首页 > 最新文献

Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence最新文献

英文 中文
Performance Analysis in the Segmentation of urban asphalted roads in RGB satellite images using K-Means++ and SegNet: Case study in São Luís-MA 基于k - means++和SegNet的RGB卫星图像中城市沥青路面分割性能分析:以<s:1> o Luís-MA为例
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-01-01 DOI: 10.4114/intartif.vol24iss68pp89-103
João Batista Pacheco Junior, Henrique Mariano Costa do Amaral
The design and manual insertion of new terrestrial roads into geographic databases is a frequent activity in geoprocessing and their demand usually occurs as the most up-to-date satellite imagery of the territory is acquired. Continually, new urban and rural occupations emerge, for which specific vector geometries need to be designed to characterize the cartographic inputs and accommodate the relevant associated data. Therefore, it is convenient to develop a computational tool that, with the help of artificial intelligence, automates what is possible in this respect, since manual editing depends on the limits of user agility, and does it in images that are usually easy and free to access. To test the feasibility of this proposal, a database of RGB images containing asphalted urban roads is presented to the K-Means++ algorithm and the SegNet Convolutional Neural Network, and the performance of each one was evaluated and compared for accuracy and IoU of road identification. Under the conditions of the experiment, K-Means++ achieved poor and unviable results for use in a real-life application involving asphalt road detection in RGB satellite images, with average accuracy ranging from 41.67% to 64.19% and average IoU of 12.30% to 16.16%, depending on the preprocessing strategy used. On the other hand, the SegNet Convolutional Neural Network proved to be appropriate for precision applications not sensitive to discontinuities, achieving an average accuracy of 87.12% and an average IoU of 71.93%.
在地理处理工作中,设计和人工将新的地面道路插入地理数据库是一项经常进行的活动,对这些道路的需求通常是在获得最新的领土卫星图像时出现的。新的城市和农村职业不断出现,为此需要设计具体的矢量几何图形,以确定制图输入的特征,并容纳有关的相关数据。因此,开发一种计算工具很方便,在人工智能的帮助下,自动化这方面的可能,因为手动编辑取决于用户敏捷性的限制,并且在通常容易和免费访问的图像中进行编辑。为了验证该建议的可行性,将包含沥青城市道路的RGB图像数据库提供给k - means++算法和SegNet卷积神经网络,并对每种算法的性能进行了评估和比较,以确定道路识别的准确性和IoU。在实验条件下,k - meme++在RGB卫星图像中沥青道路检测的实际应用中取得了较差且不可行的结果,根据所采用的预处理策略,k - meme++的平均精度在41.67%至64.19%之间,平均IoU在12.30%至16.16%之间。另一方面,SegNet卷积神经网络被证明适用于对不连续性不敏感的精密应用,平均准确率为87.12%,平均IoU为71.93%。
{"title":"Performance Analysis in the Segmentation of urban asphalted roads in RGB satellite images using K-Means++ and SegNet: Case study in São Luís-MA","authors":"João Batista Pacheco Junior, Henrique Mariano Costa do Amaral","doi":"10.4114/intartif.vol24iss68pp89-103","DOIUrl":"https://doi.org/10.4114/intartif.vol24iss68pp89-103","url":null,"abstract":"The design and manual insertion of new terrestrial roads into geographic databases is a frequent activity in geoprocessing and their demand usually occurs as the most up-to-date satellite imagery of the territory is acquired. Continually, new urban and rural occupations emerge, for which specific vector geometries need to be designed to characterize the cartographic inputs and accommodate the relevant associated data. Therefore, it is convenient to develop a computational tool that, with the help of artificial intelligence, automates what is possible in this respect, since manual editing depends on the limits of user agility, and does it in images that are usually easy and free to access. To test the feasibility of this proposal, a database of RGB images containing asphalted urban roads is presented to the K-Means++ algorithm and the SegNet Convolutional Neural Network, and the performance of each one was evaluated and compared for accuracy and IoU of road identification. Under the conditions of the experiment, K-Means++ achieved poor and unviable results for use in a real-life application involving asphalt road detection in RGB satellite images, with average accuracy ranging from 41.67% to 64.19% and average IoU of 12.30% to 16.16%, depending on the preprocessing strategy used. On the other hand, the SegNet Convolutional Neural Network proved to be appropriate for precision applications not sensitive to discontinuities, achieving an average accuracy of 87.12% and an average IoU of 71.93%.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"24 1","pages":"89-103"},"PeriodicalIF":2.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70874847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Forest-Genetic method to optimize parameter design of multiresponse experiment 多响应试验参数优化设计的Forest-Genetic法
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-08-27 DOI: 10.4114/INTARTIF.VOL23ISS66PP9-25
Adriana Villa-Murillo, A. Carrión, A. Sozzi
We propose a methodology for the improvement of the parameter design that consists of the combination ofRandom Forest (RF) with Genetic Algorithms (GA) in 3 phases: normalization, modelling and optimization.The rst phase corresponds to the previous preparation of the data set by using normalization functions. In thesecond phase, we designed a modelling scheme adjusted to multiple quality characteristics and we have called itMultivariate Random Forest (MRF) for the determination of the objective function. Finally, in the third phase,we obtained the optimal combination of parameter levels with the integration of properties of our modellingscheme and desirability functions in the establishment of the corresponding GA. Two illustrative cases allow us tocompare and validate the virtues of our methodology versus other proposals involving Arti cial Neural Networks(ANN) and Simulated Annealing (SA).
我们提出了一种改进参数设计的方法,该方法由随机森林(RF)与遗传算法(GA)的结合组成,分为规范化、建模和优化三个阶段。第一个阶段对应于使用归一化函数对数据集的先前准备。在第二阶段,我们设计了一个适应多种质量特征的建模方案,我们称之为多元随机森林(MRF)来确定目标函数。最后,在第三阶段,我们在建立相应的遗传算法时,结合建模方案的性质和期望函数,得到了参数层次的最优组合。两个说明案例使我们能够比较和验证我们的方法与其他涉及人工神经网络(ANN)和模拟退火(SA)的建议的优点。
{"title":"Forest-Genetic method to optimize parameter design of multiresponse experiment","authors":"Adriana Villa-Murillo, A. Carrión, A. Sozzi","doi":"10.4114/INTARTIF.VOL23ISS66PP9-25","DOIUrl":"https://doi.org/10.4114/INTARTIF.VOL23ISS66PP9-25","url":null,"abstract":"We propose a methodology for the improvement of the parameter design that consists of the combination ofRandom Forest (RF) with Genetic Algorithms (GA) in 3 phases: normalization, modelling and optimization.The rst phase corresponds to the previous preparation of the data set by using normalization functions. In thesecond phase, we designed a modelling scheme adjusted to multiple quality characteristics and we have called itMultivariate Random Forest (MRF) for the determination of the objective function. Finally, in the third phase,we obtained the optimal combination of parameter levels with the integration of properties of our modellingscheme and desirability functions in the establishment of the corresponding GA. Two illustrative cases allow us tocompare and validate the virtues of our methodology versus other proposals involving Arti cial Neural Networks(ANN) and Simulated Annealing (SA).","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"49 1","pages":"9-25"},"PeriodicalIF":2.3,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85091180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recognition of Motion-blurred CCTs based on Deep and Transfer Learning 基于深度学习和迁移学习的运动模糊cct识别
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-01-01 DOI: 10.4114/INTARTIF.VOL23ISS66PP1-8
Yun Shi, Yanyan Zhu
Considering the need for a large number of samples and the long training time, this paper uses deep and transfer learning to identify motion-blurred Chinese character coded targets (CCTs). Firstly, a set of CCTs are designed, and the motion blur image generation system is used to provide samples for the recognition network. Secondly, the OTSU algorithm, the expansion, and the Canny operator are performed on the real shot blurred image, where the target area is segmented by the minimum bounding box. Thirdly, the sample is selected from the sample set according to the 4:1 ratio as the training set and the test set. Under the Tensor Flow framework, the convolutional layer in the AlexNet model is fixed, and the fully-connected layer is trained for transfer learning. Finally, experiments on simulated and real-time motion-blurred images are carried out. The results show that network training and testing only take 30 minutes and two seconds, and the recognition accuracy reaches 98.6% and 93.58%, respectively. As a result, our method has higher recognition accuracy, does not require a large number of trained samples, takes less time, and can provide a certain reference for the recognition of motion-blurred CCTs.
考虑到需要大量的样本和较长的训练时间,本文采用深度学习和迁移学习来识别运动模糊的汉字编码目标。首先,设计了一组cct,并利用运动模糊图像生成系统为识别网络提供样本;其次,对实拍模糊图像进行OTSU算法、扩展和Canny算子,用最小边界框分割目标区域;第三,按照4:1的比例从样本集中选择样本作为训练集和测试集。在Tensor Flow框架下,AlexNet模型中的卷积层是固定的,全连接层被训练用于迁移学习。最后,对仿真和实时运动模糊图像进行了实验。结果表明,网络训练和测试时间仅为30分2秒,识别准确率分别达到98.6%和93.58%。因此,我们的方法具有更高的识别精度,不需要大量的训练样本,耗时更少,可以为运动模糊cct的识别提供一定的参考。
{"title":"Recognition of Motion-blurred CCTs based on Deep and Transfer Learning","authors":"Yun Shi, Yanyan Zhu","doi":"10.4114/INTARTIF.VOL23ISS66PP1-8","DOIUrl":"https://doi.org/10.4114/INTARTIF.VOL23ISS66PP1-8","url":null,"abstract":"Considering the need for a large number of samples and the long training time, this paper uses deep and transfer learning to identify motion-blurred Chinese character coded targets (CCTs). Firstly, a set of CCTs are designed, and the motion blur image generation system is used to provide samples for the recognition network. Secondly, the OTSU algorithm, the expansion, and the Canny operator are performed on the real shot blurred image, where the target area is segmented by the minimum bounding box. Thirdly, the sample is selected from the sample set according to the 4:1 ratio as the training set and the test set. Under the Tensor Flow framework, the convolutional layer in the AlexNet model is fixed, and the fully-connected layer is trained for transfer learning. Finally, experiments on simulated and real-time motion-blurred images are carried out. The results show that network training and testing only take 30 minutes and two seconds, and the recognition accuracy reaches 98.6% and 93.58%, respectively. As a result, our method has higher recognition accuracy, does not require a large number of trained samples, takes less time, and can provide a certain reference for the recognition of motion-blurred CCTs.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"27 1","pages":"1-8"},"PeriodicalIF":2.3,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83266562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fuzzy Neural Networks based on Fuzzy Logic Neurons Regularized by Resampling Techniques and Regularization Theory for Regression Problems 基于模糊逻辑神经元的模糊神经网络回归问题的重采样正则化技术和正则化理论
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2018-12-01 DOI: 10.4114/intartif.vol22iss62pp114-133
Paulo Vitor de Campos Souza
This paper presents a novel learning algorithm for fuzzy logic neuron based on neural networks and fuzzy systems able to generate accurate and transparent models. The learning algorithm is based on ideas from Extreme Learning Machine [36], to achieve a low time complexity, and regularization theory, resulting in sparse and accurate models. A compact set of incomplete fuzzy rules can be extracted from the resulting network topology. Experiments considering regression problems are detailed. Results suggest the proposed approach as a promising alternative for pattern recognition with a good accuracy and some level of interpretability.
本文提出了一种基于神经网络和模糊系统的模糊逻辑神经元学习算法,该算法能够生成准确、透明的模型。该学习算法基于极限学习机[36]的思想,以实现低时间复杂度,并结合正则化理论,产生稀疏和准确的模型。从得到的网络拓扑中可以提取出一组紧凑的不完全模糊规则。详细介绍了考虑回归问题的实验。结果表明,该方法具有良好的准确性和一定程度的可解释性,是一种有希望的模式识别替代方法。
{"title":"Fuzzy Neural Networks based on Fuzzy Logic Neurons Regularized by Resampling Techniques and Regularization Theory for Regression Problems","authors":"Paulo Vitor de Campos Souza","doi":"10.4114/intartif.vol22iss62pp114-133","DOIUrl":"https://doi.org/10.4114/intartif.vol22iss62pp114-133","url":null,"abstract":"This paper presents a novel learning algorithm for fuzzy logic neuron based on neural networks and fuzzy systems able to generate accurate and transparent models. The learning algorithm is based on ideas from Extreme Learning Machine [36], to achieve a low time complexity, and regularization theory, resulting in sparse and accurate models. A compact set of incomplete fuzzy rules can be extracted from the resulting network topology. Experiments considering regression problems are detailed. Results suggest the proposed approach as a promising alternative for pattern recognition with a good accuracy and some level of interpretability.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"1 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47989804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An Automated Defect Prediction Framework using Genetic Algorithms: A Validation of Empirical Studies 使用遗传算法的自动缺陷预测框架:实证研究的验证
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2016-05-18 DOI: 10.4114/ia.v18i56.1159
Juan Murillo-Morera, Carlos Castro-Herrera, J. Arroyo, Rubén Fuentes-Fernández
Today, it is common for software projects to collect measurement data through development processes. With these data, defect prediction software can try to estimate the defect proneness of a software module, with the objective of assisting and guiding software practitioners. With timely and accurate defect predictions, practitioners can focus their limited testing resources on higher risk areas. This paper reports the results of three empirical studies that uses an automated genetic defect prediction framework. This framework generates and compares different learning schemes (preprocessing + attribute selection + learning algorithms) and selects the best one using a genetic algorithm, with the objective to estimate the defect proneness of a software module. The first empirical study is a performance comparison of our framework with the most important framework of the literature. The second empirical study is a performance and runtime comparison between our framework and an exhaustive framework. The third empirical study is a sensitivity analysis. The last empirical study, is our main contribution in this paper. Performance of the software development defect prediction models (using AUC, Area Under the Curve) was validated using NASA-MDP and PROMISE data sets. Seventeen data sets from NASA-MDP (13) and PROMISE (4) projects were analyzed running a NxM-fold cross-validation. A genetic algorithm was used to select the components of the learning schemes automatically, and to assess and report the results. Our results reported similar performance between frameworks. Our framework reported better runtime than exhaustive framework. Finally, we reported the best configuration according to sensitivity analysis.
今天,软件项目通过开发过程收集度量数据是很常见的。有了这些数据,缺陷预测软件可以尝试估计软件模块的缺陷倾向,以帮助和指导软件从业者。有了及时和准确的缺陷预测,从业者可以将有限的测试资源集中在高风险区域。本文报告了使用自动遗传缺陷预测框架的三个实证研究的结果。该框架生成并比较不同的学习方案(预处理+属性选择+学习算法),并使用遗传算法选择最佳方案,目的是估计软件模块的缺陷倾向。第一个实证研究是将我们的框架与文献中最重要的框架进行性能比较。第二个实证研究是我们的框架和一个详尽的框架之间的性能和运行时比较。第三个实证研究是敏感性分析。最后的实证研究,是本文的主要贡献。使用NASA-MDP和PROMISE数据集验证了软件开发缺陷预测模型的性能(使用AUC,曲线下面积)。来自NASA-MDP(13)和PROMISE(4)项目的17个数据集进行了nxm交叉验证分析。采用遗传算法自动选择学习方案的组成部分,并对学习结果进行评估和报告。我们的结果显示,不同框架之间的性能相似。我们的框架报告了比穷举框架更好的运行时间。最后根据灵敏度分析报告最佳配置。
{"title":"An Automated Defect Prediction Framework using Genetic Algorithms: A Validation of Empirical Studies","authors":"Juan Murillo-Morera, Carlos Castro-Herrera, J. Arroyo, Rubén Fuentes-Fernández","doi":"10.4114/ia.v18i56.1159","DOIUrl":"https://doi.org/10.4114/ia.v18i56.1159","url":null,"abstract":"Today, it is common for software projects to collect measurement data through development processes. With these data, defect prediction software can try to estimate the defect proneness of a software module, with the objective of assisting and guiding software practitioners. With timely and accurate defect predictions, practitioners can focus their limited testing resources on higher risk areas. This paper reports the results of three empirical studies that uses an automated genetic defect prediction framework. This framework generates and compares different learning schemes (preprocessing + attribute selection + learning algorithms) and selects the best one using a genetic algorithm, with the objective to estimate the defect proneness of a software module. The first empirical study is a performance comparison of our framework with the most important framework of the literature. The second empirical study is a performance and runtime comparison between our framework and an exhaustive framework. The third empirical study is a sensitivity analysis. The last empirical study, is our main contribution in this paper. Performance of the software development defect prediction models (using AUC, Area Under the Curve) was validated using NASA-MDP and PROMISE data sets. Seventeen data sets from NASA-MDP (13) and PROMISE (4) projects were analyzed running a NxM-fold cross-validation. A genetic algorithm was used to select the components of the learning schemes automatically, and to assess and report the results. Our results reported similar performance between frameworks. Our framework reported better runtime than exhaustive framework. Finally, we reported the best configuration according to sensitivity analysis.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"24 1","pages":"114-137"},"PeriodicalIF":2.3,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79135622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Restablecimiento y especificidad en sistemas argumentativos 论证系统中的重构和特异性
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2016-01-01 DOI: 10.4114/IA.V19I58.1129
C. Alessio
Reinstatement is a principle of argumentation systems that enables the justification of a defeated argument when all its defeaters are in turn ultimately def...
复辟是论证系统的一个原则,它使一个被击败的论点能够被证明是正确的,当它的所有反对者最终都被辩护。
{"title":"Restablecimiento y especificidad en sistemas argumentativos","authors":"C. Alessio","doi":"10.4114/IA.V19I58.1129","DOIUrl":"https://doi.org/10.4114/IA.V19I58.1129","url":null,"abstract":"Reinstatement is a principle of argumentation systems that enables the justification of a defeated argument when all its defeaters are in turn ultimately def...","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"17 1","pages":"39-44"},"PeriodicalIF":2.3,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73228494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Image Retrieval using a Data mining Approach 利用数据挖掘方法改进图像检索
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2015-07-01 DOI: 10.4114/IA.V18I56.1147
Houaria Abed, L. Zaoui
Recent years have witnessed great interest in developing methods for content-based image retrieval (CBIR). Generally, the image search results which are returned by an image search engine contain multiple topics, and organizing the results into different clusters will facilitate users’ browsing. Our aim in this research is to optimize image searching time for a general image database. The proposed procedure consists of two steps. First, it represents each image with a data structure which is based on quadtrees and represented by multi-level feature vectors. The similarity between images is evaluated through the distance between their feature vectors; this distance metric reduces the query processing time. Second, response time is further improved by using a secondary clustering technique to achieve high scalability in the case of a very large image database.
近年来,人们对基于内容的图像检索(CBIR)方法的开发产生了浓厚的兴趣。通常,图像搜索引擎返回的图像搜索结果包含多个主题,将结果组织到不同的聚类中可以方便用户浏览。本研究的目的是优化通用图像数据库的图像搜索时间。建议的程序包括两个步骤。首先,用基于四叉树的多级特征向量表示的数据结构来表示每幅图像。通过特征向量之间的距离来评估图像之间的相似性;这个距离度量减少了查询处理时间。其次,在非常大的图像数据库的情况下,通过使用辅助集群技术来实现高可伸缩性,进一步提高了响应时间。
{"title":"Improving Image Retrieval using a Data mining Approach","authors":"Houaria Abed, L. Zaoui","doi":"10.4114/IA.V18I56.1147","DOIUrl":"https://doi.org/10.4114/IA.V18I56.1147","url":null,"abstract":"Recent years have witnessed great interest in developing methods for content-based image retrieval (CBIR). Generally, the image search results which are returned by an image search engine contain multiple topics, and organizing the results into different clusters will facilitate users’ browsing. Our aim in this research is to optimize image searching time for a general image database. The proposed procedure consists of two steps. First, it represents each image with a data structure which is based on quadtrees and represented by multi-level feature vectors. The similarity between images is evaluated through the distance between their feature vectors; this distance metric reduces the query processing time. Second, response time is further improved by using a secondary clustering technique to achieve high scalability in the case of a very large image database.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"14 1","pages":"97-113"},"PeriodicalIF":2.3,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90106087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Comparative Study of Clustering Algorithms using OverallSimSUX Similarity Function for XML Documents 基于OverallSimSUX相似函数的XML文档聚类算法比较研究
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2015-06-18 DOI: 10.4114/IA.V18I55.1097
Damny Magdaleno, Yadriel Miranda, Ivett Fuentes, M. M. García
A huge amount of information is represented in XML format. Several tools have been developed to store, and query XML data. It becomes inevitable to develop high performance techniques for efficiently analysing extremely large collections of XML data. One of the methods that many researchers have focused on is clustering, which groups similar XML data, according to their content and structures. In previous work, there has been proposed the similarity function OverallSimSUX, that facilitates to capture the degree of similitude among the documents with a novel methodology for clustering XML documents using both structural and content features. Although this methodology shows good performance, endorsed by experiments with several corpus and statistical tests, on having had impliedly only one clustering algorithm, K-Star, we do not know the effect that it would suffer if we replaced this algorithm by other with dissimilar characteristics. Therefore to endorse completely the methodology, in this work we make a comparative study of the effects of applying the methodology for the OverallSimSUX similarity function calculation, using clustering algorithms of different classifications . Based on our analysis, we arrived to two important results: (1) The Fuzzy-SKWIC clustering algorithm works best both with methodology and without methodology, although there are not present significant differences respect to the K-Star clustering algorithm; (2) For each analysed algorithm when using the methodology, we obtain better results than when it is not taken into account.
大量的信息以XML格式表示。已经开发了一些工具来存储和查询XML数据。开发高性能技术来高效地分析超大规模的XML数据集合是不可避免的。许多研究人员关注的方法之一是聚类,它根据内容和结构对类似的XML数据进行分组。在以前的工作中,已经提出了相似性函数OverallSimSUX,它有助于通过使用结构和内容特性对XML文档进行聚类的新方法来捕获文档之间的相似程度。虽然这种方法显示出良好的性能,通过几个语料库和统计测试的实验支持,在隐含只有一种聚类算法K-Star的情况下,我们不知道如果我们用其他具有不同特征的算法代替该算法会受到什么影响。因此,为了完全认可该方法,在本工作中,我们使用不同分类的聚类算法对该方法在OverallSimSUX相似函数计算中的效果进行了比较研究。基于我们的分析,我们得出了两个重要的结果:(1)模糊- skwic聚类算法在有方法论和没有方法论的情况下都是最好的,尽管在K-Star聚类算法方面没有显着差异;(2)对于每一种分析算法,在使用该方法时,我们获得的结果都比不考虑该方法时更好。
{"title":"Comparative Study of Clustering Algorithms using OverallSimSUX Similarity Function for XML Documents","authors":"Damny Magdaleno, Yadriel Miranda, Ivett Fuentes, M. M. García","doi":"10.4114/IA.V18I55.1097","DOIUrl":"https://doi.org/10.4114/IA.V18I55.1097","url":null,"abstract":"A huge amount of information is represented in XML format. Several tools have been developed to store, and query XML data. It becomes inevitable to develop high performance techniques for efficiently analysing extremely large collections of XML data. One of the methods that many researchers have focused on is clustering, which groups similar XML data, according to their content and structures. In previous work, there has been proposed the similarity function OverallSimSUX, that facilitates to capture the degree of similitude among the documents with a novel methodology for clustering XML documents using both structural and content features. Although this methodology shows good performance, endorsed by experiments with several corpus and statistical tests, on having had impliedly only one clustering algorithm, K-Star, we do not know the effect that it would suffer if we replaced this algorithm by other with dissimilar characteristics. Therefore to endorse completely the methodology, in this work we make a comparative study of the effects of applying the methodology for the OverallSimSUX similarity function calculation, using clustering algorithms of different classifications . Based on our analysis, we arrived to two important results: (1) The Fuzzy-SKWIC clustering algorithm works best both with methodology and without methodology, although there are not present significant differences respect to the K-Star clustering algorithm; (2) For each analysed algorithm when using the methodology, we obtain better results than when it is not taken into account.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"44 1","pages":"69-80"},"PeriodicalIF":2.3,"publicationDate":"2015-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86882915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Optimización energética de la operación de los sistemas de climatización por agua helada en hoteles 酒店冷水空调系统运行的能源优化
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2015-01-01 DOI: 10.4114/ia.v18i56.1125
R. M. Laurencio
La explotación hotelera, sin dejar de satisfacer a los clientes, necesita disminuir los requerimientos de energía eléctrica como principal portador energético. Resolver la problemática de la ocupación de un hotel de manera integral, tomando como centro de atención la climatización, la cual provoca los mayores consumos de electricidad, resulta una tarea compleja. Para resolver el problema se implementó un procedimiento para la optimización energética de la operación de los sistemas de climatización centralizados todo-agua. El procedimiento integra, un modelo energético con una estrategia de ocupación bajo criterios energéticos y de fundamento combinatorio-evolutivo. Para la clasificación de la información, la formulación de las tareas y la síntesis de las soluciones, se emplea la metodología de Análisis y Síntesis de Sistemas de Ingeniería. El modelo energético considera la variabilidad de la climatología local y la ocupación de las habitaciones seleccionadas, e incluye: el modelo térmico de la edificación obtenido mediante redes neuronales artificiales, el modelo hidráulico y el modelo del trabajo de compresión. Estos elementos permiten la búsqueda de la variable de decisión ocupación, realizando cálculos intermedios de la velocidad de rotación en la bomba centrífuga y la temperatura de salida del agua del enfriador, minimizando los requerimientos de potencia eléctrica en la climatización centralizada. Para evaluar los estados del sistema se utiliza una optimización combinatoria que emplea los métodos: exhaustivo simple, exhaustivo escalonado o algoritmo genético según la cantidad de variantes de ocupación. Todas las tareas de cálculo y algoritmos del procedimiento se automatizaron mediante una aplicación informática.
酒店运营在满足顾客需求的同时,需要降低电能作为主要能源载体的需求。以空调为中心,全面解决酒店入住问题,这是一项复杂的任务,因为空调的耗电量最高。为了解决这一问题,实施了全水集中空调系统运行的能量优化程序。该程序集成了一个能源模型,在能源标准和组合演化的基础上具有占用策略。对于信息的分类、任务的制定和解决方案的综合,采用了工程系统分析和综合的方法。能源模型考虑了当地气候的变异性和选定房间的占用情况,包括:通过人工神经网络获得的建筑热模型、水力模型和压缩工作模型。这些元素允许搜索决策变量占用,执行离心泵转速和冷水机出口温度的中间计算,最大限度地减少中央空调的电力需求。为了评估系统的状态,采用了组合优化方法:简单穷尽法、阶梯式穷尽法或基于占用变异数量的遗传算法。所有的计算任务和程序算法都是通过计算机应用实现自动化的。
{"title":"Optimización energética de la operación de los sistemas de climatización por agua helada en hoteles","authors":"R. M. Laurencio","doi":"10.4114/ia.v18i56.1125","DOIUrl":"https://doi.org/10.4114/ia.v18i56.1125","url":null,"abstract":"La explotación hotelera, sin dejar de satisfacer a los clientes, necesita disminuir los requerimientos de energía eléctrica como principal portador energético. Resolver la problemática de la ocupación de un hotel de manera integral, tomando como centro de atención la climatización, la cual provoca los mayores consumos de electricidad, resulta una tarea compleja. Para resolver el problema se implementó un procedimiento para la optimización energética de la operación de los sistemas de climatización centralizados todo-agua. El procedimiento integra, un modelo energético con una estrategia de ocupación bajo criterios energéticos y de fundamento combinatorio-evolutivo. Para la clasificación de la información, la formulación de las tareas y la síntesis de las soluciones, se emplea la metodología de Análisis y Síntesis de Sistemas de Ingeniería. El modelo energético considera la variabilidad de la climatología local y la ocupación de las habitaciones seleccionadas, e incluye: el modelo térmico de la edificación obtenido mediante redes neuronales artificiales, el modelo hidráulico y el modelo del trabajo de compresión. Estos elementos permiten la búsqueda de la variable de decisión ocupación, realizando cálculos intermedios de la velocidad de rotación en la bomba centrífuga y la temperatura de salida del agua del enfriador, minimizando los requerimientos de potencia eléctrica en la climatización centralizada. Para evaluar los estados del sistema se utiliza una optimización combinatoria que emplea los métodos: exhaustivo simple, exhaustivo escalonado o algoritmo genético según la cantidad de variantes de ocupación. Todas las tareas de cálculo y algoritmos del procedimiento se automatizaron mediante una aplicación informática.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"1 1","pages":"1-4"},"PeriodicalIF":2.3,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76512305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Recombination Operators in Panmictic and Cellular GAs to Solve a Vehicle Routing Problem 泛群和蜂窝气体组合算子解决车辆路径问题的比较
IF 2.3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2010-03-22 DOI: 10.4114/IA.V14I46.1520
Carlos Bermúdez, P. Graglia, Natalia Stark, C. Salto, Hugo Alfonso
The Vehicle Routing Problem (VRP) deals with the assignment of a set of transportation orders to a fleet of vehicles and the sequencing of stops for each vehicle to minimize transportation costs. This paper presents two different genetic algorithm models (panmitic and cellular models) for providing solutions for the Capacitated VRP (CVRP), which is mainly characterized by using vehicles of the same capacity. We propose a new problem dependent recombination operator, called Best Route Better Adjustment recombination (BRBAX), which incorporates problem specific knowledge such as information about the routes constitution. A comparison of its performance is carried out with respect to classical recombination operators for permutations. A complete study of the influence of the recombination operators on the genetic search is presented. The results show that the use of our specialized BRBAX operator outperforms the others more generic operators for all problem instances under all metrics. The deviation between our best solution and the best-known one is very low, under 0.91%.
车辆路线问题(Vehicle Routing Problem, VRP)处理的是将一组运输订单分配给车队,以及每辆车停靠的顺序,以使运输成本最小化。本文提出了两种不同的遗传算法模型(泛型模型和细胞模型)来求解有容VRP (Capacitated VRP, CVRP), CVRP的主要特点是使用相同容量的车辆。我们提出了一种新的问题相关重组算子,称为最佳路线更好调整重组算子(BRBAX),该算子结合了特定问题的知识,如路线构成信息。并将其与经典置换复合算子的性能进行了比较。对重组算子对遗传搜索的影响进行了全面的研究。结果表明,对于所有指标下的所有问题实例,使用我们专门的BRBAX操作符的性能优于其他更通用的操作符。我们的最佳解与最知名解之间的偏差非常低,小于0.91%。
{"title":"Comparison of Recombination Operators in Panmictic and Cellular GAs to Solve a Vehicle Routing Problem","authors":"Carlos Bermúdez, P. Graglia, Natalia Stark, C. Salto, Hugo Alfonso","doi":"10.4114/IA.V14I46.1520","DOIUrl":"https://doi.org/10.4114/IA.V14I46.1520","url":null,"abstract":"The Vehicle Routing Problem (VRP) deals with the assignment of a set of transportation orders to a fleet of vehicles and the sequencing of stops for each vehicle to minimize transportation costs. This paper presents two different genetic algorithm models (panmitic and cellular models) for providing solutions for the Capacitated VRP (CVRP), which is mainly characterized by using vehicles of the same capacity. We propose a new problem dependent recombination operator, called Best Route Better Adjustment recombination (BRBAX), which incorporates problem specific knowledge such as information about the routes constitution. A comparison of its performance is carried out with respect to classical recombination operators for permutations. A complete study of the influence of the recombination operators on the genetic search is presented. The results show that the use of our specialized BRBAX operator outperforms the others more generic operators for all problem instances under all metrics. The deviation between our best solution and the best-known one is very low, under 0.91%.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"11 1","pages":"34-44"},"PeriodicalIF":2.3,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73593251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
期刊
Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1