首页 > 最新文献

Electronic Structure最新文献

英文 中文
Roadmap on methods and software for electronic structure based simulations in chemistry and materials 基于电子结构的化学和材料模拟方法和软件路线图
IF 2.6 Q2 Physics and Astronomy Pub Date : 2024-05-08 DOI: 10.1088/2516-1075/ad48ec
V. Blum, Ryoji Asahi, Jochen Autschbach, Christoph Bannwarth, G. Bihlmayer, S. Blügel, Lori A. Burns, T. D. Crawford, William Dawson, W. D. de Jong, C. Draxl, Claudia Filippi, Luigi Genovese, P. Giannozzi, N. Govind, Sharon Hammes-Schiffer, Jeff R. Hammond, B. Hourahine, Anubhav Jain, Yosuke Kanai, P. R. Kent, A. H. Larsen, S. Lehtola, Xiaosong Li, Roland Lindh, Satoshi Maeda, N. Makri, Jonathan Moussa, T. Nakajima, Jessica A. Nash, Micael J. T. Oliveira, Pansy D. Patel, Giovanni Pizzi, Geoffrey Pourtois, Benjamin P. Pritchard, E. Rabani, M. Reiher, L. Reining, Xinguo Ren, Mariana Rossi, H. B. Schlegel, N. Seriani, L. Slipchenko, Alexander Thom, Edward F. Valeev, Benoit Van Troeye, Lucas Visscher, V. Vlček, Hans-Joachim Werner, David B. Williams-Young, Theresa Windus
Contents 1. Introduction- Methods and software for electronic structure based simulations of chemistry and materials 2. Density Functional Theory: Formalism and Current Directions 3. Density functional methods - implementation, challenges, successes 4. Green’s function based many-body perturbation theory 5. Wave-function theory approaches – explicit approaches to electron correlation 6. Quantum Monte Carlo and stochastic electronic structure methods 7. Heavy element relativity, spin-orbit physics, and magnetism 8. Semiempirical methods 9. Simulating Nuclear Dynamics with Quantum Effects 10. Real-Time Propagation in Electronic Structure Theory 11. Spectroscopy 12. Tools for exploring potential energy surfaces 13. Managing complex computational workflows 14. Current and Future Computer Architectures 15. Electronic structure software engineering 16. Education and Training in Electronic Structure Theory: Navigating an Evolving Landscape 17. Electronic structure theory facing industry and realistic modeling of experiments 18. List of Acronyms
内容 1. 导言--基于电子结构的化学和材料模拟方法与软件 2.密度泛函理论:形式主义与当前方向 3.密度泛函方法--实施、挑战和成功 4.基于格林函数的多体扰动理论 5.波函数理论方法--电子相关的显式方法 6.量子蒙特卡罗和随机电子结构方法 7.重元素相对论、自旋轨道物理学和磁学 8.半经验方法 9.利用量子效应模拟核动力学 10.电子结构理论中的实时传播 11.光谱学 12.势能面探索工具 13.管理复杂的计算工作流程 14.当前和未来的计算机体系结构 15.电子结构软件工程 16.电子结构理论的教育与培训:驾驭不断变化的环境 17.电子结构理论面对工业和现实实验建模 18.缩略语表
{"title":"Roadmap on methods and software for electronic structure based simulations in chemistry and materials","authors":"V. Blum, Ryoji Asahi, Jochen Autschbach, Christoph Bannwarth, G. Bihlmayer, S. Blügel, Lori A. Burns, T. D. Crawford, William Dawson, W. D. de Jong, C. Draxl, Claudia Filippi, Luigi Genovese, P. Giannozzi, N. Govind, Sharon Hammes-Schiffer, Jeff R. Hammond, B. Hourahine, Anubhav Jain, Yosuke Kanai, P. R. Kent, A. H. Larsen, S. Lehtola, Xiaosong Li, Roland Lindh, Satoshi Maeda, N. Makri, Jonathan Moussa, T. Nakajima, Jessica A. Nash, Micael J. T. Oliveira, Pansy D. Patel, Giovanni Pizzi, Geoffrey Pourtois, Benjamin P. Pritchard, E. Rabani, M. Reiher, L. Reining, Xinguo Ren, Mariana Rossi, H. B. Schlegel, N. Seriani, L. Slipchenko, Alexander Thom, Edward F. Valeev, Benoit Van Troeye, Lucas Visscher, V. Vlček, Hans-Joachim Werner, David B. Williams-Young, Theresa Windus","doi":"10.1088/2516-1075/ad48ec","DOIUrl":"https://doi.org/10.1088/2516-1075/ad48ec","url":null,"abstract":"\u0000 Contents 1. Introduction- Methods and software for electronic structure based simulations of chemistry and materials 2. Density Functional Theory: Formalism and Current Directions 3. Density functional methods - implementation, challenges, successes 4. Green’s function based many-body perturbation theory 5. Wave-function theory approaches – explicit approaches to electron correlation 6. Quantum Monte Carlo and stochastic electronic structure methods 7. Heavy element relativity, spin-orbit physics, and magnetism 8. Semiempirical methods 9. Simulating Nuclear Dynamics with Quantum Effects 10. Real-Time Propagation in Electronic Structure Theory 11. Spectroscopy 12. Tools for exploring potential energy surfaces 13. Managing complex computational workflows 14. Current and Future Computer Architectures 15. Electronic structure software engineering 16. Education and Training in Electronic Structure Theory: Navigating an Evolving Landscape 17. Electronic structure theory facing industry and realistic modeling of experiments 18. List of Acronyms","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140998398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of cathode properties of two-dimensional NbS2Cl2 for Li and Na-ion batteries using density functional theory 利用密度泛函理论研究二维 NbS2Cl2 用于锂离子和纳离子电池的阴极特性
IF 2.6 Q2 Physics and Astronomy Pub Date : 2024-05-02 DOI: 10.1088/2516-1075/ad46b5
Arul Raj Natarajan, B. Pujari, G. Vaitheeswaran, V. Kanchana
Exploring novel two-dimensional materials (2D) for electrode and electrochemical storage applications stands as a pivotal pursuit in advancing renewable energy technologies. While recent research has predominantly focused on anode materials, cathode materials have received comparatively lesser attention. This study delves into the potential cathode applications of the novel two-dimensional material NbS2Cl2 using density functional theory. Fundamental properties, encompassing electronic and thermodynamic attributes, were scrutinized to comprehend the material’s characteristics. Our investigation extended to examining the adsorption and diffusion properties of these electrode materials. Comprehensive calculations of mechanical and thermodynamic properties reaffirmed the stability of this system. Upon adsorption of Li/Na atoms, the conducting nature emerged, evident through charge density difference and projected density of states (PDOS). Our findings notably reveal minimal diffusion barriers of 1.5 eV and 0.35 eV for Li and Na atoms. Moreover, the observed open circuit voltages (OCV) for adsorbed Li and Na ions were 4.69 V and 2.62 V, respectively. The calculated theoretical capacity for adsorbed Li-ion on 2D-NbS2Cl2 is 400 mAh/g, while for Na-ion adsorption, it is 353 mAh/g, awaiting validation through future experimental verifications.
探索新型二维材料(2D)在电极和电化学储能方面的应用,是推动可再生能源技术发展的一项关键任务。近期的研究主要集中在阳极材料上,而阴极材料则相对较少受到关注。本研究利用密度泛函理论深入研究了新型二维材料 NbS2Cl2 的潜在阴极应用。我们仔细研究了包括电子和热力学属性在内的基本特性,以了解这种材料的特点。我们的研究还扩展到这些电极材料的吸附和扩散特性。机械和热力学特性的综合计算再次证实了该系统的稳定性。通过电荷密度差和投影态密度(PDOS)可以看出,在吸附 Li/Na 原子后,导电性能显现出来。我们的研究结果表明,锂原子和瑙原子的最小扩散势垒分别为 1.5 eV 和 0.35 eV。此外,吸附的锂离子和钠离子的开路电压(OCV)分别为 4.69 V 和 2.62 V。计算得出的二维-NbS2Cl2 上吸附锂离子的理论容量为 400 mAh/g,而吸附 Na 离子的理论容量为 353 mAh/g,有待今后的实验验证。
{"title":"Investigation of cathode properties of two-dimensional NbS2Cl2 for Li and Na-ion batteries using density functional theory","authors":"Arul Raj Natarajan, B. Pujari, G. Vaitheeswaran, V. Kanchana","doi":"10.1088/2516-1075/ad46b5","DOIUrl":"https://doi.org/10.1088/2516-1075/ad46b5","url":null,"abstract":"\u0000 Exploring novel two-dimensional materials (2D) for electrode and electrochemical storage applications stands as a pivotal pursuit in advancing renewable energy technologies. While recent research has predominantly focused on anode materials, cathode materials have received comparatively lesser attention. This study delves into the potential cathode applications of the novel two-dimensional material NbS2Cl2 using density functional theory. Fundamental properties, encompassing electronic and thermodynamic attributes, were scrutinized to comprehend the material’s characteristics. Our investigation extended to examining the adsorption and diffusion properties of these electrode materials. Comprehensive calculations of mechanical and thermodynamic properties reaffirmed the stability of this system. Upon adsorption of Li/Na atoms, the conducting nature emerged, evident through charge density difference and projected density of states (PDOS). Our findings notably reveal minimal diffusion barriers of 1.5 eV and 0.35 eV for Li and Na atoms. Moreover, the observed open circuit voltages (OCV) for adsorbed Li and Na ions were 4.69 V and 2.62 V, respectively. The calculated theoretical capacity for adsorbed Li-ion on 2D-NbS2Cl2 is 400 mAh/g, while for Na-ion adsorption, it is 353 mAh/g, awaiting validation through future experimental verifications.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141022255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defect-induced modifications in electronic and thermoelectric properties of pentagonal PdX2 (X=Se, S) monolayers. 五边形 PdX2(X=Se,S)单层的电子和热电特性在缺陷诱导下的改变。
IF 2.6 Q2 Physics and Astronomy Pub Date : 2024-05-02 DOI: 10.1088/2516-1075/ad46b8
Mridu Sharma, Shagun Nag, Ranjan Kumar, Ranber Singh
The point defects induced in crystalline solids during the growth process unintentionally or doped intentionally after the growth process significantly modify their properties. The intentionally controlled doping of point defects in crystalline solids has been widely used to tune their properties. In this paper, we investigate the effect of vacancy and substitutional point defects on the electronic and thermoelectric properties of pentagonal PdX 2 (X= Se, S) monolayers using the density functional theory (DFT) and semi-classical Boltzmann transport theory. We find that the point defects in pentagonal PdX 2 (X= Se, S) monolayers modify their electronic structures. The contributions of d orbitals of Pd atoms and p orbitals of Se/S atoms are significantly affected due to the presence of point defects in the lattice. The defect states are appeared within the band gap region which effectively reduces the band gap of the monolayer. These defect states could be helpful in tuning the electrical and optical properties of the monolayer. The transport calculations show that the presence of the point defects in the lattice reduces the thermoelectric performance of PdX 2 monolayers. Both the Seebeck coefficient and electrical conductivity show deteriorated behaviour under the influence of point defects in the lattice. Thus, the influence of these defects must be carefully taken into account while fabricating these materials for practical applications.
晶体固体在生长过程中无意诱发的点缺陷或在生长过程后有意掺杂的点缺陷都会极大地改变其特性。在晶体固体中有意控制地掺杂点缺陷已被广泛用于调节其性质。本文利用密度泛函理论(DFT)和半经典波尔兹曼输运理论,研究了空位点缺陷和取代点缺陷对五边形 PdX 2(X= Se,S)单层的电子和热电性能的影响。我们发现五边形 PdX 2 (X= Se, S) 单层中的点缺陷改变了它们的电子结构。由于晶格中存在点缺陷,钯原子的 d 轨道和 Se/S 原子的 p 轨道的贡献受到了很大影响。缺陷态出现在带隙区域内,从而有效地减小了单层的带隙。这些缺陷态有助于调整单层的电学和光学特性。传输计算表明,晶格中点缺陷的存在降低了 PdX 2 单层的热电性能。在晶格中点缺陷的影响下,塞贝克系数和电导率都出现了恶化。因此,在为实际应用制造这些材料时,必须仔细考虑这些缺陷的影响。
{"title":"Defect-induced modifications in electronic and thermoelectric properties of pentagonal PdX2 (X=Se, S) monolayers.","authors":"Mridu Sharma, Shagun Nag, Ranjan Kumar, Ranber Singh","doi":"10.1088/2516-1075/ad46b8","DOIUrl":"https://doi.org/10.1088/2516-1075/ad46b8","url":null,"abstract":"\u0000 The point defects induced in crystalline solids during the growth process unintentionally or doped intentionally after the growth process significantly modify their properties. The intentionally controlled doping of point defects in crystalline solids has been widely used to tune their properties. In this paper, we investigate the effect of vacancy and substitutional point defects on the electronic and thermoelectric properties of pentagonal PdX 2 (X= Se, S) monolayers using the density functional theory (DFT) and semi-classical Boltzmann transport theory. We find that the point defects in pentagonal PdX 2 (X= Se, S) monolayers modify their electronic structures. The contributions of d orbitals of Pd atoms and p orbitals of Se/S atoms are significantly affected due to the presence of point defects in the lattice. The defect states are appeared within the band gap region which effectively reduces the band gap of the monolayer. These defect states could be helpful in tuning the electrical and optical properties of the monolayer. The transport calculations show that the presence of the point defects in the lattice reduces the thermoelectric performance of PdX 2 monolayers. Both the Seebeck coefficient and electrical conductivity show deteriorated behaviour under the influence of point defects in the lattice. Thus, the influence of these defects must be carefully taken into account while fabricating these materials for practical applications.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141020926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ensemble variational Monte Carlo for optimization of correlated excited state wave functions 优化相关激发态波函数的集合变异蒙特卡洛算法
IF 2.6 Q2 Physics and Astronomy Pub Date : 2024-04-08 DOI: 10.1088/2516-1075/ad38f8
William A Wheeler, Kevin G Kleiner, Lucas K Wagner
Variational Monte Carlo methods have recently been applied to the calculation of excited states; however, it is still an open question what objective function is most effective. A promising approach is to optimize excited states using a penalty to minimize overlap with lower eigenstates, which has the drawback that states must be computed one at a time. We derive a general framework for constructing objective functions with minima at the the lowest N eigenstates of a many-body Hamiltonian. The objective function uses a weighted average of the energies and an overlap penalty, which must satisfy several conditions. We show this objective function has a minimum at the exact eigenstates for a finite penalty, and provide a few strategies to minimize the objective function. The method is demonstrated using ab initio variational Monte Carlo to calculate the degenerate first excited state of a CO molecule.
变异蒙特卡洛方法最近被应用于激发态的计算;然而,什么目标函数最有效仍是一个悬而未决的问题。一种很有前途的方法是利用惩罚来优化激发态,以尽量减少与低特征态的重叠,但这种方法的缺点是必须一次计算一个态。我们推导出一个通用框架,用于构建在多体哈密顿最低 N 个特征状态处具有最小值的目标函数。目标函数使用能量的加权平均值和重叠惩罚,必须满足几个条件。我们证明了在罚金有限的情况下,该目标函数在精确特征点处具有最小值,并提供了几种最小化目标函数的策略。我们利用 ab initio 变分蒙特卡洛计算一氧化碳分子的退化第一激发态来演示该方法。
{"title":"Ensemble variational Monte Carlo for optimization of correlated excited state wave functions","authors":"William A Wheeler, Kevin G Kleiner, Lucas K Wagner","doi":"10.1088/2516-1075/ad38f8","DOIUrl":"https://doi.org/10.1088/2516-1075/ad38f8","url":null,"abstract":"Variational Monte Carlo methods have recently been applied to the calculation of excited states; however, it is still an open question what objective function is most effective. A promising approach is to optimize excited states using a penalty to minimize overlap with lower eigenstates, which has the drawback that states must be computed one at a time. We derive a general framework for constructing objective functions with minima at the the lowest <italic toggle=\"yes\">N</italic> eigenstates of a many-body Hamiltonian. The objective function uses a weighted average of the energies and an overlap penalty, which must satisfy several conditions. We show this objective function has a minimum at the exact eigenstates for a finite penalty, and provide a few strategies to minimize the objective function. The method is demonstrated using <italic toggle=\"yes\">ab initio</italic> variational Monte Carlo to calculate the degenerate first excited state of a CO molecule.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Importance profiles. Visualization of atomic basis set requirements 重要性剖面图原子基集要求的可视化
IF 2.6 Q2 Physics and Astronomy Pub Date : 2024-04-02 DOI: 10.1088/2516-1075/ad31ca
Susi Lehtola
Recent developments in fully numerical methods promise interesting opportunities for new, compact atomic orbital (AO) basis sets that maximize the overlap to fully numerical reference wave functions, following the pioneering work of Richardson and coworkers from the early 1960s. Motivated by this technique, we suggest a way to visualize the importance of AO basis functions employing fully numerical wave functions computed at the complete basis set limit: the importance of a normalized AO basis function |α centered on some nucleus can be visualized by projecting |α on the set of numerically represented occupied orbitals |ψi as I0(α)=iα|ψiψi|α. Choosing α to be a continuous parameter describing the AO basis, such as the exponent of a Gaussian-type orbital or Slater-type orbital basis function, one is then able to visualize the importance of various functions. The proposed visuali
继理查德森及其同事在 20 世纪 60 年代初的开创性工作之后,全数值方法的最新发展为新的、紧凑的原子轨道(AO)基集提供了有趣的机会,这种基集能够最大限度地与全数值参考波函数重叠。受这一技术的启发,我们提出了一种方法,利用在完整基集极限计算的全数值波函数,直观地显示 AO 基集的重要性:以某个原子核为中心的归一化 AO 基函数 |α⟩ 的重要性,可以通过将 |α⟩ 投射到数值表示的占位轨道集 |ψi⟩ 上而直观地显示出来,即 I0(α)=∑i⟨α|ψi⟩⟨ψi|α⟩。选择α作为描述AO基础的连续参数,如高斯型轨道或斯莱特型轨道基础函数的指数,就可以直观地看到各种函数的重要性。建议的可视化 I0(α) 具有重要的特性 0⩽I0(α)⩽1,可以做出明确的解释。我们还提出了多原子应用重要性曲线 I(α) 的直接概括,其中测试函数 |α⟩ 的重要性是根据从原子最小基础投影的增加来衡量的。我们以计算前三行原子和一组化学性质不同的二原子分子的重要性剖面为例,对这些方法进行了示范。我们发现,只要有完全数值化的参考波函数,重要度剖面图就能以先验的方式直观显示特定系统对原子基集的要求。
{"title":"Importance profiles. Visualization of atomic basis set requirements","authors":"Susi Lehtola","doi":"10.1088/2516-1075/ad31ca","DOIUrl":"https://doi.org/10.1088/2516-1075/ad31ca","url":null,"abstract":"Recent developments in fully numerical methods promise interesting opportunities for new, compact atomic orbital (AO) basis sets that maximize the overlap to fully numerical reference wave functions, following the pioneering work of Richardson and coworkers from the early 1960s. Motivated by this technique, we suggest a way to visualize the importance of AO basis functions employing fully numerical wave functions computed at the complete basis set limit: the importance of a normalized AO basis function <inline-formula>\u0000<tex-math><?CDATA $|alpharangle$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo><mml:mi>α</mml:mi><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"estad31caieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> centered on some nucleus can be visualized by projecting <inline-formula>\u0000<tex-math><?CDATA $|alpharangle$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo><mml:mi>α</mml:mi><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"estad31caieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> on the set of numerically represented occupied orbitals <inline-formula>\u0000<tex-math><?CDATA $|psi_{i}rangle$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"estad31caieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> as <inline-formula>\u0000<tex-math><?CDATA $I_{0}(alpha) = sum_{i}langlealpha|psi_{i}ranglelanglepsi_{i}|alpharangle$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>I</mml:mi><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>=</mml:mo><mml:munder><mml:mo>∑</mml:mo><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:munder><mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo><mml:mi>α</mml:mi><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:mi>α</mml:mi><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"estad31caieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>. Choosing <italic toggle=\"yes\">α</italic> to be a continuous parameter describing the AO basis, such as the exponent of a Gaussian-type orbital or Slater-type orbital basis function, one is then able to visualize the importance of various functions. The proposed visuali","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subspace methods for electronic structure simulations on quantum computers 量子计算机电子结构模拟的子空间方法
IF 2.6 Q2 Physics and Astronomy Pub Date : 2024-03-28 DOI: 10.1088/2516-1075/ad3592
Mario Motta, William Kirby, Ieva Liepuoniute, Kevin J Sung, Jeffrey Cohn, Antonio Mezzacapo, Katherine Klymko, Nam Nguyen, Nobuyuki Yoshioka, Julia E Rice
Quantum subspace methods (QSMs) are a class of quantum computing algorithms where the time-independent Schrödinger equation for a quantum system is projected onto a subspace of the underlying Hilbert space. This projection transforms the Schrödinger equation into an eigenvalue problem determined by measurements carried out on a quantum device. The eigenvalue problem is then solved on a classical computer, yielding approximations to ground- and excited-state energies and wavefunctions. QSMs are examples of hybrid quantum–classical methods, where a quantum device supported by classical computational resources is employed to tackle a problem. QSMs are rapidly gaining traction as a strategy to simulate electronic wavefunctions on quantum computers, and thus their design, development, and application is a key research field at the interface between quantum computation and electronic structure (ES). In this review, we provide a self-contained introduction to QSMs, with emphasis on their application to the ES of molecules. We present the theoretical foundations and applications of QSMs, and we discuss their implementation on quantum hardware, illustrating the impact of noise on their performance.
量子子空间方法(QSM)是一类量子计算算法,其中量子系统与时间无关的薛定谔方程被投影到底层希尔伯特空间的子空间上。这种投影将薛定谔方程转化为由量子设备上进行的测量所决定的特征值问题。然后在经典计算机上求解特征值问题,得出基态和激发态能量和波函数的近似值。QSM 是量子-经典混合方法的范例,即利用经典计算资源支持的量子设备来解决问题。作为一种在量子计算机上模拟电子波函数的策略,QSM 正迅速获得广泛关注,因此其设计、开发和应用是量子计算与电子结构(ES)之间的一个关键研究领域。在这篇综述中,我们将自成一体地介绍 QSM,重点是它们在分子电子结构中的应用。我们介绍了 QSM 的理论基础和应用,并讨论了它们在量子硬件上的实现,说明了噪声对其性能的影响。
{"title":"Subspace methods for electronic structure simulations on quantum computers","authors":"Mario Motta, William Kirby, Ieva Liepuoniute, Kevin J Sung, Jeffrey Cohn, Antonio Mezzacapo, Katherine Klymko, Nam Nguyen, Nobuyuki Yoshioka, Julia E Rice","doi":"10.1088/2516-1075/ad3592","DOIUrl":"https://doi.org/10.1088/2516-1075/ad3592","url":null,"abstract":"Quantum subspace methods (QSMs) are a class of quantum computing algorithms where the time-independent Schrödinger equation for a quantum system is projected onto a subspace of the underlying Hilbert space. This projection transforms the Schrödinger equation into an eigenvalue problem determined by measurements carried out on a quantum device. The eigenvalue problem is then solved on a classical computer, yielding approximations to ground- and excited-state energies and wavefunctions. QSMs are examples of hybrid quantum–classical methods, where a quantum device supported by classical computational resources is employed to tackle a problem. QSMs are rapidly gaining traction as a strategy to simulate electronic wavefunctions on quantum computers, and thus their design, development, and application is a key research field at the interface between quantum computation and electronic structure (ES). In this review, we provide a self-contained introduction to QSMs, with emphasis on their application to the ES of molecules. We present the theoretical foundations and applications of QSMs, and we discuss their implementation on quantum hardware, illustrating the impact of noise on their performance.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140584849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting a derivative discontinuity estimate for accurate G0W0 ionization potentials and electron affinities 利用导数不连续性估算实现精确的 G0W0 电离电势和电子亲和力
IF 2.6 Q2 Physics and Astronomy Pub Date : 2024-03-18 DOI: 10.1088/2516-1075/ad3124
Daniel Mejia-Rodriguez
The GW approximation has become an important tool for predicting charged excitations of isolated molecules and condensed systems. Its popularity can be attributed to many factors, including a favorable scaling and relatively good accuracy. In practical applications, the GW is often performed as a one-shot perturbation known as G0W0. Unfortunately, G0W0 suffers from a strong starting point dependence and is often not as accurate as one would need. Self-consistent GW methodologies alleviate these problems but come with a marked increase in computational cost. In this manuscript, we propose the use of an estimate of the exchange-correlation derivative discontinuity to provide a remarkably good starting point for G0W0 calculations, yielding ionization potentials and electron affinities with eigenvalue self-consistent GW quality at no additional cost. We assess the quality of the resulting methodology with the GW100 benchmark set and compare its advantages over other similar methods.
GW 近似已成为预测孤立分子和凝聚态系统带电激发的重要工具。它的流行可归因于许多因素,包括有利的缩放和相对较高的精度。在实际应用中,GW 通常作为一次性扰动进行,即 G0W0。遗憾的是,G0W0 有很强的起点依赖性,精度往往达不到要求。自洽 GW 方法可以缓解这些问题,但计算成本也会明显增加。在本手稿中,我们提出利用交换相关导数不连续的估计值为 G0W0 计算提供一个非常好的起点,从而在不增加额外成本的情况下得到具有特征值自洽 GW 质量的电离势和电子亲和力。我们用 GW100 基准集评估了由此产生的方法的质量,并比较了它与其他类似方法的优势。
{"title":"Exploiting a derivative discontinuity estimate for accurate G0W0 ionization potentials and electron affinities","authors":"Daniel Mejia-Rodriguez","doi":"10.1088/2516-1075/ad3124","DOIUrl":"https://doi.org/10.1088/2516-1075/ad3124","url":null,"abstract":"The <italic toggle=\"yes\">GW</italic> approximation has become an important tool for predicting charged excitations of isolated molecules and condensed systems. Its popularity can be attributed to many factors, including a favorable scaling and relatively good accuracy. In practical applications, the <italic toggle=\"yes\">GW</italic> is often performed as a one-shot perturbation known as <inline-formula>\u0000<tex-math><?CDATA $G_0W_0$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msub><mml:mi>G</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msub><mml:mi>W</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>\u0000<inline-graphic xlink:href=\"estad3124ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>. Unfortunately, <inline-formula>\u0000<tex-math><?CDATA $G_0W_0$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msub><mml:mi>G</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msub><mml:mi>W</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>\u0000<inline-graphic xlink:href=\"estad3124ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> suffers from a strong starting point dependence and is often not as accurate as one would need. Self-consistent <italic toggle=\"yes\">GW</italic> methodologies alleviate these problems but come with a marked increase in computational cost. In this manuscript, we propose the use of an estimate of the exchange-correlation derivative discontinuity to provide a remarkably good starting point for <inline-formula>\u0000<tex-math><?CDATA $G_0W_0$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msub><mml:mi>G</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msub><mml:mi>W</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>\u0000<inline-graphic xlink:href=\"estad3124ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> calculations, yielding ionization potentials and electron affinities with eigenvalue self-consistent <italic toggle=\"yes\">GW</italic> quality at no additional cost. We assess the quality of the resulting methodology with the <italic toggle=\"yes\">GW</italic>100 benchmark set and compare its advantages over other similar methods.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140315117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Training models using forces computed by stochastic electronic structure methods 利用随机电子结构法计算的力来训练模型
IF 2.6 Q2 Physics and Astronomy Pub Date : 2024-03-15 DOI: 10.1088/2516-1075/ad2eb0
David M Ceperley, Scott Jensen, Yubo Yang, Hongwei Niu, Carlo Pierleoni, Markus Holzmann
Quantum Monte Carlo (QMC) can play a very important role in generating accurate data needed for constructing potential energy surfaces. We argue that QMC has advantages in terms of a smaller systematic bias and an ability to cover phase space more completely. The stochastic noise can ease the training of the machine learning model. We discuss how stochastic errors affect the generation of effective models by analyzing the errors within a linear least squares procedure, finding that there is an advantage to having many relatively imprecise data points for constructing models. We then analyze the effect of noise on a model of many-body silicon finding that noise in some situations improves the resulting model. We then study the effect of QMC noise on two machine learning models of dense hydrogen used in a recent study of its phase diagram. The noise enables us to estimate the errors in the model. We conclude with a discussion of future research problems.
量子蒙特卡罗(QMC)在生成构建势能面所需的精确数据方面可以发挥非常重要的作用。我们认为,量子蒙特卡罗具有较小的系统偏差和更完整地覆盖相空间的能力等优势。随机噪声可以简化机器学习模型的训练。我们通过分析线性最小二乘法过程中的误差,讨论了随机误差如何影响有效模型的生成。然后,我们分析了噪声对多体硅模型的影响,发现噪声在某些情况下会改善生成的模型。然后,我们研究了 QMC 噪声对最近研究氢气相图时使用的两个高密度氢气机器学习模型的影响。噪声使我们能够估计模型中的误差。最后,我们讨论了未来的研究问题。
{"title":"Training models using forces computed by stochastic electronic structure methods","authors":"David M Ceperley, Scott Jensen, Yubo Yang, Hongwei Niu, Carlo Pierleoni, Markus Holzmann","doi":"10.1088/2516-1075/ad2eb0","DOIUrl":"https://doi.org/10.1088/2516-1075/ad2eb0","url":null,"abstract":"Quantum Monte Carlo (QMC) can play a very important role in generating accurate data needed for constructing potential energy surfaces. We argue that QMC has advantages in terms of a smaller systematic bias and an ability to cover phase space more completely. The stochastic noise can ease the training of the machine learning model. We discuss how stochastic errors affect the generation of effective models by analyzing the errors within a linear least squares procedure, finding that there is an advantage to having many relatively imprecise data points for constructing models. We then analyze the effect of noise on a model of many-body silicon finding that noise in some situations improves the resulting model. We then study the effect of QMC noise on two machine learning models of dense hydrogen used in a recent study of its phase diagram. The noise enables us to estimate the errors in the model. We conclude with a discussion of future research problems.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140315409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Composition-driven Mott transition within SrTi 1−x V x O3 SrTi 1-x V x O3 中成分驱动的莫特转变
IF 2.6 Q2 Physics and Astronomy Pub Date : 2024-03-07 DOI: 10.1088/2516-1075/ad29ab
A D N James, M Aichhorn, J Laverock
The last few decades has seen the rapid growth of interest in the bulk perovskite-type transition metal oxides SrVO3 and SrTiO3. The electronic configuration of these perovskites differs by one electron associated to the transition metal species which gives rise to the drastically different electronic properties. Therefore, it is natural to look into how the electronic structure transitions between these bulk structures by using doping. Measurements of the substitutional doped SrTi 1xVxO3 shows an metal–insulator transition (MIT) as a function of doping. By using supercell density functional theory with dynamical mean field theory (DFT+DMFT), we show that the MIT is indeed the result of the combination of local electron correlation effects (Mott physics) within the t2g orbitals and the atomic site configuration of the transition metals which may indicate dependence on site disorder. SrTi 1xVxO3 may be an ideal candidate for benchmarking cutting-edge Mott–Anderson models of real systems. We show that applying an effective external perturbation on SrTi 1x
过去几十年来,人们对体包型过渡金属氧化物 SrVO3 和 SrTiO3 的兴趣迅速增长。这些包晶的电子构型与过渡金属物种的电子构型相差一个电子,从而产生了截然不同的电子特性。因此,研究如何通过掺杂实现这些块体结构之间的电子结构转变是很自然的。对置换掺杂的 SrTi 1-xVxO3 进行的测量表明,金属-绝缘体转变(MIT)是掺杂的函数。通过使用超胞密度泛函理论和动态均场理论(DFT+DMFT),我们发现金属-绝缘体转变确实是 t2g 轨道内局部电子相关效应(莫特物理学)和过渡金属原子位点构型相结合的结果,这可能表明金属-绝缘体转变取决于位点无序性。SrTi 1-xVxO3 可能是对真实系统的尖端莫特-安德森模型进行基准测试的理想候选材料。我们的研究表明,对 SrTi 1-xVxO3 施加有效的外部扰动可以使系统在绝缘相和金属相之间切换,这意味着这是一个具有莫特电子器件应用潜力的体态系统。
{"title":"Composition-driven Mott transition within SrTi 1−x V x O3","authors":"A D N James, M Aichhorn, J Laverock","doi":"10.1088/2516-1075/ad29ab","DOIUrl":"https://doi.org/10.1088/2516-1075/ad29ab","url":null,"abstract":"The last few decades has seen the rapid growth of interest in the bulk perovskite-type transition metal oxides SrVO<sub>3</sub> and SrTiO<sub>3</sub>. The electronic configuration of these perovskites differs by one electron associated to the transition metal species which gives rise to the drastically different electronic properties. Therefore, it is natural to look into how the electronic structure transitions between these bulk structures by using doping. Measurements of the substitutional doped SrTi<inline-formula>\u0000<tex-math><?CDATA $_{{1-x}}$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msub><mml:mi> </mml:mi><mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math>\u0000<inline-graphic xlink:href=\"estad29abieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>V<inline-formula>\u0000<tex-math><?CDATA $_{{{x}}}$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msub><mml:mi></mml:mi><mml:mrow><mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:math>\u0000<inline-graphic xlink:href=\"estad29abieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>O<sub>3</sub> shows an metal–insulator transition (MIT) as a function of doping. By using supercell density functional theory with dynamical mean field theory (DFT+DMFT), we show that the MIT is indeed the result of the combination of local electron correlation effects (Mott physics) within the <inline-formula>\u0000<tex-math><?CDATA $t_{{mathrm{2g}}}$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msub><mml:mi>t</mml:mi><mml:mrow><mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi mathvariant=\"normal\">g</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:math>\u0000<inline-graphic xlink:href=\"estad29abieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> orbitals and the atomic site configuration of the transition metals which may indicate dependence on site disorder. SrTi<inline-formula>\u0000<tex-math><?CDATA $_{{1-x}}$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msub><mml:mi> </mml:mi><mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math>\u0000<inline-graphic xlink:href=\"estad29abieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>V<inline-formula>\u0000<tex-math><?CDATA $_{{{x}}}$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msub><mml:mi></mml:mi><mml:mrow><mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:math>\u0000<inline-graphic xlink:href=\"estad29abieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>O<sub>3</sub> may be an ideal candidate for benchmarking cutting-edge Mott–Anderson models of real systems. We show that applying an effective external perturbation on SrTi<inline-formula>\u0000<tex-math><?CDATA $_{{1-x}}$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msub><mml:mi> </mml:mi><mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mrow></mml","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140315099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sodium-based di-chalcogenide: A promising material for tandem solar cells 钠基二钙钛矿:串联太阳能电池的理想材料
IF 2.6 Q2 Physics and Astronomy Pub Date : 2024-03-02 DOI: 10.1088/2516-1075/ad2f5b
Danilo Gómez-Ríos, Santiago Perez-Walton, Francisco López-Giraldo, J. Peralta, William Espinoza
Compounds based on chalcogen elements are widely studied currently due to their many interesting applications for electronic devices. The sodium-based dichalcogenide (NaNbS$_2$) is a fascinating material with storage and conversion energy applications. In this paper, we conduct a first-principles investigation of the structural and thermodynamic stability and electronic properties of this material. We analyze a total of four structures to find the ground state using a fourth-order Birch-Murnaghan equation of state: the $alpha$ and $eta$ related to the A-phase and the $zeta_{1}$ and $zeta_{2}$ related to the B-phase. We carefully address the exchange-correlation effects using the semi- local GGA-PBEsol targeted for solids. To analyze the electronic structure with higher accuracy, we implement the quasi-particle G${textup{o}}$W${textup{o}}$ approximation. textcolor{red}{Our results for the fourth-order Birch-Murnaghan equation show that the most thermodynamically stable phase at zero temperature is $alpha$.} To provide experimentalists insights about the possible routes to grow these materials, we calculated the convex hull of the $alpha$-model and $zeta_{1}$-model, finding that both are energetically stable. Finally, the calculated band gap with quasiparticle corrections for the $alpha$-model is 1.03 eV, which suggests possible applications of this material as a bottom cell in modern solar cells.
由于其在电子设备中的许多有趣应用,基于铬元素的化合物目前正被广泛研究。钠基二钙化物(NaNbS$_2$)是一种具有储能和能量转换用途的迷人材料。在本文中,我们对这种材料的结构和热力学稳定性以及电子特性进行了第一原理研究。我们使用四阶 Birch-Murnaghan 状态方程总共分析了四种结构以找到基态:与 A 相相关的 $alpha$ 和 $eta$ 以及与 B 相相关的 $zeta_{1}$ 和 $zeta_{2}$。我们使用针对固体的半局部 GGA-PBEsol 仔细处理了交换相关效应。为了更精确地分析电子结构,我们采用了准粒子 G${textup{o}}$W${textup{o}}$ 近似方法。textcolor{red}{我们对四阶 Birch-Murnaghan 方程的研究结果表明,在零温度下,热力学上最稳定的相是 $alpha$.} 。为了让实验人员深入了解生长这些材料的可能途径,我们计算了 $alpha$ 模型和 $zeta_{1}$ 模型的凸壳,发现两者在能量上都很稳定。最后,计算得出的 $alpha$ 模型的带隙(带准粒子校正)为 1.03 eV,这表明这种材料有可能应用于现代太阳能电池的底部电池。
{"title":"Sodium-based di-chalcogenide: A promising material for tandem solar cells","authors":"Danilo Gómez-Ríos, Santiago Perez-Walton, Francisco López-Giraldo, J. Peralta, William Espinoza","doi":"10.1088/2516-1075/ad2f5b","DOIUrl":"https://doi.org/10.1088/2516-1075/ad2f5b","url":null,"abstract":"\u0000 Compounds based on chalcogen elements are widely studied currently due to their many interesting applications for electronic devices. The sodium-based dichalcogenide (NaNbS$_2$) is a fascinating material with storage and conversion energy applications. In this paper, we conduct a first-principles investigation of the structural and thermodynamic stability and electronic properties of this material. We analyze a total of four structures to find the ground state using a fourth-order Birch-Murnaghan equation of state: the $alpha$ and $eta$ related to the A-phase and the $zeta_{1}$ and $zeta_{2}$ related to the B-phase. We carefully address the exchange-correlation effects using the semi- local GGA-PBEsol targeted for solids. To analyze the electronic structure with higher accuracy, we implement the quasi-particle G${textup{o}}$W${textup{o}}$ approximation. textcolor{red}{Our results for the fourth-order Birch-Murnaghan equation show that the most thermodynamically stable phase at zero temperature is $alpha$.} To provide experimentalists insights about the possible routes to grow these materials, we calculated the convex hull of the $alpha$-model and $zeta_{1}$-model, finding that both are energetically stable. Finally, the calculated band gap with quasiparticle corrections for the $alpha$-model is 1.03 eV, which suggests possible applications of this material as a bottom cell in modern solar cells.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140081418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Electronic Structure
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1