首页 > 最新文献

Electronic Structure最新文献

英文 中文
Subspace methods for electronic structure simulations on quantum computers 量子计算机电子结构模拟的子空间方法
IF 2.6 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-03-28 DOI: 10.1088/2516-1075/ad3592
Mario Motta, William Kirby, Ieva Liepuoniute, Kevin J Sung, Jeffrey Cohn, Antonio Mezzacapo, Katherine Klymko, Nam Nguyen, Nobuyuki Yoshioka, Julia E Rice
Quantum subspace methods (QSMs) are a class of quantum computing algorithms where the time-independent Schrödinger equation for a quantum system is projected onto a subspace of the underlying Hilbert space. This projection transforms the Schrödinger equation into an eigenvalue problem determined by measurements carried out on a quantum device. The eigenvalue problem is then solved on a classical computer, yielding approximations to ground- and excited-state energies and wavefunctions. QSMs are examples of hybrid quantum–classical methods, where a quantum device supported by classical computational resources is employed to tackle a problem. QSMs are rapidly gaining traction as a strategy to simulate electronic wavefunctions on quantum computers, and thus their design, development, and application is a key research field at the interface between quantum computation and electronic structure (ES). In this review, we provide a self-contained introduction to QSMs, with emphasis on their application to the ES of molecules. We present the theoretical foundations and applications of QSMs, and we discuss their implementation on quantum hardware, illustrating the impact of noise on their performance.
量子子空间方法(QSM)是一类量子计算算法,其中量子系统与时间无关的薛定谔方程被投影到底层希尔伯特空间的子空间上。这种投影将薛定谔方程转化为由量子设备上进行的测量所决定的特征值问题。然后在经典计算机上求解特征值问题,得出基态和激发态能量和波函数的近似值。QSM 是量子-经典混合方法的范例,即利用经典计算资源支持的量子设备来解决问题。作为一种在量子计算机上模拟电子波函数的策略,QSM 正迅速获得广泛关注,因此其设计、开发和应用是量子计算与电子结构(ES)之间的一个关键研究领域。在这篇综述中,我们将自成一体地介绍 QSM,重点是它们在分子电子结构中的应用。我们介绍了 QSM 的理论基础和应用,并讨论了它们在量子硬件上的实现,说明了噪声对其性能的影响。
{"title":"Subspace methods for electronic structure simulations on quantum computers","authors":"Mario Motta, William Kirby, Ieva Liepuoniute, Kevin J Sung, Jeffrey Cohn, Antonio Mezzacapo, Katherine Klymko, Nam Nguyen, Nobuyuki Yoshioka, Julia E Rice","doi":"10.1088/2516-1075/ad3592","DOIUrl":"https://doi.org/10.1088/2516-1075/ad3592","url":null,"abstract":"Quantum subspace methods (QSMs) are a class of quantum computing algorithms where the time-independent Schrödinger equation for a quantum system is projected onto a subspace of the underlying Hilbert space. This projection transforms the Schrödinger equation into an eigenvalue problem determined by measurements carried out on a quantum device. The eigenvalue problem is then solved on a classical computer, yielding approximations to ground- and excited-state energies and wavefunctions. QSMs are examples of hybrid quantum–classical methods, where a quantum device supported by classical computational resources is employed to tackle a problem. QSMs are rapidly gaining traction as a strategy to simulate electronic wavefunctions on quantum computers, and thus their design, development, and application is a key research field at the interface between quantum computation and electronic structure (ES). In this review, we provide a self-contained introduction to QSMs, with emphasis on their application to the ES of molecules. We present the theoretical foundations and applications of QSMs, and we discuss their implementation on quantum hardware, illustrating the impact of noise on their performance.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":"59 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting a derivative discontinuity estimate for accurate G0W0 ionization potentials and electron affinities 利用导数不连续性估算实现精确的 G0W0 电离电势和电子亲和力
IF 2.6 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-03-18 DOI: 10.1088/2516-1075/ad3124
Daniel Mejia-Rodriguez
The GW approximation has become an important tool for predicting charged excitations of isolated molecules and condensed systems. Its popularity can be attributed to many factors, including a favorable scaling and relatively good accuracy. In practical applications, the GW is often performed as a one-shot perturbation known as G0W0. Unfortunately, G0W0 suffers from a strong starting point dependence and is often not as accurate as one would need. Self-consistent GW methodologies alleviate these problems but come with a marked increase in computational cost. In this manuscript, we propose the use of an estimate of the exchange-correlation derivative discontinuity to provide a remarkably good starting point for G0W0 calculations, yielding ionization potentials and electron affinities with eigenvalue self-consistent GW quality at no additional cost. We assess the quality of the resulting methodology with the GW100 benchmark set and compare its advantages over other similar methods.
GW 近似已成为预测孤立分子和凝聚态系统带电激发的重要工具。它的流行可归因于许多因素,包括有利的缩放和相对较高的精度。在实际应用中,GW 通常作为一次性扰动进行,即 G0W0。遗憾的是,G0W0 有很强的起点依赖性,精度往往达不到要求。自洽 GW 方法可以缓解这些问题,但计算成本也会明显增加。在本手稿中,我们提出利用交换相关导数不连续的估计值为 G0W0 计算提供一个非常好的起点,从而在不增加额外成本的情况下得到具有特征值自洽 GW 质量的电离势和电子亲和力。我们用 GW100 基准集评估了由此产生的方法的质量,并比较了它与其他类似方法的优势。
{"title":"Exploiting a derivative discontinuity estimate for accurate G0W0 ionization potentials and electron affinities","authors":"Daniel Mejia-Rodriguez","doi":"10.1088/2516-1075/ad3124","DOIUrl":"https://doi.org/10.1088/2516-1075/ad3124","url":null,"abstract":"The <italic toggle=\"yes\">GW</italic> approximation has become an important tool for predicting charged excitations of isolated molecules and condensed systems. Its popularity can be attributed to many factors, including a favorable scaling and relatively good accuracy. In practical applications, the <italic toggle=\"yes\">GW</italic> is often performed as a one-shot perturbation known as <inline-formula>\u0000<tex-math><?CDATA $G_0W_0$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msub><mml:mi>G</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msub><mml:mi>W</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>\u0000<inline-graphic xlink:href=\"estad3124ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>. Unfortunately, <inline-formula>\u0000<tex-math><?CDATA $G_0W_0$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msub><mml:mi>G</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msub><mml:mi>W</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>\u0000<inline-graphic xlink:href=\"estad3124ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> suffers from a strong starting point dependence and is often not as accurate as one would need. Self-consistent <italic toggle=\"yes\">GW</italic> methodologies alleviate these problems but come with a marked increase in computational cost. In this manuscript, we propose the use of an estimate of the exchange-correlation derivative discontinuity to provide a remarkably good starting point for <inline-formula>\u0000<tex-math><?CDATA $G_0W_0$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msub><mml:mi>G</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msub><mml:mi>W</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>\u0000<inline-graphic xlink:href=\"estad3124ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> calculations, yielding ionization potentials and electron affinities with eigenvalue self-consistent <italic toggle=\"yes\">GW</italic> quality at no additional cost. We assess the quality of the resulting methodology with the <italic toggle=\"yes\">GW</italic>100 benchmark set and compare its advantages over other similar methods.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":"46 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140315117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Training models using forces computed by stochastic electronic structure methods 利用随机电子结构法计算的力来训练模型
IF 2.6 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-03-15 DOI: 10.1088/2516-1075/ad2eb0
David M Ceperley, Scott Jensen, Yubo Yang, Hongwei Niu, Carlo Pierleoni, Markus Holzmann
Quantum Monte Carlo (QMC) can play a very important role in generating accurate data needed for constructing potential energy surfaces. We argue that QMC has advantages in terms of a smaller systematic bias and an ability to cover phase space more completely. The stochastic noise can ease the training of the machine learning model. We discuss how stochastic errors affect the generation of effective models by analyzing the errors within a linear least squares procedure, finding that there is an advantage to having many relatively imprecise data points for constructing models. We then analyze the effect of noise on a model of many-body silicon finding that noise in some situations improves the resulting model. We then study the effect of QMC noise on two machine learning models of dense hydrogen used in a recent study of its phase diagram. The noise enables us to estimate the errors in the model. We conclude with a discussion of future research problems.
量子蒙特卡罗(QMC)在生成构建势能面所需的精确数据方面可以发挥非常重要的作用。我们认为,量子蒙特卡罗具有较小的系统偏差和更完整地覆盖相空间的能力等优势。随机噪声可以简化机器学习模型的训练。我们通过分析线性最小二乘法过程中的误差,讨论了随机误差如何影响有效模型的生成。然后,我们分析了噪声对多体硅模型的影响,发现噪声在某些情况下会改善生成的模型。然后,我们研究了 QMC 噪声对最近研究氢气相图时使用的两个高密度氢气机器学习模型的影响。噪声使我们能够估计模型中的误差。最后,我们讨论了未来的研究问题。
{"title":"Training models using forces computed by stochastic electronic structure methods","authors":"David M Ceperley, Scott Jensen, Yubo Yang, Hongwei Niu, Carlo Pierleoni, Markus Holzmann","doi":"10.1088/2516-1075/ad2eb0","DOIUrl":"https://doi.org/10.1088/2516-1075/ad2eb0","url":null,"abstract":"Quantum Monte Carlo (QMC) can play a very important role in generating accurate data needed for constructing potential energy surfaces. We argue that QMC has advantages in terms of a smaller systematic bias and an ability to cover phase space more completely. The stochastic noise can ease the training of the machine learning model. We discuss how stochastic errors affect the generation of effective models by analyzing the errors within a linear least squares procedure, finding that there is an advantage to having many relatively imprecise data points for constructing models. We then analyze the effect of noise on a model of many-body silicon finding that noise in some situations improves the resulting model. We then study the effect of QMC noise on two machine learning models of dense hydrogen used in a recent study of its phase diagram. The noise enables us to estimate the errors in the model. We conclude with a discussion of future research problems.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":"6 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140315409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Composition-driven Mott transition within SrTi 1−x V x O3 SrTi 1-x V x O3 中成分驱动的莫特转变
IF 2.6 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-03-07 DOI: 10.1088/2516-1075/ad29ab
A D N James, M Aichhorn, J Laverock
The last few decades has seen the rapid growth of interest in the bulk perovskite-type transition metal oxides SrVO<sub>3</sub> and SrTiO<sub>3</sub>. The electronic configuration of these perovskites differs by one electron associated to the transition metal species which gives rise to the drastically different electronic properties. Therefore, it is natural to look into how the electronic structure transitions between these bulk structures by using doping. Measurements of the substitutional doped SrTi<inline-formula><tex-math><?CDATA $_{{1-x}}$?></tex-math><mml:math overflow="scroll"><mml:msub><mml:mi> </mml:mi><mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math><inline-graphic xlink:href="estad29abieqn3.gif" xlink:type="simple"></inline-graphic></inline-formula>V<inline-formula><tex-math><?CDATA $_{{{x}}}$?></tex-math><mml:math overflow="scroll"><mml:msub><mml:mi></mml:mi><mml:mrow><mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:math><inline-graphic xlink:href="estad29abieqn4.gif" xlink:type="simple"></inline-graphic></inline-formula>O<sub>3</sub> shows an metal–insulator transition (MIT) as a function of doping. By using supercell density functional theory with dynamical mean field theory (DFT+DMFT), we show that the MIT is indeed the result of the combination of local electron correlation effects (Mott physics) within the <inline-formula><tex-math><?CDATA $t_{{mathrm{2g}}}$?></tex-math><mml:math overflow="scroll"><mml:msub><mml:mi>t</mml:mi><mml:mrow><mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi mathvariant="normal">g</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:math><inline-graphic xlink:href="estad29abieqn5.gif" xlink:type="simple"></inline-graphic></inline-formula> orbitals and the atomic site configuration of the transition metals which may indicate dependence on site disorder. SrTi<inline-formula><tex-math><?CDATA $_{{1-x}}$?></tex-math><mml:math overflow="scroll"><mml:msub><mml:mi> </mml:mi><mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math><inline-graphic xlink:href="estad29abieqn6.gif" xlink:type="simple"></inline-graphic></inline-formula>V<inline-formula><tex-math><?CDATA $_{{{x}}}$?></tex-math><mml:math overflow="scroll"><mml:msub><mml:mi></mml:mi><mml:mrow><mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:math><inline-graphic xlink:href="estad29abieqn7.gif" xlink:type="simple"></inline-graphic></inline-formula>O<sub>3</sub> may be an ideal candidate for benchmarking cutting-edge Mott–Anderson models of real systems. We show that applying an effective external perturbation on SrTi<inline-formula><tex-math><?CDATA $_{{1-x}}$?></tex-math><mml:math overflow="scroll"><mml:msub><mml:mi> </mml:mi><mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mrow></mml
过去几十年来,人们对体包型过渡金属氧化物 SrVO3 和 SrTiO3 的兴趣迅速增长。这些包晶的电子构型与过渡金属物种的电子构型相差一个电子,从而产生了截然不同的电子特性。因此,研究如何通过掺杂实现这些块体结构之间的电子结构转变是很自然的。对置换掺杂的 SrTi 1-xVxO3 进行的测量表明,金属-绝缘体转变(MIT)是掺杂的函数。通过使用超胞密度泛函理论和动态均场理论(DFT+DMFT),我们发现金属-绝缘体转变确实是 t2g 轨道内局部电子相关效应(莫特物理学)和过渡金属原子位点构型相结合的结果,这可能表明金属-绝缘体转变取决于位点无序性。SrTi 1-xVxO3 可能是对真实系统的尖端莫特-安德森模型进行基准测试的理想候选材料。我们的研究表明,对 SrTi 1-xVxO3 施加有效的外部扰动可以使系统在绝缘相和金属相之间切换,这意味着这是一个具有莫特电子器件应用潜力的体态系统。
{"title":"Composition-driven Mott transition within SrTi 1−x V x O3","authors":"A D N James, M Aichhorn, J Laverock","doi":"10.1088/2516-1075/ad29ab","DOIUrl":"https://doi.org/10.1088/2516-1075/ad29ab","url":null,"abstract":"The last few decades has seen the rapid growth of interest in the bulk perovskite-type transition metal oxides SrVO&lt;sub&gt;3&lt;/sub&gt; and SrTiO&lt;sub&gt;3&lt;/sub&gt;. The electronic configuration of these perovskites differs by one electron associated to the transition metal species which gives rise to the drastically different electronic properties. Therefore, it is natural to look into how the electronic structure transitions between these bulk structures by using doping. Measurements of the substitutional doped SrTi&lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $_{{1-x}}$?&gt;&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:msub&gt;&lt;mml:mi&gt; &lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;mml:mi&gt;x&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"estad29abieqn3.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt;V&lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $_{{{x}}}$?&gt;&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;x&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"estad29abieqn4.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt;O&lt;sub&gt;3&lt;/sub&gt; shows an metal–insulator transition (MIT) as a function of doping. By using supercell density functional theory with dynamical mean field theory (DFT+DMFT), we show that the MIT is indeed the result of the combination of local electron correlation effects (Mott physics) within the &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $t_{{mathrm{2g}}}$?&gt;&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;t&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;2&lt;/mml:mn&gt;&lt;mml:mi mathvariant=\"normal\"&gt;g&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"estad29abieqn5.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt; orbitals and the atomic site configuration of the transition metals which may indicate dependence on site disorder. SrTi&lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $_{{1-x}}$?&gt;&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:msub&gt;&lt;mml:mi&gt; &lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;mml:mi&gt;x&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"estad29abieqn6.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt;V&lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $_{{{x}}}$?&gt;&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;x&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"estad29abieqn7.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt;O&lt;sub&gt;3&lt;/sub&gt; may be an ideal candidate for benchmarking cutting-edge Mott–Anderson models of real systems. We show that applying an effective external perturbation on SrTi&lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $_{{1-x}}$?&gt;&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:msub&gt;&lt;mml:mi&gt; &lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;mml:mi&gt;x&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":"62 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140315099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A two-step Rayleigh-Schrödinger Brillouin-Wigner approach to transition energies 过渡能的两步瑞利-薛定谔布里渊-维格纳方法
IF 2.6 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-02-23 DOI: 10.1088/2516-1075/ad28f1
Loris Delafosse, Amr Hussein, Saad Yalouz, Vincent Robert
Perturbative methods are attractive to describe the electronic structure of molecular systems because of their low-computational cost and systematically improvable character. In this work, a two-step perturbative approach is introduced combining multi-state Rayleigh-Schrödinger (effective Hamiltonian theory) and state-specific Brillouin-Wigner schemes to treat degenerate configurations and yield an efficient evaluation of multiple energies. The first step produces model functions and an updated definition of the perturbative partitioning of the Hamiltonian. The second step inherits the improved starting point provided in the first step, enabling then faster processing of the perturbative corrections for each individual state. The here-proposed two-step method is exemplified on a model-Hamiltonian of increasing complexity.
扰动方法因其低计算成本和可系统改进的特点,对描述分子系统的电子结构具有吸引力。在这项工作中,我们引入了一种两步扰动方法,将多态瑞利-薛定谔(有效哈密顿理论)和特定态布里渊-维格纳方案结合起来,以处理退化构型并高效评估多重能量。第一步产生模型函数和汉密尔顿微扰分割的最新定义。第二步继承了第一步提供的改进起点,从而能够更快地处理每个单独状态的微扰修正。这里提出的两步法在一个复杂度不断增加的哈密顿模型上进行了示范。
{"title":"A two-step Rayleigh-Schrödinger Brillouin-Wigner approach to transition energies","authors":"Loris Delafosse, Amr Hussein, Saad Yalouz, Vincent Robert","doi":"10.1088/2516-1075/ad28f1","DOIUrl":"https://doi.org/10.1088/2516-1075/ad28f1","url":null,"abstract":"Perturbative methods are attractive to describe the electronic structure of molecular systems because of their low-computational cost and systematically improvable character. In this work, a two-step perturbative approach is introduced combining multi-state Rayleigh-Schrödinger (effective Hamiltonian theory) and state-specific Brillouin-Wigner schemes to treat degenerate configurations and yield an efficient evaluation of multiple energies. The first step produces model functions and an updated definition of the perturbative partitioning of the Hamiltonian. The second step inherits the improved starting point provided in the first step, enabling then faster processing of the perturbative corrections for each individual state. The here-proposed two-step method is exemplified on a model-Hamiltonian of increasing complexity.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":"69 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140004360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating subsystem embedding subalgebras and coupled cluster Green’s function: a theoretical foundation for quantum embedding in excitation manifold 整合子系统嵌入子代数和耦合簇格林函数:激励流形中量子嵌入的理论基础
IF 2.6 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-02-01 DOI: 10.1088/2516-1075/ad1e3b
Bo Peng, Karol Kowalski
In this study, we introduce a novel approach to coupled-cluster Green’s function (CCGF) embedding by seamlessly integrating conventional CCGF theory with the state-of-the-art sub-system embedding sub-algebras coupled cluster (SES-CC) formalism. This integration focuses primarily on delineating the characteristics of the sub-system and the corresponding segments of the Green’s function, defined explicitly by active orbitals. Crucially, our work involves the adaptation of the SES-CC paradigm, addressing the left eigenvalue problem through a distinct form of Hamiltonian similarity transformation. This advancement not only facilitates a comprehensive representation of the interaction between the embedded sub-system and its surrounding environment but also paves the way for the quantum mechanical description of multiple embedded domains, particularly by employing the emergent quantum flow algorithms. Our theoretical underpinnings further set the stage for a generalization to multiple embedded sub-systems. This expansion holds significant promise for the exploration and application of non-equilibrium quantum systems, enhancing the understanding of system–environment interactions. In doing so, the research underscores the potential of SES-CC embedding within the realm of quantum computations and multi-scale simulations, promising a good balance between accuracy and computational efficiency.
在本研究中,我们通过将传统的耦合簇格林函数(CCGF)理论与最先进的子系统嵌入子代数耦合簇(SES-CC)形式主义无缝整合,引入了一种新颖的耦合簇格林函数(CCGF)嵌入方法。这种整合主要集中在划定子系统的特征和格林函数的相应部分,这些部分由活动轨道明确定义。最重要的是,我们的工作涉及对 SES-CC 范式的调整,通过一种独特形式的汉密尔顿相似性变换来解决左特征值问题。这一进步不仅有助于全面表示嵌入式子系统与其周围环境之间的相互作用,还为多个嵌入域的量子力学描述铺平了道路,特别是通过采用新兴量子流算法。我们的理论基础进一步为推广到多个嵌入式子系统奠定了基础。这一扩展为非平衡量子系统的探索和应用带来了重大希望,增强了人们对系统与环境相互作用的理解。在此过程中,研究强调了 SES-CC 嵌入在量子计算和多尺度模拟领域的潜力,有望在精度和计算效率之间取得良好平衡。
{"title":"Integrating subsystem embedding subalgebras and coupled cluster Green’s function: a theoretical foundation for quantum embedding in excitation manifold","authors":"Bo Peng, Karol Kowalski","doi":"10.1088/2516-1075/ad1e3b","DOIUrl":"https://doi.org/10.1088/2516-1075/ad1e3b","url":null,"abstract":"In this study, we introduce a novel approach to coupled-cluster Green’s function (CCGF) embedding by seamlessly integrating conventional CCGF theory with the state-of-the-art sub-system embedding sub-algebras coupled cluster (SES-CC) formalism. This integration focuses primarily on delineating the characteristics of the sub-system and the corresponding segments of the Green’s function, defined explicitly by active orbitals. Crucially, our work involves the adaptation of the SES-CC paradigm, addressing the left eigenvalue problem through a distinct form of Hamiltonian similarity transformation. This advancement not only facilitates a comprehensive representation of the interaction between the embedded sub-system and its surrounding environment but also paves the way for the quantum mechanical description of multiple embedded domains, particularly by employing the emergent quantum flow algorithms. Our theoretical underpinnings further set the stage for a generalization to multiple embedded sub-systems. This expansion holds significant promise for the exploration and application of non-equilibrium quantum systems, enhancing the understanding of system–environment interactions. In doing so, the research underscores the potential of SES-CC embedding within the realm of quantum computations and multi-scale simulations, promising a good balance between accuracy and computational efficiency.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":"92 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phonons from density-functional perturbation theory using the all-electron full-potential linearized augmented plane-wave method FLEUR * * Dedicated to the memory of Henry Krakauer (1947–2023). 使用全电子全电位线性化增强平面波方法的密度函数扰动理论中的声子 FLEUR * * 献给亨利-克拉考尔(Henry Krakauer,1947-2023 年)。
IF 2.6 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-01-04 DOI: 10.1088/2516-1075/ad1614
Christian-Roman Gerhorst, Alexander Neukirchen, Daniel A Klüppelberg, Gustav Bihlmayer, Markus Betzinger, Gregor Michalicek, Daniel Wortmann, Stefan Blügel
Phonons are quantized vibrations of a crystal lattice that play a crucial role in understanding many properties of solids. Density functional theory provides a state-of-the-art computational approach to lattice vibrations from first-principles. We present a successful software implementation for calculating phonons in the harmonic approximation, employing density-functional perturbation theory within the framework of the full-potential linearized augmented plane-wave method as implemented in the electronic structure package FLEUR. The implementation, which involves the Sternheimer equation for the linear response of the wave function, charge density, and potential with respect to infinitesimal atomic displacements, as well as the setup of the dynamical matrix, is presented and the specifics due to the muffin-tin sphere centered linearized augmented plane-wave basis-set and the all-electron nature are discussed. As a test, we calculate the phonon dispersion of several solids including an insulator, a semiconductor as well as several metals. The latter are comprised of magnetic, simple, and transition metals. The results are validated on the basis of phonon dispersions calculated using the finite displacement approach in conjunction with the FLEUR code and the phonopy package, as well as by some experimental results. An excellent agreement is obtained.
声子是晶体晶格的量子化振动,在理解固体的许多特性方面起着至关重要的作用。密度泛函理论从第一原理出发,为晶格振动提供了最先进的计算方法。我们在电子结构软件包 FLEUR 中实施的全电位线性化增强平面波方法框架内,采用密度泛函扰动理论,成功地实现了谐波近似中的声子计算。该方法的实现涉及波函数、电荷密度和电势相对于无限小原子位移的线性响应的斯特恩海默方程,以及动力学矩阵的设置。作为测试,我们计算了几种固体的声子色散,包括一种绝缘体、一种半导体和几种金属。后者包括磁性金属、简单金属和过渡金属。计算结果以结合 FLEUR 代码和声谱软件包使用有限位移方法计算的声子色散为基础,并通过一些实验结果进行了验证。结果非常吻合。
{"title":"Phonons from density-functional perturbation theory using the all-electron full-potential linearized augmented plane-wave method FLEUR * * Dedicated to the memory of Henry Krakauer (1947–2023).","authors":"Christian-Roman Gerhorst, Alexander Neukirchen, Daniel A Klüppelberg, Gustav Bihlmayer, Markus Betzinger, Gregor Michalicek, Daniel Wortmann, Stefan Blügel","doi":"10.1088/2516-1075/ad1614","DOIUrl":"https://doi.org/10.1088/2516-1075/ad1614","url":null,"abstract":"Phonons are quantized vibrations of a crystal lattice that play a crucial role in understanding many properties of solids. Density functional theory provides a state-of-the-art computational approach to lattice vibrations from first-principles. We present a successful software implementation for calculating phonons in the harmonic approximation, employing density-functional perturbation theory within the framework of the full-potential linearized augmented plane-wave method as implemented in the electronic structure package <monospace>FLEUR</monospace>. The implementation, which involves the Sternheimer equation for the linear response of the wave function, charge density, and potential with respect to infinitesimal atomic displacements, as well as the setup of the dynamical matrix, is presented and the specifics due to the muffin-tin sphere centered linearized augmented plane-wave basis-set and the all-electron nature are discussed. As a test, we calculate the phonon dispersion of several solids including an insulator, a semiconductor as well as several metals. The latter are comprised of magnetic, simple, and transition metals. The results are validated on the basis of phonon dispersions calculated using the finite displacement approach in conjunction with the <monospace>FLEUR</monospace> code and the <monospace>phonopy</monospace> package, as well as by some experimental results. An excellent agreement is obtained.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":"116 9-10 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139092384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rare earth (Tm, Y, Gd, and Eu) doped ZnS monolayer: A comparative first-principles study. 稀土(Tm、Y、Gd 和 Eu)掺杂 ZnS 单层:第一原理比较研究。
IF 2.6 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-12-21 DOI: 10.1088/2516-1075/ad17d5
A. Es-smairi, N. Fazouan, E. Maskar, Ibrahim Bziz, Mohammed Sabil, Ayan Banik, D. P. Rai
In this current study, we used the density functional theory (DFT) method to examine the physical properties of ZnS nanosheets doped with Tm, Y, Gd, and Eu at a concentration of 6.25%. The non-magnetic phase is energetically stable when doped with Y and Tm. However, the ferromagnetic state is thermodynamically stable when doped with Eu and Gd with a negative formation energy value. The optimized structure is a planar structure for all doped systems, with an increase in the lattice parameter and bond length. On doping the Fermi level is pushed into the conduction band narrowing the band gap, and exhibiting typical n-type semiconducting behaviour. In a wider optical window, Tm and Y-doped systems have lower reflectance and more excellent transmittance than Gd and Eu-doped systems in the visible light spectrum. The electrical conductivity has been calculated using the BoltzTrap package. The electrical conductivity has been enhanced on doping suitable for its application in optoelectronic devices, solar cells, spintronics and thermoelectrics.
在本研究中,我们使用密度泛函理论(DFT)方法研究了掺杂了 Tm、Y、Gd 和 Eu(浓度为 6.25%)的 ZnS 纳米片的物理性质。当掺杂 Y 和 Tm 时,非磁性相在能量上是稳定的。然而,当掺杂 Eu 和 Gd 时,铁磁态在热力学上是稳定的,其形成能值为负。所有掺杂体系的优化结构都是平面结构,晶格参数和键长都有所增加。掺杂后,费米级被推向导带,缩小了带隙,表现出典型的 n 型半导体特性。在更宽的光学窗口中,与掺杂钆和铕的系统相比,掺杂锝和掺杂钇的系统在可见光光谱中具有更低的反射率和更出色的透射率。导电性是通过 BoltzTrap 软件包计算得出的。电导率在掺杂后得到增强,适合应用于光电器件、太阳能电池、自旋电子学和热电。
{"title":"Rare earth (Tm, Y, Gd, and Eu) doped ZnS monolayer: A comparative first-principles study.","authors":"A. Es-smairi, N. Fazouan, E. Maskar, Ibrahim Bziz, Mohammed Sabil, Ayan Banik, D. P. Rai","doi":"10.1088/2516-1075/ad17d5","DOIUrl":"https://doi.org/10.1088/2516-1075/ad17d5","url":null,"abstract":"\u0000 In this current study, we used the density functional theory (DFT) method to examine the physical properties of ZnS nanosheets doped with Tm, Y, Gd, and Eu at a concentration of 6.25%. The non-magnetic phase is energetically stable when doped with Y and Tm. However, the ferromagnetic state is thermodynamically stable when doped with Eu and Gd with a negative formation energy value. The optimized structure is a planar structure for all doped systems, with an increase in the lattice parameter and bond length. On doping the Fermi level is pushed into the conduction band narrowing the band gap, and exhibiting typical n-type semiconducting behaviour. In a wider optical window, Tm and Y-doped systems have lower reflectance and more excellent transmittance than Gd and Eu-doped systems in the visible light spectrum. The electrical conductivity has been calculated using the BoltzTrap package. The electrical conductivity has been enhanced on doping suitable for its application in optoelectronic devices, solar cells, spintronics and thermoelectrics.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":"57 19","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138952180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional electronic structure of the superconductor Sn4Sb3 by angle-resolved photoemission spectroscopy 通过角度分辨光发射光谱分析超导体 Sn4Sb3 的三维电子结构
IF 2.6 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-12-19 DOI: 10.1088/2516-1075/ad16f4
P. Ding, Xiaoxiao Man, Qingxin Liu, Huan Ma, Bin Liu, Zhi Ren, Kai Liu, Shancai Wang
The layered material Sn4Sb3 exhibits superconductivity with T c∽1.47 K and is proposed to be a topological superconductor candidate. In this study, we investigate the electronic structure of Sn4Sb3 using angle-resolved photoemission spectroscopy and density functional theory (DFT) calculations. Despite its layered structure, the band structure of Sn4Sb3 shows strong k z dependence, leading to the formation of a three-dimensional Fermi surface. The electronic bands exhibit three-fold symmetry at most k z planes and six-fold symmetry at the Γ and Z planes. These observations are consistent with DFT calculations, except for the presence of additional flat-like bands located 500 meV below the Fermi level. The photon energy dependence measurement show noticeable k z dispersion in one of the splitted branches, suggesting a bulk origin of the feature, and negligible k z dispersion in another branch, implying the surface origin of the state.
层状材料 Sn4Sb3 具有 T c∽1.47 K 的超导性,被认为是拓扑超导体的候选材料。在本研究中,我们利用角度分辨光发射光谱和密度泛函理论(DFT)计算研究了Sn4Sb3的电子结构。尽管具有层状结构,但 Sn4Sb3 的能带结构显示出强烈的 k z 依赖性,从而形成了一个三维费米面。电子带在大多数 k z 平面上呈现三折对称性,而在Γ和 Z 平面上呈现六折对称性。这些观察结果与 DFT 计算结果一致,只是在费米水平以下 500 meV 存在额外的扁平带。光子能量依赖性测量结果表明,在其中一个分裂分支中存在明显的 k z 弥散,这表明该特征起源于体态,而在另一个分支中 k z 弥散可以忽略不计,这意味着该状态起源于表面。
{"title":"Three-dimensional electronic structure of the superconductor Sn4Sb3 by angle-resolved photoemission spectroscopy","authors":"P. Ding, Xiaoxiao Man, Qingxin Liu, Huan Ma, Bin Liu, Zhi Ren, Kai Liu, Shancai Wang","doi":"10.1088/2516-1075/ad16f4","DOIUrl":"https://doi.org/10.1088/2516-1075/ad16f4","url":null,"abstract":"\u0000 The layered material Sn4Sb3 exhibits superconductivity with T\u0000 c∽1.47 K and is proposed to be a topological superconductor candidate. In this study, we investigate the electronic structure of Sn4Sb3 using angle-resolved photoemission spectroscopy and density functional theory (DFT) calculations. Despite its layered structure, the band structure of Sn4Sb3 shows strong k\u0000 z dependence, leading to the formation of a three-dimensional Fermi surface. The electronic bands exhibit three-fold symmetry at most k\u0000 z planes and six-fold symmetry at the Γ and Z planes. These observations are consistent with DFT calculations, except for the presence of additional flat-like bands located 500 meV below the Fermi level. The photon energy dependence measurement show noticeable k\u0000 z dispersion in one of the splitted branches, suggesting a bulk origin of the feature, and negligible k\u0000 z dispersion in another branch, implying the surface origin of the state.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":" 81","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138962149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
B and N substitutional co-doping in 7AGNRs 7AGNR 中的 B 和 N 置换共掺杂
IF 2.6 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-12-14 DOI: 10.1088/2516-1075/ad159f
Rodrigo E. Menchón, Iñigo Delgado Enales, D. Sánchez-Portal, A. Garcia-Lekue
On-surface synthesis of graphene nanoribbons (GNRs) enables engineering their electronic and magnetic properties, which sensitively depend on their precise bonding structure, morphology and chemical composition. Here, we investigate nitrogen and boron co-doping in order to better understand the effects of simultaneous chemical substitution in sites along the backbone of 7AGNRs. In a comparative analysis with the pristine system, the origin of the impurity bands that nitro-borylated systems exhibit was addresed. In addition to this, we studied the appearance of an electric dipolar moment, the charge transfer mechanism behind it and its dependence on the distance between BN centres. The high defect concentration limit and the dilute limit were investigated, along with various doping schemes with four substitutional doping sites and the possible emergence of magnetism in these systems.
石墨烯纳米带(GNR)的表面合成可以对其电子和磁性能进行工程设计,而这些性能敏感地取决于其精确的键合结构、形态和化学成分。在此,我们对氮和硼的共掺杂进行了研究,以更好地了解在 7AGNRs 主干上的位点同时进行化学置换的影响。在与原始体系的对比分析中,我们探讨了硝基硼烷基化体系所表现出的杂质带的来源。此外,我们还研究了电偶极矩的出现、其背后的电荷转移机制及其与 BN 中心间距的关系。我们还研究了高缺陷浓度极限和稀释极限,以及具有四个置换掺杂位点的各种掺杂方案和这些体系中可能出现的磁性。
{"title":"B and N substitutional co-doping in 7AGNRs","authors":"Rodrigo E. Menchón, Iñigo Delgado Enales, D. Sánchez-Portal, A. Garcia-Lekue","doi":"10.1088/2516-1075/ad159f","DOIUrl":"https://doi.org/10.1088/2516-1075/ad159f","url":null,"abstract":"\u0000 On-surface synthesis of graphene nanoribbons (GNRs) enables engineering their electronic and magnetic properties, which sensitively depend on their precise bonding structure, morphology and chemical composition. Here, we investigate nitrogen and boron co-doping in order to better understand the effects of simultaneous chemical substitution in sites along the backbone of 7AGNRs. In a comparative analysis with the pristine system, the origin of the impurity bands that nitro-borylated systems exhibit was addresed. In addition to this, we studied the appearance of an electric dipolar moment, the charge transfer mechanism behind it and its dependence on the distance between BN centres. The high defect concentration limit and the dilute limit were investigated, along with various doping schemes with four substitutional doping sites and the possible emergence of magnetism in these systems.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":"46 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139003125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Electronic Structure
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1