首页 > 最新文献

2018 Joint Thermophysics and Heat Transfer Conference最新文献

英文 中文
Shock Tube Radiation Measurements in Nitrogen 氮中激波管辐射测量
Pub Date : 2018-06-24 DOI: 10.2514/6.2018-3437
A. Brandis, B. Cruden
Spectrally and spatially resolved radiance has been measured in the Electric Arc Shock Tube (EAST) facility, with the aim of improving fundamental understanding of high en-thalpy flows in pure nitrogen. These tests provide data to inform models used for simulations of high speed flight in nitrogen rich atmospheres, such as Earth or Titan. The experiments presented in this paper cover conditions from approximately 6 km/s to 11 km/s at an initial pressure of 0.2 Torr. A wide range of physics, with different degrees of non-equilibrium and nitrogen dissociation, are covered. The EAST data are presented in different formats for analysis and comparisons. These formats include the spectral radiance at equilibrium (where appropriate), the spatial dependence of radiance over defined wavelength ranges and the mean non-equilibrium spectral radiance (the so-called “spec-tral non-equilibrium metric”). All the information needed to simulate each experimental trace, including free-stream conditions, shock time of arrival (i.e. x-t) relation, and the spectral and spatial resolution functions, are provided. Equilibrium radiation calculations are shown as a reference. It is the intention of this paper to motivate code comparisons benchmarked against this data set.
在电弧激波管(EAST)设施中测量了光谱和空间分辨辐射,目的是提高对纯氮中高焓流的基本理解。这些测试提供了数据,用于模拟在地球或土卫六等富氮大气中高速飞行的模型。本文提出的实验条件从大约6 km/s到11 km/s,初始压力为0.2 Torr。广泛的物理,不同程度的不平衡和氮解离,被覆盖。东部地区的数据以不同的格式呈现,以供分析和比较。这些格式包括平衡时的光谱辐射(适当时),辐射在确定波长范围内的空间依赖性和平均非平衡光谱辐射(所谓的“光谱非平衡度量”)。提供了模拟每个实验迹线所需的所有信息,包括自由流条件、冲击到达时间(即x-t)关系以及光谱和空间分辨率函数。平衡辐射计算作为参考。本文的目的是激发对该数据集进行基准测试的代码比较。
{"title":"Shock Tube Radiation Measurements in Nitrogen","authors":"A. Brandis, B. Cruden","doi":"10.2514/6.2018-3437","DOIUrl":"https://doi.org/10.2514/6.2018-3437","url":null,"abstract":"Spectrally and spatially resolved radiance has been measured in the Electric Arc Shock Tube (EAST) facility, with the aim of improving fundamental understanding of high en-thalpy flows in pure nitrogen. These tests provide data to inform models used for simulations of high speed flight in nitrogen rich atmospheres, such as Earth or Titan. The experiments presented in this paper cover conditions from approximately 6 km/s to 11 km/s at an initial pressure of 0.2 Torr. A wide range of physics, with different degrees of non-equilibrium and nitrogen dissociation, are covered. The EAST data are presented in different formats for analysis and comparisons. These formats include the spectral radiance at equilibrium (where appropriate), the spatial dependence of radiance over defined wavelength ranges and the mean non-equilibrium spectral radiance (the so-called “spec-tral non-equilibrium metric”). All the information needed to simulate each experimental trace, including free-stream conditions, shock time of arrival (i.e. x-t) relation, and the spectral and spatial resolution functions, are provided. Equilibrium radiation calculations are shown as a reference. It is the intention of this paper to motivate code comparisons benchmarked against this data set.","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131107417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Experimental and numerical acoustic characterization of ultrasonically absorptive porous materials 超声吸收多孔材料的实验与数值声学表征
Pub Date : 2018-06-24 DOI: 10.2514/6.2018-2948
A. Wagner, J. Schramm, C. Dittert, Victor C. B. Sousa, D. Patel, C. Scalo
The paper addresses the experimental and numerical acoustic characterization of ultrasonically absorptive porous materials with random microstructure such as carbon fiber reinforced carbon ceramic C/C or C/C-SiC. The present study builds upon previous efforts by the authors, improving and extending the established experimental method, complemented by a numerical analysis based on linear acoustics. The latter includes a blind-hole porosity approximation, only accounting for the larger cracks in the C/C with complex acoustic impedance given by the inverse Helmholtz Solver approach, and a highly parametrized homogeneous acoustic Absorber model, accounting for the complete volumetric structure of the porous absorber albeit with lower fidelity. The experimental approach is complemented by high-speed Schlieren visualization and Mach-Zehnder Interferometer measurements to qualitatively and quantitatively assess the interaction between an ultrasonic wave packet and a porous surface. It is found that neglecting the smaller pores and only accounting for the surface porosity, as done in the blind-hole porosity approximation, leads to the underestimation of the acoustic energy absorption coefficient. Phase shifts were found to be experimentally assessable, but remain to be corroborated by a numerical analysis. The comparisons carried out in this paper will pave the way for accurate determination of impedance boundary conditions to be applied in direct numerical simulations of hypersonic transition delay over C/C. The main emphasis of the paper is to assess the potential and the limitations of the experimental methods and the comparison of the experimental results to the numerically obtained absorption characteristics.
本文研究了碳纤维增强碳陶瓷C/C或C/C- sic等随机微观结构的超声吸收多孔材料的实验和数值声学特性。本研究建立在作者以往工作的基础上,改进和扩展了已建立的实验方法,并辅以基于线性声学的数值分析。后者包括一个盲孔孔隙率近似,只考虑由逆亥姆霍兹求解器给出的复杂声阻抗的C/C中较大的裂缝,以及一个高度参数化的均匀吸声器模型,考虑多孔吸声器的完整体积结构,尽管保真度较低。实验方法辅以高速纹影可视化和马赫-曾德干涉仪测量,定性和定量地评估超声波包与多孔表面之间的相互作用。研究发现,在盲孔孔隙率近似中,忽略较小孔隙而只考虑表面孔隙率会导致声能量吸收系数的低估。发现相移在实验上是可评估的,但仍需通过数值分析来证实。本文进行的比较将为精确确定用于C/C上空高超声速过渡延迟直接数值模拟的阻抗边界条件铺平道路。本文的主要重点是评估实验方法的潜力和局限性,并将实验结果与数值计算的吸收特性进行比较。
{"title":"Experimental and numerical acoustic characterization of ultrasonically absorptive porous materials","authors":"A. Wagner, J. Schramm, C. Dittert, Victor C. B. Sousa, D. Patel, C. Scalo","doi":"10.2514/6.2018-2948","DOIUrl":"https://doi.org/10.2514/6.2018-2948","url":null,"abstract":"The paper addresses the experimental and numerical acoustic characterization of ultrasonically absorptive porous materials with random microstructure such as carbon fiber reinforced carbon ceramic C/C or C/C-SiC. The present study builds upon previous efforts by the authors, \u0000improving and extending the established experimental method, complemented by a numerical analysis based on linear acoustics. The latter includes a blind-hole porosity approximation, only accounting for the larger cracks in the C/C with complex acoustic impedance given by the \u0000inverse Helmholtz Solver approach, and a highly parametrized homogeneous acoustic Absorber model, accounting for the complete volumetric structure of the porous absorber albeit with lower fidelity. The experimental approach is complemented by high-speed Schlieren visualization and Mach-Zehnder Interferometer measurements to qualitatively and quantitatively \u0000assess the interaction between an ultrasonic wave packet and a porous surface. It is found that neglecting the smaller pores and only accounting for the surface porosity, as done in the blind-hole porosity approximation, leads to the underestimation of the acoustic energy absorption coefficient. Phase shifts were found to be experimentally assessable, but remain to be corroborated by a numerical analysis. The comparisons carried out in this paper will pave \u0000the way for accurate determination of impedance boundary conditions to be applied in direct numerical simulations of hypersonic transition delay over C/C. The main emphasis of the paper is to assess the potential and the limitations of the experimental methods and the comparison of the experimental results to the numerically obtained absorption characteristics.","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134484917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Effects of Test Box Pressure on Arc-Jet Flowfields and Implications for Testing 试验箱压力对电弧射流流场的影响及其试验意义
Pub Date : 2018-06-24 DOI: 10.2514/6.2018-3771
T. Gokcen
{"title":"Effects of Test Box Pressure on Arc-Jet Flowfields and Implications for Testing","authors":"T. Gokcen","doi":"10.2514/6.2018-3771","DOIUrl":"https://doi.org/10.2514/6.2018-3771","url":null,"abstract":"","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114510968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A Numerical Study of Bayesian Inference of Surface Catalycity in Low Speed Reacting Flow using Laser Absorption Spectroscopy 低速反应流中表面催化贝叶斯推理的激光吸收光谱数值研究
Pub Date : 2018-06-24 DOI: 10.2514/6.2018-4290
Timothy R. Adowski, P. Bauman
{"title":"A Numerical Study of Bayesian Inference of Surface Catalycity in Low Speed Reacting Flow using Laser Absorption Spectroscopy","authors":"Timothy R. Adowski, P. Bauman","doi":"10.2514/6.2018-4290","DOIUrl":"https://doi.org/10.2514/6.2018-4290","url":null,"abstract":"","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116904033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Implementation of a Nitrogen Chemical Kinetics Model Based on ab-Initio Data for Hypersonic CFD 基于ab-Initio数据的高超声速CFD氮化学动力学模型实现
Pub Date : 2018-06-24 DOI: 10.2514/6.2018-3439
Ross S. Chaudhry, Narendra Singh, Maninder S. Grover, T. Schwartzentruber, G. Candler
{"title":"Implementation of a Nitrogen Chemical Kinetics Model Based on ab-Initio Data for Hypersonic CFD","authors":"Ross S. Chaudhry, Narendra Singh, Maninder S. Grover, T. Schwartzentruber, G. Candler","doi":"10.2514/6.2018-3439","DOIUrl":"https://doi.org/10.2514/6.2018-3439","url":null,"abstract":"","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129188484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Aerothermal Optimization of Internal Cooling Passages Using a Discrete Adjoint Method 基于离散伴随法的内部冷却通道气动热优化
Pub Date : 2018-06-24 DOI: 10.2514/6.2018-4080
P. He, C. Mader, J. Martins, K. Maki
Aerothermal optimization is a powerful technique for the design of internal cooling passages because it maximizes heat transfer and simultaneously minimizes pressure loss. Moreover, the optimization is fully automatic, which reduces the duration of design process compared with a human-supervised design approach. Existing optimization studies commonly rely on gradient-free methods, which can only handle a small number of design variables. However, cooling passage designs use complex geometry configurations (e.g., serpentine channels with rib-roughened surfaces) to enhance heat transfer; what is needed is to parameterize the passage using a large number of design variables. To address this need, we perform aerothermal optimization using a gradient-based optimization algorithm along with the discrete adjoint method to compute derivatives. The benefit of using the adjoint method is that its computational cost is independent of the number of design variables. In this paper, we focus on optimizing a U-bend duct, which is representative of a simplified, rib-free turbine internal cooling passage. The duct geometry is parameterized using 135 design variables, which gives us sufficient design freedom for geometric modification. We construct a Pareto front for heat transfer enhancement and total pressure loss reduction by running multi-objective optimizations. We also compare our optimization results with those from the gradient-free methods and demonstrate that we achieve better pressure loss reduction and heat transfer enhancement. The above results show that our gradient-based optimization framework functions as desired and has the potential to be a useful tool for turbine aerothermal designs with full internal cooling configurations.
气动热优化是一种有效的内部冷却通道设计技术,因为它可以最大限度地提高传热效率,同时减少压力损失。此外,优化是全自动的,与人工监督的设计方法相比,减少了设计过程的持续时间。现有的优化研究通常依赖于无梯度方法,只能处理少量的设计变量。然而,冷却通道设计使用复杂的几何结构(例如,带有肋状粗糙表面的蛇形通道)来增强传热;所需要的是使用大量的设计变量来参数化通道。为了满足这一需求,我们使用基于梯度的优化算法以及离散伴随方法来计算导数来进行气动热优化。使用伴随方法的好处是它的计算成本与设计变量的数量无关。在本文中,我们重点优化了一个u型弯道,这是一个简化的,无肋涡轮内部冷却通道的代表。采用135个设计变量参数化了管道的几何形状,为几何修改提供了充分的设计自由度。通过多目标优化,构建了强化传热和降低总压损失的Pareto前沿。我们还将我们的优化结果与无梯度方法的结果进行了比较,证明我们可以更好地降低压力损失和增强传热。上述结果表明,我们基于梯度的优化框架的功能是理想的,并且有潜力成为具有全内部冷却配置的涡轮气动热设计的有用工具。
{"title":"Aerothermal Optimization of Internal Cooling Passages Using a Discrete Adjoint Method","authors":"P. He, C. Mader, J. Martins, K. Maki","doi":"10.2514/6.2018-4080","DOIUrl":"https://doi.org/10.2514/6.2018-4080","url":null,"abstract":"Aerothermal optimization is a powerful technique for the design of internal cooling passages because it maximizes heat transfer and simultaneously minimizes pressure loss. Moreover, the optimization is fully automatic, which reduces the duration of design process compared with a human-supervised design approach. Existing optimization studies commonly rely on gradient-free methods, which can only handle a small number of design variables. However, cooling passage designs use complex geometry configurations (e.g., serpentine channels with rib-roughened surfaces) to enhance heat transfer; what is needed is to parameterize the passage using a large number of design variables. To address this need, we perform aerothermal optimization using a gradient-based optimization algorithm along with the discrete adjoint method to compute derivatives. The benefit of using the adjoint method is that its computational cost is independent of the number of design variables. In this paper, we focus on optimizing a U-bend duct, which is representative of a simplified, rib-free turbine internal cooling passage. The duct geometry is parameterized using 135 design variables, which gives us sufficient design freedom for geometric modification. We construct a Pareto front for heat transfer enhancement and total pressure loss reduction by running multi-objective optimizations. We also compare our optimization results with those from the gradient-free methods and demonstrate that we achieve better pressure loss reduction and heat transfer enhancement. The above results show that our gradient-based optimization framework functions as desired and has the potential to be a useful tool for turbine aerothermal designs with full internal cooling configurations.","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116544903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Generalized Solution for Two-Dimensional Transient Heat Conduction Problems with Partial Heating 二维局部加热瞬态热传导问题的广义解
Pub Date : 2018-06-24 DOI: 10.2514/6.2018-4073
R. McMasters, F. Monte, J. Beck
{"title":"Generalized Solution for Two-Dimensional Transient Heat Conduction Problems with Partial Heating","authors":"R. McMasters, F. Monte, J. Beck","doi":"10.2514/6.2018-4073","DOIUrl":"https://doi.org/10.2514/6.2018-4073","url":null,"abstract":"","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122405990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Modeling of Excited Oxygen in Post Normal Shock Waves 正常后激波中受激氧的模拟
Pub Date : 2018-06-24 DOI: 10.2514/6.2018-3769
Kyle M. Hanquist, I. Boyd
{"title":"Modeling of Excited Oxygen in Post Normal Shock Waves","authors":"Kyle M. Hanquist, I. Boyd","doi":"10.2514/6.2018-3769","DOIUrl":"https://doi.org/10.2514/6.2018-3769","url":null,"abstract":"","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133563463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Air Quality and Flow Regimes at Clean Rooms 洁净室的空气质素及流量制度
Pub Date : 2018-06-24 DOI: 10.2514/6.2018-3908
Hesham E. Metwally, E. Khalil, Taher E. Abou Dief, Ahmed Abouzeid
{"title":"Air Quality and Flow Regimes at Clean Rooms","authors":"Hesham E. Metwally, E. Khalil, Taher E. Abou Dief, Ahmed Abouzeid","doi":"10.2514/6.2018-3908","DOIUrl":"https://doi.org/10.2514/6.2018-3908","url":null,"abstract":"","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114056107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Optimization of heat sinks in a range of configurations 在一系列配置中优化散热器
Pub Date : 2018-06-24 DOI: 10.2514/6.2018-2945
Archibald A. Amoako, Jeffrey J. Doom
..................................................................................................................... xii CHAPTER 1: INTRODUCTION ....................................................................................... 1 1.1. Modes of Heat Transfer ........................................................................................ 4 1.2. Electronic Cooling ................................................................................................ 4 1.3. Conduction Heat Transfer Method ....................................................................... 4 1.4. Convection Heat Transfer Method ....................................................................... 5 1.5. Radiation Heat Transfer Method .......................................................................... 5 1.6. Plate Fin Heat Sink ............................................................................................... 6 1.7. Pin Fin Heat Sink ................................................................................................. 6 1.8. Exotic Geometry Heat Sink .................................................................................. 7 CHAPTER 2: LITERATURE REVIEW ............................................................................ 8 2.1. Microchannel Heat Sinks ....................................................................................... 16 2.2. Key findings from Literature Review Conducted .................................................. 20 2.3. Research Objective ................................................................................................. 20 CHAPTER 3: METHOD AND APPROACH .................................................................. 22 3.1. Methodology .......................................................................................................... 22 3.1.1. Conjugate Heat Transfer Method (CHT) .................................................... 22 3.2. Fluid Modeling ....................................................................................................... 23 3.3. Reynolds Number ................................................................................................... 23
.....................................................................................................................六世缪一:INTRODUCTION .......................................................................................一个每年有110。Modes of Heat Transfer ........................................................................................4 120。电子Cooling ................................................................................................4 13。Conduction Heat Transfer Method .......................................................................四个140。Convection Heat Transfer Method .......................................................................五1.5个。Radiation Heat Transfer Method ..........................................................................五1.6。Plate费Heat Sink ...............................................................................................六170。电池费Heat Sink .................................................................................................6 180。飞船古怪Geometry Heat Sink ..................................................................................缪评论》《圣经2:作百科7 ............................................................................八2.1。Microchannel Heat Sinks .......................................................................................16 20。基findings评论》《圣经from作百科Conducted ..................................................20 230。Research Objective .................................................................................................20缪专家,至三:METHOD ..................................................................22 3.1。Methodology ..........................................................................................................22 3.1.1。Conjugate Heat Transfer Method (CHT ) ....................................................22有32。Fluid Modeling .......................................................................................................23为3.3。雷诺Number ...................................................................................................23
{"title":"Optimization of heat sinks in a range of configurations","authors":"Archibald A. Amoako, Jeffrey J. Doom","doi":"10.2514/6.2018-2945","DOIUrl":"https://doi.org/10.2514/6.2018-2945","url":null,"abstract":"..................................................................................................................... xii CHAPTER 1: INTRODUCTION ....................................................................................... 1 1.1. Modes of Heat Transfer ........................................................................................ 4 1.2. Electronic Cooling ................................................................................................ 4 1.3. Conduction Heat Transfer Method ....................................................................... 4 1.4. Convection Heat Transfer Method ....................................................................... 5 1.5. Radiation Heat Transfer Method .......................................................................... 5 1.6. Plate Fin Heat Sink ............................................................................................... 6 1.7. Pin Fin Heat Sink ................................................................................................. 6 1.8. Exotic Geometry Heat Sink .................................................................................. 7 CHAPTER 2: LITERATURE REVIEW ............................................................................ 8 2.1. Microchannel Heat Sinks ....................................................................................... 16 2.2. Key findings from Literature Review Conducted .................................................. 20 2.3. Research Objective ................................................................................................. 20 CHAPTER 3: METHOD AND APPROACH .................................................................. 22 3.1. Methodology .......................................................................................................... 22 3.1.1. Conjugate Heat Transfer Method (CHT) .................................................... 22 3.2. Fluid Modeling ....................................................................................................... 23 3.3. Reynolds Number ................................................................................................... 23","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115314105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
2018 Joint Thermophysics and Heat Transfer Conference
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1