首页 > 最新文献

Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence最新文献

英文 中文
Increasing the Performance of Computer Numerical Control Machine via the Dhouib-Matrix-4 Metaheuristic 利用Dhouib-Matrix-4元启发式算法提高计算机数控机床性能
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-05-23 DOI: 10.4114/intartif.vol26iss71pp142-152
S. Dhouib, Danijela Pezer
The Computer Numerical Control (CNC) machine represents a turning point in today's production which has high requirements for product accuracy. The CNC machine enables a high flexibility in work and time saving and also reduces the time required for product accuracy control. Moreover, the CNC machine are used for several activities, most often for turning, drilling and milling operations. Usually, the productivity of any CNC machine can be increased thanks to the minimization of the non-productive of tool movement. In this paper, the results of a new metaheuristic named Dhouib-Matrix-4 (DM4) with an application on the NP-hard problem based on the Travelling Salesman Problem are presented. DM4 is used for increasing the performance of the CNC Machine by optimizing a tool path length in the drilling process performed on the CNC milling machine. The proposed algorithm (DM4) achieves a solution closed to the optimum, compared with the results obtained with the Ant Colony Optimization algorithm and the results found with the manual programming in G code by using a control unit for the selected CNC milling machine.
计算机数控(CNC)机床代表了当今对产品精度要求很高的生产的一个转折点。数控机床在工作上具有很高的灵活性和节省时间,也减少了产品精度控制所需的时间。此外,数控机床用于几个活动,最常用于车削,钻孔和铣削操作。通常,由于刀具运动的非生产性最小化,任何数控机床的生产率都可以提高。本文给出了一种新的元启发式算法Dhouib-Matrix-4 (DM4)在基于旅行商问题的np困难问题上的应用结果。DM4用于在数控铣床上进行钻孔过程中通过优化刀具路径长度来提高数控机床的性能。通过对所选数控铣床的控制单元,与蚁群优化算法和G代码手工编程的结果进行比较,所提出的算法(DM4)得到了一个接近最优的解。
{"title":"Increasing the Performance of Computer Numerical Control Machine via the Dhouib-Matrix-4 Metaheuristic","authors":"S. Dhouib, Danijela Pezer","doi":"10.4114/intartif.vol26iss71pp142-152","DOIUrl":"https://doi.org/10.4114/intartif.vol26iss71pp142-152","url":null,"abstract":"The Computer Numerical Control (CNC) machine represents a turning point in today's production which has high requirements for product accuracy. The CNC machine enables a high flexibility in work and time saving and also reduces the time required for product accuracy control. Moreover, the CNC machine are used for several activities, most often for turning, drilling and milling operations. Usually, the productivity of any CNC machine can be increased thanks to the minimization of the non-productive of tool movement. In this paper, the results of a new metaheuristic named Dhouib-Matrix-4 (DM4) with an application on the NP-hard problem based on the Travelling Salesman Problem are presented. DM4 is used for increasing the performance of the CNC Machine by optimizing a tool path length in the drilling process performed on the CNC milling machine. The proposed algorithm (DM4) achieves a solution closed to the optimum, compared with the results obtained with the Ant Colony Optimization algorithm and the results found with the manual programming in G code by using a control unit for the selected CNC milling machine.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41925089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Sentiment Gradient - Improving Sentiment Analysis with Entropy Increase 情感梯度-改进熵增加的情感分析
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-05-12 DOI: 10.4114/intartif.vol26iss71pp114-130
Fernando Cardoso Durier da Silva, Ana Cristina Bicharra Garcia, Sean Wolfgand Matsui Siqueira
Information sharing on the Web has also led to the rise and spread of fake news. Considering that fake information is generally written to trigger stronger feelings from the readers than simple facts, sentiment analysis has been widely used to detect fake news. Nevertheless, sarcasm, irony, and even jokes use similarwritten styles, making the distinction between fake and fact harder to catch automatically. We propose a new fake news Classifier that considers a set of language attributes and the gradient of sentiments contained in a message. Sentiment analysis approaches are based on labelling news with a unique value that shrinks the entire message to a single feeling. We take a broader view of a message’s sentiment representation, trying to unravel the gradient of sentiments a message may bring. We tested our approach using two datasets containing texts written in Portuguese: a public one and another we created with more up-to-date news scrapped from the Internet. Although we believe our approach is general, we tested for the Portuguese language. Our results show that the sentiment gradient positively impacts the fake news classification performance with statistical significance. The F-Measure reached 94 %, with our approach surpassing available ones (with a p-value less than 0.05 for our results).
网络上的信息共享也导致了假新闻的兴起和传播。考虑到虚假信息通常是为了引发读者比简单事实更强烈的情感而写的,情绪分析被广泛用于检测假新闻。然而,讽刺、反讽甚至笑话都使用类似的写作风格,这使得区分假和事实变得更加困难。我们提出了一种新的假新闻分类器,它考虑了一组语言属性和消息中包含的情感梯度。情感分析方法的基础是给新闻贴上一个独特的标签,将整个消息缩小为一种感觉。我们从更广泛的角度来看待信息的情感表达,试图揭示信息可能带来的情感梯度。我们使用两个包含葡萄牙语文本的数据集来测试我们的方法:一个是公开的,另一个是我们创建的,其中包含从互联网上删除的最新新闻。虽然我们认为我们的方法是通用的,但我们对葡萄牙语进行了测试。我们的研究结果表明,情感梯度对假新闻分类性能有显著的正向影响。F-Measure达到了94%,我们的方法超过了现有的方法(我们的结果的p值小于0.05)。
{"title":"Sentiment Gradient - Improving Sentiment Analysis with Entropy Increase","authors":"Fernando Cardoso Durier da Silva, Ana Cristina Bicharra Garcia, Sean Wolfgand Matsui Siqueira","doi":"10.4114/intartif.vol26iss71pp114-130","DOIUrl":"https://doi.org/10.4114/intartif.vol26iss71pp114-130","url":null,"abstract":"Information sharing on the Web has also led to the rise and spread of fake news. Considering that fake information is generally written to trigger stronger feelings from the readers than simple facts, sentiment analysis has been widely used to detect fake news. Nevertheless, sarcasm, irony, and even jokes use similarwritten styles, making the distinction between fake and fact harder to catch automatically. We propose a new fake news Classifier that considers a set of language attributes and the gradient of sentiments contained in a message. Sentiment analysis approaches are based on labelling news with a unique value that shrinks the entire message to a single feeling. We take a broader view of a message’s sentiment representation, trying to unravel the gradient of sentiments a message may bring. We tested our approach using two datasets containing texts written in Portuguese: a public one and another we created with more up-to-date news scrapped from the Internet. Although we believe our approach is general, we tested for the Portuguese language. Our results show that the sentiment gradient positively impacts the fake news classification performance with statistical significance. The F-Measure reached 94 %, with our approach surpassing available ones (with a p-value less than 0.05 for our results).","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44176627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A-Survey: Identification and Classification of Fingerprints via the Extreme Learning Machine Algorithm 基于极限学习机算法的指纹识别与分类研究
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-04-29 DOI: 10.4114/intartif.vol26iss71pp75-113
David Zabala-Blanco, Diego Martinez-Pereira, Marco J. Flores-Calero, Jayanta Datta, Ali Dehghan Firoozabadi
The fingerprint comes to be the most popular and utilized biometric for identifying persons owing to its bio-invariant characteristic, precision, as well as easy acquisition. A sub-system of an identification system is the classification stage in order to diminish the penetration rate and computational complexity. Actually, there are many formal investigations regarding techniques by exploiting convolutional neural networks  (CNN)  together with fingerprint images, which have superior performance metrics at the cost of large training times even employing high-performance computing, which is not feasible in the standard world. In our manuscript,  researches about identifying and classifying fingerprint databases by recurring to extreme learning machines (ELM) will be extensively reported and discussed for the first time. The diverse methodologies (ELM plus feature extractors) given by the authors will be studied and contrasted considering performance analysis.  Consequently,  academic papers with diverse versions of ELMs are developed to observe the pros and cons that they exhibit with each other and to probe how they may help for minimizing the penetration rate of fingerprint databases.  In fact,  this issue is very relevant because enhancing the penetration rate means shorting search times and computational complexity in fingerprints.
指纹由于其生物不变性、精确性以及易于获取而成为最受欢迎和最常用的生物特征识别方法。识别系统的一个子系统是分类阶段,目的是降低渗透率和计算复杂性。事实上,有许多关于将卷积神经网络(CNN)与指纹图像结合使用的技术的正式研究,这些技术具有优越的性能指标,而代价是即使使用高性能计算也要花费大量的训练时间,这在标准世界中是不可行的。在我们的手稿中,将首次广泛报道和讨论通过递归到极限学习机(ELM)识别和分类指纹数据库的研究。作者给出的各种方法(ELM加特征提取器)将在考虑性能分析的情况下进行研究和对比。因此,开发了具有不同版本ELM的学术论文,以观察它们相互表现出的利弊,并探讨它们如何有助于最大限度地降低指纹数据库的渗透率。事实上,这个问题非常相关,因为提高渗透率意味着缩短指纹的搜索时间和计算复杂性。
{"title":"A-Survey: Identification and Classification of Fingerprints via the Extreme Learning Machine Algorithm","authors":"David Zabala-Blanco, Diego Martinez-Pereira, Marco J. Flores-Calero, Jayanta Datta, Ali Dehghan Firoozabadi","doi":"10.4114/intartif.vol26iss71pp75-113","DOIUrl":"https://doi.org/10.4114/intartif.vol26iss71pp75-113","url":null,"abstract":"The fingerprint comes to be the most popular and utilized biometric for identifying persons owing to its bio-invariant characteristic, precision, as well as easy acquisition. A sub-system of an identification system is the classification stage in order to diminish the penetration rate and computational complexity. Actually, there are many formal investigations regarding techniques by exploiting convolutional neural networks  (CNN)  together with fingerprint images, which have superior performance metrics at the cost of large training times even employing high-performance computing, which is not feasible in the standard world. In our manuscript,  researches about identifying and classifying fingerprint databases by recurring to extreme learning machines (ELM) will be extensively reported and discussed for the first time. The diverse methodologies (ELM plus feature extractors) given by the authors will be studied and contrasted considering performance analysis.  Consequently,  academic papers with diverse versions of ELMs are developed to observe the pros and cons that they exhibit with each other and to probe how they may help for minimizing the penetration rate of fingerprint databases.  In fact,  this issue is very relevant because enhancing the penetration rate means shorting search times and computational complexity in fingerprints.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46838226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning Picture Languages Using Dimensional Reduction 使用降维学习图片语言
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-04-29 DOI: 10.4114/intartif.vol26iss71pp59-74
David Kuboñ, F. Mráz, Ivan Rychtera
One-dimensional (string) formal languages and their learning have been studied in considerable depth. However, the knowledge of their two-dimensional (picture) counterpart, which retains similar importance, is lacking. We investigate the problem of learning formal two-dimensional picture languages by applying learning methods for one-dimensional (string) languages. We formalize the transcription process from a two-dimensional input picture into a string and propose a few adaptations to it. These proposals are then tested in a series of experiments, and their outcomes are compared. Finally, these methods are applied to a practical problem and an automaton for recognizing a part of the MNIST dataset is learned. The obtained results show improvements in the topic and the potential to use the learning of automata in fitting problems.
一维(字符串)形式语言及其学习已经得到了相当深入的研究。然而,他们的二维(图片)对应的知识,保持同样的重要性,是缺乏的。我们利用一维(字符串)语言的学习方法来研究正式二维图像语言的学习问题。我们形式化了从二维输入图片到字符串的转录过程,并提出了一些适应它。然后在一系列实验中对这些建议进行了测试,并对其结果进行了比较。最后,将这些方法应用到一个实际问题中,并学习了一个识别MNIST数据集部分的自动机。得到的结果显示了该主题的改进以及在拟合问题中使用自动机学习的潜力。
{"title":"Learning Picture Languages Using Dimensional Reduction","authors":"David Kuboñ, F. Mráz, Ivan Rychtera","doi":"10.4114/intartif.vol26iss71pp59-74","DOIUrl":"https://doi.org/10.4114/intartif.vol26iss71pp59-74","url":null,"abstract":"One-dimensional (string) formal languages and their learning have been studied in considerable depth. However, the knowledge of their two-dimensional (picture) counterpart, which retains similar importance, is lacking. We investigate the problem of learning formal two-dimensional picture languages by applying learning methods for one-dimensional (string) languages. We formalize the transcription process from a two-dimensional input picture into a string and propose a few adaptations to it. These proposals are then tested in a series of experiments, and their outcomes are compared. Finally, these methods are applied to a practical problem and an automaton for recognizing a part of the MNIST dataset is learned. The obtained results show improvements in the topic and the potential to use the learning of automata in fitting problems.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46965022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TVN: Detect Deepfakes Images using Texture Variation Network TVN:使用纹理变化网络检测深度伪造图像
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-01-01 DOI: 10.4114/intartif.vol26iss72pp1-14
H. Sikkandar, S. Subbaraj, D. ShriDharshini, A. Nivetha
{"title":"TVN: Detect Deepfakes Images using Texture Variation Network","authors":"H. Sikkandar, S. Subbaraj, D. ShriDharshini, A. Nivetha","doi":"10.4114/intartif.vol26iss72pp1-14","DOIUrl":"https://doi.org/10.4114/intartif.vol26iss72pp1-14","url":null,"abstract":"","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"26 1","pages":"1-14"},"PeriodicalIF":2.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70874820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Large-Scale Study of Activation Functions in Modern Deep Neural Network Architectures for Efficient Convergence 现代深度神经网络高效收敛结构中激活函数的大规模研究
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-12-08 DOI: 10.4114/intartif.vol25iss70pp95-109
Andrinandrasana David Rasamoelina, Ivan Cík, Peter Sincak, Marián Mach, Lukás Hruska
Activation functions play an important role in the convergence of learning algorithms based on neural networks. Theyprovide neural networks with nonlinear ability and the possibility to fit in any complex data. However, no deep study exists in theliterature on the comportment of activation functions in modern architecture. Therefore, in this research, we compare the 18 most used activation functions on multiple datasets (CIFAR-10, CIFAR-100, CALTECH-256) using 4 different models (EfficientNet,ResNet, a variation of ResNet using the bag of tricks, and MobileNet V3). Furthermore, we explore the shape of the losslandscape of those different architectures with various activation functions. Lastly, based on the result of our experimentation,we introduce a new locally quadratic activation function namely Hytana alongside one variation Parametric Hytana whichoutperforms common activation functions and address the dying ReLU problem.
激活函数在神经网络学习算法的收敛性中起着重要的作用。它们为神经网络提供了非线性能力和拟合任何复杂数据的可能性。然而,关于激活功能在现代建筑中的行为,文献中还没有深入的研究。因此,在本研究中,我们使用4种不同的模型(EfficientNet,ResNet,使用技巧包的ResNet变体,和MobileNet V3)比较了多个数据集(CIFAR-10, CIFAR-100, CALTECH-256)上18种最常用的激活函数。此外,我们还探索了具有不同激活功能的不同建筑的lossllandscape形状。最后,基于我们的实验结果,我们引入了一个新的局部二次激活函数Hytana和一个变量参数Hytana,它优于常见的激活函数,并解决了ReLU的死亡问题。
{"title":"A Large-Scale Study of Activation Functions in Modern Deep Neural Network Architectures for Efficient Convergence","authors":"Andrinandrasana David Rasamoelina, Ivan Cík, Peter Sincak, Marián Mach, Lukás Hruska","doi":"10.4114/intartif.vol25iss70pp95-109","DOIUrl":"https://doi.org/10.4114/intartif.vol25iss70pp95-109","url":null,"abstract":"Activation functions play an important role in the convergence of learning algorithms based on neural networks. Theyprovide neural networks with nonlinear ability and the possibility to fit in any complex data. However, no deep study exists in theliterature on the comportment of activation functions in modern architecture. Therefore, in this research, we compare the 18 most used activation functions on multiple datasets (CIFAR-10, CIFAR-100, CALTECH-256) using 4 different models (EfficientNet,ResNet, a variation of ResNet using the bag of tricks, and MobileNet V3). Furthermore, we explore the shape of the losslandscape of those different architectures with various activation functions. Lastly, based on the result of our experimentation,we introduce a new locally quadratic activation function namely Hytana alongside one variation Parametric Hytana whichoutperforms common activation functions and address the dying ReLU problem.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"25 1","pages":"95-109"},"PeriodicalIF":2.3,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70874749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Machine Vision Approach for Recognizing Coastal Fish 海岸带鱼类识别的机器视觉方法
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-09-25 DOI: 10.4114/intartif.vol25iss70pp13-32
Afiq Raihan, Israt Sharmin, B. M. Khan, Md. Ismail Jabiullah, Md. Tarek Habib
Coastal fish is one of the prominent marine resources, which takes a necessary role in the economic growth of a country. Because of environmental issues along with other reasons, not only most of the marine resources are diminishing but also many coastal fishes are getting extinct gradually. As a result, the young peoples have insufficient knowledge of coastal fish. This issue can be solved with the use of vision-based technologies. To deal with this situation, a coastal fish recognition system based on machine vision is conceived, which can be approached by the images of coastal fish that are captured with a portable device and identify the fish to recognize fish. Numerous experimental analyses are executed to exhibit the benefit of this proposed expert system. In the beginning, conversion of a color image into a gray-scale image occurs and the gray-scale histogram is developed. Using the histogram-based method, image segmentation is conducted. After that, a set of thirteen features comprising of four classes is extracted to be fed to a classifier. For reducing the number of features, PCA is applied. To recognize coastal fish, three cutting-edge classifiers are performed, where k-NN provides a potential accuracy of up to 98.7%.
{"title":"A Machine Vision Approach for Recognizing Coastal Fish","authors":"Afiq Raihan, Israt Sharmin, B. M. Khan, Md. Ismail Jabiullah, Md. Tarek Habib","doi":"10.4114/intartif.vol25iss70pp13-32","DOIUrl":"https://doi.org/10.4114/intartif.vol25iss70pp13-32","url":null,"abstract":"Coastal fish is one of the prominent marine resources, which takes a necessary role in the economic growth of a country. Because of environmental issues along with other reasons, not only most of the marine resources are diminishing but also many coastal fishes are getting extinct gradually. As a result, the young peoples have insufficient knowledge of coastal fish. This issue can be solved with the use of vision-based technologies. To deal with this situation, a coastal fish recognition system based on machine vision is conceived, which can be approached by the images of coastal fish that are captured with a portable device and identify the fish to recognize fish. Numerous experimental analyses are executed to exhibit the benefit of this proposed expert system. In the beginning, conversion of a color image into a gray-scale image occurs and the gray-scale histogram is developed. Using the histogram-based method, image segmentation is conducted. After that, a set of thirteen features comprising of four classes is extracted to be fed to a classifier. For reducing the number of features, PCA is applied. To recognize coastal fish, three cutting-edge classifiers are performed, where k-NN provides a potential accuracy of up to 98.7%.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"25 1","pages":"13-32"},"PeriodicalIF":2.3,"publicationDate":"2022-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70874662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Web architecture for URL-based phishing detection based on Random Forest, Classification Trees, and Support Vector Machine 基于随机森林、分类树和支持向量机的基于url的网络钓鱼检测Web架构
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-05-09 DOI: 10.4114/intartif.vol25iss69pp107-121
Julio Lamas Piñeiro, Lenis Wong Portillo
Nowadays phishing is as serious a problem as any other, but it has intensified a lot in the current coronavirus pandemic, a time when more than ever we all use the Internet even to make payments daily. In this context, tools have been developed to detect phishing, there are quite complex tools in a computational calculation, and they are not so easy to use for any user. Therefore, in this work, we propose a web architecture based on 3 machine learning models to predict whether a web address has phishing or not based mainly on Random Forest, Classification Trees, and Support Vector Machine. Therefore, 3 different models are developed with each of the indicated techniques and 2 models based on the models, which are applied to web addresses previously processed by a feature retrieval module. All this is deployed in an API that is consumed by a Frontend so that any user can use it and choose which type of model he/she wants to predict with. The results reveal that the best performing model when predicting both results is the Classification Trees model obtaining precision and accuracy of 80%. En la actualidad el phishing es un problema tan serio como cualquier otro, pero se ha intensificado bastante en la actual pandemia del coronavirus, un momento en el que más que nunca todos utilizamos internet hasta para realizar pagos cotidianamente. En este contexto se han desarrollado herramientas para detectar phishing, existen herramientas bastante complejas en calculo computacional y que no son de tan sencilla utilización para cualquier usuario. Por ende, en este trabajo proponemos una arquitectura web basada en 3 modelos de aprendizaje automático para predecir si una dirección web tiene phishing o no basados principalmente en Random Forest, Classification Trees y Support Vector Machine. Por lo tanto, se desarrollan 3 modelos distintos con cada una de las técnicas indicadas y 2 modelos basados en los anteriormente mencionados modelos, los cuales son aplicados a direcciones web previamente procesadas por un módulo de obtención de características. Todo ello se despliega en un API la cual es consumida por un Frontend para que cualquier usuario lo pueda utilizar y escoger con qué tipo de modelo quiere predecir. Los resultados revelan que el modelo que mejor se comporta al momento de predecir ambos resultados es el modelo de Árboles de clasificación obteniendo una precisión y exactitud de 80%.
如今,网络钓鱼和其他任何问题一样严重,但在当前的冠状病毒大流行中,它已经加剧了很多,我们比以往任何时候都更多地使用互联网,甚至每天进行支付。在这种背景下,已经开发出了检测网络钓鱼的工具,在计算计算中有相当复杂的工具,并且它们对任何用户来说都不是那么容易使用。因此,在这项工作中,我们提出了一种基于3种机器学习模型的web架构,主要基于随机森林、分类树和支持向量机来预测网址是否存在网络钓鱼。因此,使用每种技术开发了3个不同的模型,并基于这些模型开发了2个模型,这些模型应用于先前由特征检索模块处理的web地址。所有这些都部署在由前端使用的API中,以便任何用户都可以使用它并选择他/她想要预测的模型类型。结果表明,在预测两种结果时,表现最好的模型是分类树模型,其精度和准确度均达到80%。在现实中,网络钓鱼是一个问题,而严重的网络钓鱼是一个问题,人们认为,在实际的冠状病毒大流行中,网络钓鱼的加剧是一个问题,在现实中,网络钓鱼的加剧是一个问题,在现实中,网络钓鱼的加剧是一个问题。在这种情况下,我们可以看到,在网络钓鱼检测中,存在的网络钓鱼检测是复杂的,在计算中,存在的网络钓鱼检测是复杂的,在网络钓鱼检测中,存在的网络钓鱼检测是复杂的,在网络钓鱼检测中存在的网络钓鱼检测是复杂的。基于随机森林、分类树和支持向量机的网络钓鱼的基本原理。基于随机森林、分类树和支持向量机的网络钓鱼的基本原理。在这里,我们将介绍3个模型的不同之处,例如:1个模型的不同之处,例如:1个模型的不同之处,例如:1个模型的不同之处,例如:1个模型的不同之处,例如:1个模型的不同之处,例如:1个模型的不同之处,例如:1个模型的不同之处,例如:1个模型的不同之处,例如:1个模型的不同之处,例如:1个模型的不同之处,例如:1个模型的不同之处,例如:1个模型的不同之处,例如:módulo de obtención de características。为了更好地描述API中所描述的特性,可以使用使用的特性,或者使用使用的特性,或者使用使用的特性,例如使用使用的特性,或者使用的特性。结果表明,该模型的精度为80%;结果表明,该模型的精度为80%;结果表明,该模型的精度为80%;
{"title":"Web architecture for URL-based phishing detection based on Random Forest, Classification Trees, and Support Vector Machine","authors":"Julio Lamas Piñeiro, Lenis Wong Portillo","doi":"10.4114/intartif.vol25iss69pp107-121","DOIUrl":"https://doi.org/10.4114/intartif.vol25iss69pp107-121","url":null,"abstract":"Nowadays phishing is as serious a problem as any other, but it has intensified a lot in the current coronavirus pandemic, a time when more than ever we all use the Internet even to make payments daily. In this context, tools have been developed to detect phishing, there are quite complex tools in a computational calculation, and they are not so easy to use for any user. Therefore, in this work, we propose a web architecture based on 3 machine learning models to predict whether a web address has phishing or not based mainly on Random Forest, Classification Trees, and Support Vector Machine. Therefore, 3 different models are developed with each of the indicated techniques and 2 models based on the models, which are applied to web addresses previously processed by a feature retrieval module. All this is deployed in an API that is consumed by a Frontend so that any user can use it and choose which type of model he/she wants to predict with. The results reveal that the best performing model when predicting both results is the Classification Trees model obtaining precision and accuracy of 80%. \u0000En la actualidad el phishing es un problema tan serio como cualquier otro, pero se ha intensificado bastante en la actual pandemia del coronavirus, un momento en el que más que nunca todos utilizamos internet hasta para realizar pagos cotidianamente. En este contexto se han desarrollado herramientas para detectar phishing, existen herramientas bastante complejas en calculo computacional y que no son de tan sencilla utilización para cualquier usuario. Por ende, en este trabajo proponemos una arquitectura web basada en 3 modelos de aprendizaje automático para predecir si una dirección web tiene phishing o no basados principalmente en Random Forest, Classification Trees y Support Vector Machine. Por lo tanto, se desarrollan 3 modelos distintos con cada una de las técnicas indicadas y 2 modelos basados en los anteriormente mencionados modelos, los cuales son aplicados a direcciones web previamente procesadas por un módulo de obtención de características. Todo ello se despliega en un API la cual es consumida por un Frontend para que cualquier usuario lo pueda utilizar y escoger con qué tipo de modelo quiere predecir. Los resultados revelan que el modelo que mejor se comporta al momento de predecir ambos resultados es el modelo de Árboles de clasificación obteniendo una precisión y exactitud de 80%.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42654045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Mono-objective Evolutionary Model for Affective Algorithmic Composition 情感算法合成的单目标进化模型
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-01 DOI: 10.4114/intartif.vol25iss69pp139-158
Carla Sanches Nere dos Santos, A. Freitas
{"title":"Mono-objective Evolutionary Model for Affective Algorithmic Composition","authors":"Carla Sanches Nere dos Santos, A. Freitas","doi":"10.4114/intartif.vol25iss69pp139-158","DOIUrl":"https://doi.org/10.4114/intartif.vol25iss69pp139-158","url":null,"abstract":"","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"25 1","pages":"139-158"},"PeriodicalIF":2.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70874966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FRBF: A Fuzzy Rule Based Framework for Heart Disease Diagnosis 基于模糊规则的心脏疾病诊断框架
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-01 DOI: 10.4114/intartif.vol25iss69pp122-138
Tanmay Kasbe
{"title":"FRBF: A Fuzzy Rule Based Framework for Heart Disease Diagnosis","authors":"Tanmay Kasbe","doi":"10.4114/intartif.vol25iss69pp122-138","DOIUrl":"https://doi.org/10.4114/intartif.vol25iss69pp122-138","url":null,"abstract":"","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"25 1","pages":"122-138"},"PeriodicalIF":2.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70875021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1