Pub Date : 2023-04-06DOI: 10.1088/2516-1075/accb23
Jie Liu, Wei Hu, Jinlong Yang
We present an efficient implementation of the analytical nuclear gradient of linear-response time-dependent density functional theory (LR-TDDFT) with the frozen core approximation (FCA). This implementation is realized based on the Hutter’s formalism and the plane wave pseudopotential method. Numerical results demonstrate that the LR-TDDFT/FCA method using a small subset of Kohn–Sham occupied orbitals are accurate enough to reproduce the LR-TDDFT results. Here, the FCA remarkably reduces the computational cost in solving the LR-TDDFT eigenvalue equation. Another challenge in the calculations of analytical nuclear gradients for LR-TDDFT is the solution of the Z-vector equation, for which the Davidson algorithm is a popular choice. While, for large systems the standard Davidson algorithm exhibits a low convergence rate. In order to overcome this problem, we generalize the two-level Davidson algorithm to solve linear equation problems. A more stable performance is achieved with this new algorithm. Our method should encourage further studies of excited-state properties with LR-TDDFT in the plane wave basis.
{"title":"An efficient implementation of analytical nuclear gradients for linear-response time-dependent density functional theory in the plane wave basis","authors":"Jie Liu, Wei Hu, Jinlong Yang","doi":"10.1088/2516-1075/accb23","DOIUrl":"https://doi.org/10.1088/2516-1075/accb23","url":null,"abstract":"We present an efficient implementation of the analytical nuclear gradient of linear-response time-dependent density functional theory (LR-TDDFT) with the frozen core approximation (FCA). This implementation is realized based on the Hutter’s formalism and the plane wave pseudopotential method. Numerical results demonstrate that the LR-TDDFT/FCA method using a small subset of Kohn–Sham occupied orbitals are accurate enough to reproduce the LR-TDDFT results. Here, the FCA remarkably reduces the computational cost in solving the LR-TDDFT eigenvalue equation. Another challenge in the calculations of analytical nuclear gradients for LR-TDDFT is the solution of the Z-vector equation, for which the Davidson algorithm is a popular choice. While, for large systems the standard Davidson algorithm exhibits a low convergence rate. In order to overcome this problem, we generalize the two-level Davidson algorithm to solve linear equation problems. A more stable performance is achieved with this new algorithm. Our method should encourage further studies of excited-state properties with LR-TDDFT in the plane wave basis.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43427504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-23DOI: 10.1088/2516-1075/acc70e
Xiaopeng Wang, Siyu Gao, Aizhu Wang, Bo Wang, N. Marom
Thermally activated delayed fluorescence (TADF) is the internal conversion of triplet excitons into singlet excitons via reverse intersystem crossing (RISC). It improves the efficiency of organic light-emitting diodes (OLED) by enabling the harvesting of nonradiative triplet excitons. Multiple resonance (MR) induced TADF chromophores exhibit an additional advantage of high color purity due to their rigid conformation. However, owing to the strict design rules there is a limited number of known MR-TADF chromophores. For applications in full-color high-resolution OLED displays, it is desirable to extend the variety of available chromophores and their color range. We computationally explore the effect of chemical modification on the properties of the MR-TADF chromophore quinolino[3,2,1-de]acridine-5,9-dione (QAD). QAD derivatives are evaluated based on several metrics: The formation energy is associated with the ease of synthesis; The spatial distribution of the frontier orbitals indicates whether a compound remains an MR-TADF chromophore or turns into a donor–acceptor TADF chromophore; The change of the singlet excitation energy compared to the parent compound corresponds to the change in color; The energy difference between the lowest singlet and triplet states corresponds to the barrier to RISC; The reorganization energy is associated with the color purity. Based on these metrics, QAD-6CN is predicted to be a promising MR-TADF chromophore with a cyan hue. This demonstrates that computer simulations may aid the design of new MR-TADF chromophores by chemical modification.
{"title":"Multiple resonance induced thermally activated delayed fluorescence: effect of chemical modification","authors":"Xiaopeng Wang, Siyu Gao, Aizhu Wang, Bo Wang, N. Marom","doi":"10.1088/2516-1075/acc70e","DOIUrl":"https://doi.org/10.1088/2516-1075/acc70e","url":null,"abstract":"Thermally activated delayed fluorescence (TADF) is the internal conversion of triplet excitons into singlet excitons via reverse intersystem crossing (RISC). It improves the efficiency of organic light-emitting diodes (OLED) by enabling the harvesting of nonradiative triplet excitons. Multiple resonance (MR) induced TADF chromophores exhibit an additional advantage of high color purity due to their rigid conformation. However, owing to the strict design rules there is a limited number of known MR-TADF chromophores. For applications in full-color high-resolution OLED displays, it is desirable to extend the variety of available chromophores and their color range. We computationally explore the effect of chemical modification on the properties of the MR-TADF chromophore quinolino[3,2,1-de]acridine-5,9-dione (QAD). QAD derivatives are evaluated based on several metrics: The formation energy is associated with the ease of synthesis; The spatial distribution of the frontier orbitals indicates whether a compound remains an MR-TADF chromophore or turns into a donor–acceptor TADF chromophore; The change of the singlet excitation energy compared to the parent compound corresponds to the change in color; The energy difference between the lowest singlet and triplet states corresponds to the barrier to RISC; The reorganization energy is associated with the color purity. Based on these metrics, QAD-6CN is predicted to be a promising MR-TADF chromophore with a cyan hue. This demonstrates that computer simulations may aid the design of new MR-TADF chromophores by chemical modification.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45406310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-22DOI: 10.1088/2516-1075/ace014
S. Muy, Conrad Johnston, N. Marzari
Functional materials that enable many technological applications in our everyday lives owe their unique properties to defects that are carefully engineered and incorporated into these materials during processing. However, optimizing and characterizing these defects is very challenging in practice, making computational modelling an indispensable complementary tool. We have developed an automated workflow and code to accelerate these calculations (AiiDA-defects), which utilises the AiiDA framework, a robust open-source high-throughput materials informatics infrastructure that provides workflow automation while simultaneously preserving and storing the full data provenance in a relational database that is queryable and traversable. This paper describes the design and implementation details of AiiDA-defects, the models and algorithms used, and demonstrates its use in an application to fully characterize the defect chemistry of the well known solid-state Li-ion conductors LiZnPS4. We anticipate that AiiDA-defects will be useful as a tool for fully automated and reproducible defect calculations, allowing detailed defect chemistry to be obtained in a reliable and high-throughput way, and paving the way toward the generation of defects databases for accelerated materials design and discovery.
{"title":"AiiDA-defects: an automated and fully reproducible workflow for the complete characterization of defect chemistry in functional materials","authors":"S. Muy, Conrad Johnston, N. Marzari","doi":"10.1088/2516-1075/ace014","DOIUrl":"https://doi.org/10.1088/2516-1075/ace014","url":null,"abstract":"Functional materials that enable many technological applications in our everyday lives owe their unique properties to defects that are carefully engineered and incorporated into these materials during processing. However, optimizing and characterizing these defects is very challenging in practice, making computational modelling an indispensable complementary tool. We have developed an automated workflow and code to accelerate these calculations (AiiDA-defects), which utilises the AiiDA framework, a robust open-source high-throughput materials informatics infrastructure that provides workflow automation while simultaneously preserving and storing the full data provenance in a relational database that is queryable and traversable. This paper describes the design and implementation details of AiiDA-defects, the models and algorithms used, and demonstrates its use in an application to fully characterize the defect chemistry of the well known solid-state Li-ion conductors LiZnPS4. We anticipate that AiiDA-defects will be useful as a tool for fully automated and reproducible defect calculations, allowing detailed defect chemistry to be obtained in a reliable and high-throughput way, and paving the way toward the generation of defects databases for accelerated materials design and discovery.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":"13 5","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41308732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-17DOI: 10.1088/2516-1075/acc55d
Daria Kieczka, T. Durrant, Katherine L Milton, K. Goh, M. Bosman, A. Shluger
Density functional theory (DFT) with generalised gradient approximation (GGA) functionals is commonly used to predict defect properties in 2D transition metal dichalcogenides (TMDs). Since GGA functionals often underestimate band gaps of semiconductors and incorrectly describe the character of electron localisation in defects and their level positions within the band gap, it is important to assess the accuracy of these predictions. To this end, we used the non-local density functional Perdew—Burke—Ernzerhof (PBE)0-TC-LRC to calculate the properties of a wide range of intrinsic defects in monolayer WS2. The properties, such as geometry, in-gap states, charge transition levels, electronic structure and the electron/hole localisation of the lowest formation energy defects are discussed in detail. They are broadly similar to those predicted by the GGA PBE functional, but exhibit numerous quantitative differences caused by the degree of electron and hole localisation in charged states. For some anti-site defects, more significant differences are seen, with both changes in defect geometries (differences of up to 0.5 Å) as well as defect level positions within the band gap of WS2. This work provides an insight into the performance of functionals chosen for future DFT calculations of TMDs with respect to the desired defect properties.
{"title":"Defects in WS2 monolayer calculated with a nonlocal functional: any difference from GGA?","authors":"Daria Kieczka, T. Durrant, Katherine L Milton, K. Goh, M. Bosman, A. Shluger","doi":"10.1088/2516-1075/acc55d","DOIUrl":"https://doi.org/10.1088/2516-1075/acc55d","url":null,"abstract":"Density functional theory (DFT) with generalised gradient approximation (GGA) functionals is commonly used to predict defect properties in 2D transition metal dichalcogenides (TMDs). Since GGA functionals often underestimate band gaps of semiconductors and incorrectly describe the character of electron localisation in defects and their level positions within the band gap, it is important to assess the accuracy of these predictions. To this end, we used the non-local density functional Perdew—Burke—Ernzerhof (PBE)0-TC-LRC to calculate the properties of a wide range of intrinsic defects in monolayer WS2. The properties, such as geometry, in-gap states, charge transition levels, electronic structure and the electron/hole localisation of the lowest formation energy defects are discussed in detail. They are broadly similar to those predicted by the GGA PBE functional, but exhibit numerous quantitative differences caused by the degree of electron and hole localisation in charged states. For some anti-site defects, more significant differences are seen, with both changes in defect geometries (differences of up to 0.5 Å) as well as defect level positions within the band gap of WS2. This work provides an insight into the performance of functionals chosen for future DFT calculations of TMDs with respect to the desired defect properties.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44460373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-15DOI: 10.1088/2516-1075/acc4a0
Jielan Li, Lingyun Wan, Shizhe Jiao, Wei Hu, Jinlong Yang
Real-time time-dependent density functional theory (RT-TDDFT) is a powerful tool for predicting excited-state dynamics. Herein, we combine the adaptively compressed exchange (ACE) operator with interpolative separable density fitting (ISDF) algorithm to accelerate the hybrid functional calculations in RT-TDDFT (hybrid RT-TDDFT) dynamics simulations for molecular and periodic systems within plane waves. Under this low-rank representation, we demonstrate that the ACE-ISDF enabled hybrid RT-TDDFT can yield accurate excited-state dynamics, but much faster than conventional calculations. Furthermore, we describe a massively parallel implementation of ACE-ISDF enabled hybrid RT-TDDFT dynamics simulations containing thousands of atoms (1728 atoms), which can scale up to 3456 central processing unit cores on modern supercomputers.
{"title":"Low-rank approximations to accelerate hybrid functional enabled real-time time-dependent density functional theory within plane waves","authors":"Jielan Li, Lingyun Wan, Shizhe Jiao, Wei Hu, Jinlong Yang","doi":"10.1088/2516-1075/acc4a0","DOIUrl":"https://doi.org/10.1088/2516-1075/acc4a0","url":null,"abstract":"Real-time time-dependent density functional theory (RT-TDDFT) is a powerful tool for predicting excited-state dynamics. Herein, we combine the adaptively compressed exchange (ACE) operator with interpolative separable density fitting (ISDF) algorithm to accelerate the hybrid functional calculations in RT-TDDFT (hybrid RT-TDDFT) dynamics simulations for molecular and periodic systems within plane waves. Under this low-rank representation, we demonstrate that the ACE-ISDF enabled hybrid RT-TDDFT can yield accurate excited-state dynamics, but much faster than conventional calculations. Furthermore, we describe a massively parallel implementation of ACE-ISDF enabled hybrid RT-TDDFT dynamics simulations containing thousands of atoms (1728 atoms), which can scale up to 3456 central processing unit cores on modern supercomputers.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48370021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-28DOI: 10.1088/2516-1075/acbff9
C. Yelpo, S. Favre, D. Ariosa, R. Faccio
In this work, the effect of strain on the vibrational and electronic properties of the YBa2Cu3O7 compound was studied through ab initio calculations. For this, two structural models were used: a bulk model and a surface model (a monolayer with CuO2 and BaO as the terminating layers). The phonon spectra was calculated for both structures under different levels of c axis strain. The most appreciable change occurs in the vibrational properties, and in the surface case. From the simulation of the Raman spectra, we were able to quantify the Raman shift ratio as a function of the applied strain, and analyzed its behavior in terms of the overlap population of the different bonds and the reduced mass of selected phonons. The effect of the level of deformation on the band structure and the electronic density of states is small for both structures, although more noticeable in the case of the surface model. In both cases, tendencies are observed when the fine features of the band structure are analyzed by means of the tight binding model. Due to the lower symmetry, the surface model also shows modifications of the bands related to the CuO2 planes.
{"title":"Strain effect on the high T c superconductor YBa2Cu3O7: an ab initio study comparing bulk and monolayer models","authors":"C. Yelpo, S. Favre, D. Ariosa, R. Faccio","doi":"10.1088/2516-1075/acbff9","DOIUrl":"https://doi.org/10.1088/2516-1075/acbff9","url":null,"abstract":"In this work, the effect of strain on the vibrational and electronic properties of the YBa2Cu3O7 compound was studied through ab initio calculations. For this, two structural models were used: a bulk model and a surface model (a monolayer with CuO2 and BaO as the terminating layers). The phonon spectra was calculated for both structures under different levels of c axis strain. The most appreciable change occurs in the vibrational properties, and in the surface case. From the simulation of the Raman spectra, we were able to quantify the Raman shift ratio as a function of the applied strain, and analyzed its behavior in terms of the overlap population of the different bonds and the reduced mass of selected phonons. The effect of the level of deformation on the band structure and the electronic density of states is small for both structures, although more noticeable in the case of the surface model. In both cases, tendencies are observed when the fine features of the band structure are analyzed by means of the tight binding model. Due to the lower symmetry, the surface model also shows modifications of the bands related to the CuO2 planes.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42622884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-23DOI: 10.1088/2516-1075/acdbf4
M. Leccese, R. Martinazzo
Carbon atom vacancies in graphene give rise to a local magnetic moment of σ+π origin, whose magnitude is yet uncertain and debated. Partial quenching of π magnetism has been ubiquitously reported in periodic first principles calculations, with magnetic moments scattered in the range 1.0–2.0 µ B, slowly converging to the lower or the upper end, depending on how the diluted limit is approached. By contrast, (ensemble) density functional theory calculations on cluster models neatly converge to the value of 2 μB when increasing the system size. This stunning discrepancy has sparked a debate about the role of defect–defect interactions and self-doping, and about the importance of the self-interaction-error in the density-functional-theory description of the vacancy-induced states. Here, we settle this puzzle by showing that the problem has a fundamental, mono-electronic origin which is related to the special (periodic) arrangement of defects that results when using the slab-supercell approach. Specifically, we report the existence of resonant states that are anomalously delocalized over the lattice and that make the π midgap band unphysically dispersive, hence prone to self-doping and quenching of the π magnetism. Hybrid functionals fix the problem by widening the gap between the spin-resolved π midgap bands, without reducing their artificial widths. As a consequence, while reconciling the magnetic moment with expectations, they predict a spin-splitting which is one order of magnitude larger than found in experiments.
{"title":"Anomalous delocalization of resonant states in graphene & the vacancy magnetic moment","authors":"M. Leccese, R. Martinazzo","doi":"10.1088/2516-1075/acdbf4","DOIUrl":"https://doi.org/10.1088/2516-1075/acdbf4","url":null,"abstract":"Carbon atom vacancies in graphene give rise to a local magnetic moment of σ+π origin, whose magnitude is yet uncertain and debated. Partial quenching of π magnetism has been ubiquitously reported in periodic first principles calculations, with magnetic moments scattered in the range 1.0–2.0 µ B, slowly converging to the lower or the upper end, depending on how the diluted limit is approached. By contrast, (ensemble) density functional theory calculations on cluster models neatly converge to the value of 2 μB when increasing the system size. This stunning discrepancy has sparked a debate about the role of defect–defect interactions and self-doping, and about the importance of the self-interaction-error in the density-functional-theory description of the vacancy-induced states. Here, we settle this puzzle by showing that the problem has a fundamental, mono-electronic origin which is related to the special (periodic) arrangement of defects that results when using the slab-supercell approach. Specifically, we report the existence of resonant states that are anomalously delocalized over the lattice and that make the π midgap band unphysically dispersive, hence prone to self-doping and quenching of the π magnetism. Hybrid functionals fix the problem by widening the gap between the spin-resolved π midgap bands, without reducing their artificial widths. As a consequence, while reconciling the magnetic moment with expectations, they predict a spin-splitting which is one order of magnitude larger than found in experiments.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48664603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-23DOI: 10.1088/2516-1075/acbe84
Kasimir P. Gregory, G. Webber, E. Wanless, A. Page
Hofmeister effects, and more generally specific ion effects, are observed broadly in biological systems. However, there are many cases where the Hofmeister series might not be followed in complex biological systems, such as ion channels which can be highly specific to a particular ion. An understanding of how ions from the Hofmeister series interact with the proteinogenic amino acids will assist elucidation of why some binding interactions may be favoured over others. Using symmetry adapted perturbation theory (SAPT2 + 3), the interaction energies between a selection of anions and each amino acid have been investigated. The interaction strengths become more favourable in accordance with the Hofmeister series, and also with increasing polarity of the amino acids (with the exception of the negatively charged amino acid side chains). Furthermore, the interactions are generally most favourable when they simultaneously involve the side chain and both protic moieties of the backbone. The total interaction energy in these anion–amino acid complexes is also primarily determined by its electrostatic component, in a manner proportional to the þ (‘sho’) value of the anion.
{"title":"Decomposing Hofmeister effects on amino acid residues with symmetry adapted perturbation theory","authors":"Kasimir P. Gregory, G. Webber, E. Wanless, A. Page","doi":"10.1088/2516-1075/acbe84","DOIUrl":"https://doi.org/10.1088/2516-1075/acbe84","url":null,"abstract":"Hofmeister effects, and more generally specific ion effects, are observed broadly in biological systems. However, there are many cases where the Hofmeister series might not be followed in complex biological systems, such as ion channels which can be highly specific to a particular ion. An understanding of how ions from the Hofmeister series interact with the proteinogenic amino acids will assist elucidation of why some binding interactions may be favoured over others. Using symmetry adapted perturbation theory (SAPT2 + 3), the interaction energies between a selection of anions and each amino acid have been investigated. The interaction strengths become more favourable in accordance with the Hofmeister series, and also with increasing polarity of the amino acids (with the exception of the negatively charged amino acid side chains). Furthermore, the interactions are generally most favourable when they simultaneously involve the side chain and both protic moieties of the backbone. The total interaction energy in these anion–amino acid complexes is also primarily determined by its electrostatic component, in a manner proportional to the þ (‘sho’) value of the anion.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46236368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-21DOI: 10.1088/2516-1075/acbdd9
Kristiāns Čerņevičs, O. Yazyev
While bottom-up synthesis allows for precise control over the properties of graphene nanoribbons (GNRs), the use of certain precursor molecules can result in edge defects, such as missing benzene rings that resemble a ‘bite’. We investigate the adverse effect of the ‘bite’ defects on the electronic transport properties in three chevron-type GNRs and discover that the extent of scattering is governed by the different defect positions. Applying the concepts learned in single GNRs, we engineer defects in two nanostructures to construct prototypical components for nanoelectronics. First, we design a switch, consisting of three laterally fused fluorenyl-chevron GNRs, and place a pair of ‘bite’ defects to effectively allow the switching between four binary states corresponding to distinct current pathways. Second, we show that conscientious placement of a ‘bite’ defect pair can increase conductance between two leads in a triple chevron GNR junction. Overall, we outline how the incorporation of ‘bite’ defects affects transport properties in chevron-type nanostructures and provide a guide on how to design nanoelectronic components.
{"title":"From defect to effect: controlling electronic transport in chevron graphene nanoribbons","authors":"Kristiāns Čerņevičs, O. Yazyev","doi":"10.1088/2516-1075/acbdd9","DOIUrl":"https://doi.org/10.1088/2516-1075/acbdd9","url":null,"abstract":"While bottom-up synthesis allows for precise control over the properties of graphene nanoribbons (GNRs), the use of certain precursor molecules can result in edge defects, such as missing benzene rings that resemble a ‘bite’. We investigate the adverse effect of the ‘bite’ defects on the electronic transport properties in three chevron-type GNRs and discover that the extent of scattering is governed by the different defect positions. Applying the concepts learned in single GNRs, we engineer defects in two nanostructures to construct prototypical components for nanoelectronics. First, we design a switch, consisting of three laterally fused fluorenyl-chevron GNRs, and place a pair of ‘bite’ defects to effectively allow the switching between four binary states corresponding to distinct current pathways. Second, we show that conscientious placement of a ‘bite’ defect pair can increase conductance between two leads in a triple chevron GNR junction. Overall, we outline how the incorporation of ‘bite’ defects affects transport properties in chevron-type nanostructures and provide a guide on how to design nanoelectronic components.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45943507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-08DOI: 10.1088/2516-1075/acba6e
Xi Zhou, Manling Ding, Chen Cheng, Xiao-Hui Xia, Haolv Hu, Yihao Shen, S. Fedotov, Liang Zhang
As the analogs of Li-rich materials, Na-rich transition metal layered oxides are promising cathode materials for Na-ion batteries owing to their high theoretical capacity and energy density through cumulative cationic and anionic redox. However, most of the reported Na-rich cathode materials are mainly Ru- and Ir-based layered oxides, which limits the practical application. Herein, we report a Na-rich and Ru-doped O3-type Na1.1Ni0.35Mn0.55O2 cathode to mitigate this issue. By partially substituting Mn4+ with high-electronegativity Ru4+, the structural stability and electrochemical performance of the cathode are both greatly improved. It is validated that the high covalency of Ru–O bonds could harden the structural integrity with rigid oxygen framework upon cycling, leading to enhanced O3-P3 phase transition reversibility. Ru doping also induces an enlarged interlayer spacing to boost the Na+ diffusion kinetics for improved rate capability. In addition, benefiting from the large energetic overlap between Ru 4d and O 2p states, the reinforced Ru–O covalency enables highly reversible Ru4+/Ru5+ redox accompanied with more stable oxygen redox, leading to improved specific capacity and stability over cycling. Our present study provides a promising strategy for designing high-performance Na-rich layered oxide cathode materials through covalency modulation toward practical applications.
{"title":"Covalency modulation enables stable Na-rich layered oxide cathodes for Na-ion batteries","authors":"Xi Zhou, Manling Ding, Chen Cheng, Xiao-Hui Xia, Haolv Hu, Yihao Shen, S. Fedotov, Liang Zhang","doi":"10.1088/2516-1075/acba6e","DOIUrl":"https://doi.org/10.1088/2516-1075/acba6e","url":null,"abstract":"As the analogs of Li-rich materials, Na-rich transition metal layered oxides are promising cathode materials for Na-ion batteries owing to their high theoretical capacity and energy density through cumulative cationic and anionic redox. However, most of the reported Na-rich cathode materials are mainly Ru- and Ir-based layered oxides, which limits the practical application. Herein, we report a Na-rich and Ru-doped O3-type Na1.1Ni0.35Mn0.55O2 cathode to mitigate this issue. By partially substituting Mn4+ with high-electronegativity Ru4+, the structural stability and electrochemical performance of the cathode are both greatly improved. It is validated that the high covalency of Ru–O bonds could harden the structural integrity with rigid oxygen framework upon cycling, leading to enhanced O3-P3 phase transition reversibility. Ru doping also induces an enlarged interlayer spacing to boost the Na+ diffusion kinetics for improved rate capability. In addition, benefiting from the large energetic overlap between Ru 4d and O 2p states, the reinforced Ru–O covalency enables highly reversible Ru4+/Ru5+ redox accompanied with more stable oxygen redox, leading to improved specific capacity and stability over cycling. Our present study provides a promising strategy for designing high-performance Na-rich layered oxide cathode materials through covalency modulation toward practical applications.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43367170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}