Heping Zhang, Changcheng Liu, Cao Chengyang, Lin Jiang, Z. Gao","doi":"10.2514/6.2018-3760","DOIUrl":"https://doi.org/10.2514/6.2018-3760","url":null,"abstract":"","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125242641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vignesh Saravanan, V. Natarajan, S. Anbarasan, R PrasannaT, M Nijanthan, S Vineeshwar, Hemasai N.D, S. Padmanabhan, S. A. Rahman, VR Sanal Kumar
{"title":"Diagnostic Investigation of Radiation Effects on Pre-ignition Heat Flux Distribution in Dual Thrust Solid Rockets","authors":"Vignesh Saravanan, V. Natarajan, S. Anbarasan, R PrasannaT, M Nijanthan, S Vineeshwar, Hemasai N.D, S. Padmanabhan, S. A. Rahman, VR Sanal Kumar","doi":"10.2514/6.2018-3765","DOIUrl":"https://doi.org/10.2514/6.2018-3765","url":null,"abstract":"","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130417129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cao Chengyang, Song Lu, Dan Zhang, Changcheng Liu, Heping Zhang
{"title":"Effects of Zincaluminate on Thermal Behaviors and Combustion Characteristics of 5AT/Sr(NO3)2 Propellant","authors":"Cao Chengyang, Song Lu, Dan Zhang, Changcheng Liu, Heping Zhang","doi":"10.2514/6.2018-3911","DOIUrl":"https://doi.org/10.2514/6.2018-3911","url":null,"abstract":"","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132616578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Incident shock waves in pure CO have been characterized in the Electric Arc Shock Tube facility Spectrally and spatially resolved emission spectra characterize radiative signatures from CO in the VUV and mid-infrared and atomic carbon and C 2 in the visible. CO absorption of a single vibrational line is also measured with a tunable diode laser. The experimental data analyzed here are at a pressure of 0.25 Torr in the driven section and span a shock velocity range from 3.4-9.5 km/s. The emission and absorption signals are analyzed to extract temperature relaxation behind the shock which is used to derive the rate of CO dissociation. The emission spectra are compared to results using different kinetic parameters for CO dissociation and C 2 dissociation and exchange. Different rates from the literature are found to match the data from 3.4-6.6 km/s and 6.6-9.5 km/s. Areas for improvement in CO and C 2 radiation modeling are suggested on the basis of the analysis.
{"title":"Characterization of CO Thermochemistry in Incident Shockwaves","authors":"B. Cruden, A. Brandis, Megan E. Macdonald","doi":"10.2514/6.2018-3768","DOIUrl":"https://doi.org/10.2514/6.2018-3768","url":null,"abstract":"Incident shock waves in pure CO have been characterized in the Electric Arc Shock Tube facility Spectrally and spatially resolved emission spectra characterize radiative signatures from CO in the VUV and mid-infrared and atomic carbon and C 2 in the visible. CO absorption of a single vibrational line is also measured with a tunable diode laser. The experimental data analyzed here are at a pressure of 0.25 Torr in the driven section and span a shock velocity range from 3.4-9.5 km/s. The emission and absorption signals are analyzed to extract temperature relaxation behind the shock which is used to derive the rate of CO dissociation. The emission spectra are compared to results using different kinetic parameters for CO dissociation and C 2 dissociation and exchange. Different rates from the literature are found to match the data from 3.4-6.6 km/s and 6.6-9.5 km/s. Areas for improvement in CO and C 2 radiation modeling are suggested on the basis of the analysis.","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"297 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134454165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ignition and Damage Thresholds of Materials at Extreme Incident Radiative Heat Flux","authors":"J. Engerer, Alexander L. Brown, J. Christian","doi":"10.2514/6.2018-3764","DOIUrl":"https://doi.org/10.2514/6.2018-3764","url":null,"abstract":"","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129611345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Driver, D. Philippidis, Imelda Terrazas-Salinas
Recent introduction of Coaxial Thermocouple type calorimeters into the NASA Ames arc jet facilities has inspired an analysis of 2D conduction effects internal to this type of calorimeter. Lateral conduction effects violate the 1D finite slab inverse analysis which is typically used to deduce the heat transfer to such calorimeters. The spherical shaped nose associated with most calorimeters (rather than flat) leads to a bias error that over-estimates the stagnation heating. Non-uniform heating on the face of spherically shaped calorimeters leads to conduction losses to the colder rim of the calorimeter which causes an underestimate of the stagnation heating. These two effects come into play at different times of the calorimeter's exposure to the arc jet, so they do not cancel. The spherical body effects come into play in the early stages of exposure, while the non-uniform heating effect becomes most severe at the later stages of exposure. The bias associated with spherical effects can be avoided by rewriting the 1D finite slab inverse analysis code to solve for 1D conduction in spherical coordinates. However, reducing the bias error associated non-uniform heating requires a somewhat ad hoc modification to the 1D finite element inverse analysis.
{"title":"Uncertainty Analysis of Coaxial Thermocouple Calorimeters used in Arc Jets","authors":"D. Driver, D. Philippidis, Imelda Terrazas-Salinas","doi":"10.2514/6.2018-3770","DOIUrl":"https://doi.org/10.2514/6.2018-3770","url":null,"abstract":"Recent introduction of Coaxial Thermocouple type calorimeters into the NASA Ames arc jet facilities has inspired an analysis of 2D conduction effects internal to this type of calorimeter. Lateral conduction effects violate the 1D finite slab inverse analysis which is typically used to deduce the heat transfer to such calorimeters. The spherical shaped nose associated with most calorimeters (rather than flat) leads to a bias error that over-estimates the stagnation heating. Non-uniform heating on the face of spherically shaped calorimeters leads to conduction losses to the colder rim of the calorimeter which causes an underestimate of the stagnation heating. These two effects come into play at different times of the calorimeter's exposure to the arc jet, so they do not cancel. The spherical body effects come into play in the early stages of exposure, while the non-uniform heating effect becomes most severe at the later stages of exposure. The bias associated with spherical effects can be avoided by rewriting the 1D finite slab inverse analysis code to solve for 1D conduction in spherical coordinates. However, reducing the bias error associated non-uniform heating requires a somewhat ad hoc modification to the 1D finite element inverse analysis.","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"296 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114399830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Process Optimization of Ceramic Matrix Composites for Ultrasonically Absorptive TPS Material","authors":"C. Dittert, M. Kütemeyer, M. Kuhn, A. Wagner","doi":"10.2514/6.2018-2947","DOIUrl":"https://doi.org/10.2514/6.2018-2947","url":null,"abstract":"","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117192922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Bariselli, S. Boccelli, T. Magin, A. Frezzotti, A. Hubin
{"title":"Aerothermodynamic modelling of meteor entry flows in the rarefied regime","authors":"F. Bariselli, S. Boccelli, T. Magin, A. Frezzotti, A. Hubin","doi":"10.2514/6.2018-4180","DOIUrl":"https://doi.org/10.2514/6.2018-4180","url":null,"abstract":"","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"70 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120867335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overview of the second test-flight of the Kentucky Re-entry Universal Payload System (KRUPS)","authors":"J. D. Sparks, Alexandre Martin","doi":"10.2514/6.2018-3589","DOIUrl":"https://doi.org/10.2514/6.2018-3589","url":null,"abstract":"","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121659488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}