首页 > 最新文献

Surface Science Reports最新文献

英文 中文
Atom scattering as a probe of the surface electron-phonon interaction at conducting surfaces 原子散射作为导电表面电子-声子相互作用的探针
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2022-05-01 DOI: 10.1016/j.surfrep.2022.100552
J.R. Manson , G. Benedek , Salvador Miret-Artés

An atomic projectile colliding with a surface at kinetic energies in the thermal or hyperthermal range interacts with and is reflected by the electronic density well in front of the first layer of target atoms, and it is generally accepted that the repulsive interaction potential is proportional to the density of electrons extending outside the surface. This review develops a complete treatment of the elastic and inelastic scattering of atoms from a conducting surface in which the interaction with the electron density and its vibrations is treated using electron-phonon coupling theory. Starting from the basic principles of formal scattering theory, the elastic and inelastic scattering intensities are developed in a manner that identifies the small overlap region in the surface electron density where the projectile atom is repelled. The effective vibrational displacements of the electron gas, which lead to energy transfer through excitation of phonons, are directly related to the vibrational displacements of the atomic cores in the target crystal via electron-phonon coupling. The effective Debye-Waller factor for atom-surface scattering is developed and related to the mean square displacements of the atomic cores. The complex dependence of the Debye-Waller factor on momentum and energy of the projectile, including the effects of the attractive adsorption well in the interaction potential, are clearly defined. Applying the standard approximations of electron-phonon coupling theory for metals to the distorted wave Born approximation leads to expressions which relate the elastic and inelastic scattering intensities, as well as the Debye-Waller factor, to the well known electron-phonon coupling constant λ. This treatment reproduces the previously obtained result that the intensities for single phonon inelastic peaks in the scattered spectra are proportional to the mode specific mass correction components λQ,ν defined by the relationship λ = 〈λQ,ν〉. The intensities of elastic diffraction peaks are shown to be a weighted sum over the λQ,ν, and the Debye-Waller factor can also be expressed in terms of a similar weighted summation. In the simplest case the Debye-Waller exponent is shown to be proportional to λ and for simple metals, metal overlayers, and other kinds of conducting surfaces values of λ are extracted from available experimental data. This dependence of the elastic and inelastic scattering, and that of the Debye-Waller factor, on the electron-phonon coupling constant λ shows that measurements of elastic and inelastic spectra of atomic scattering are capable of revealing detailed information about the electron-phonon coupling mechanism in the surface electron density.

在热或超热动能范围内与表面碰撞的原子抛射体与目标原子第一层前的电子密度相互作用并被反射,一般认为排斥相互作用势与延伸到表面外的电子密度成正比。本文用电子-声子耦合理论对原子在导电表面的弹性和非弹性散射进行了完整的处理,其中电子密度及其振动与原子的相互作用进行了处理。从形式散射理论的基本原理出发,以确定抛射原子被排斥的表面电子密度中的小重叠区域的方式开发了弹性和非弹性散射强度。电子气体的有效振动位移通过激发声子导致能量传递,与目标晶体中原子核的电子-声子耦合振动位移直接相关。建立了原子表面散射的有效德拜-沃勒因子,并将其与原子核的均方位移联系起来。明确地定义了德拜-沃勒因子对弹丸动量和能量的复杂依赖关系,包括相互作用势中吸引吸附阱的影响。将金属电子-声子耦合理论的标准近似应用于畸变波玻恩近似,可以得到弹性和非弹性散射强度以及Debye-Waller因子与众所周知的电子-声子耦合常数λ相关的表达式。这种处理再现了先前得到的结果,即散射光谱中单声子非弹性峰的强度与模式比质量修正分量λ q,ν成正比,由关系λ = < λ q,ν >定义。弹性衍射峰的强度是λQ,ν的加权和,Debye-Waller因子也可以用类似的加权和来表示。在最简单的情况下,Debye-Waller指数被证明与λ成正比,对于简单金属,金属覆盖层和其他类型的导电表面,λ的值是从可用的实验数据中提取的。弹性和非弹性散射以及德拜-沃勒因子对电子-声子耦合常数λ的依赖表明,原子散射的弹性和非弹性光谱的测量能够揭示表面电子密度中电子-声子耦合机制的详细信息。
{"title":"Atom scattering as a probe of the surface electron-phonon interaction at conducting surfaces","authors":"J.R. Manson ,&nbsp;G. Benedek ,&nbsp;Salvador Miret-Artés","doi":"10.1016/j.surfrep.2022.100552","DOIUrl":"https://doi.org/10.1016/j.surfrep.2022.100552","url":null,"abstract":"<div><p><span>An atomic projectile colliding with a surface at kinetic energies in the thermal or hyperthermal range interacts with and is reflected by the electronic density well in front of the first layer of target atoms, and it is generally accepted that the repulsive interaction potential is proportional to the density of electrons extending outside the surface. This review develops a complete treatment of the elastic and inelastic scattering<span> of atoms from a conducting surface in which the interaction with the electron density and its vibrations is treated using electron-phonon coupling theory. Starting from the basic principles of formal scattering theory, the elastic and inelastic scattering intensities are developed in a manner that identifies the small overlap region in the surface electron density where the projectile atom is repelled. The effective vibrational displacements of the electron gas<span>, which lead to energy transfer through excitation of phonons, are directly related to the vibrational displacements of the atomic cores in the target crystal via electron-phonon coupling. The effective Debye-Waller factor for atom-surface scattering is developed and related to the mean square displacements of the atomic cores. The complex dependence of the Debye-Waller factor on momentum and energy of the projectile, including the effects of the attractive adsorption well in the interaction potential, are clearly defined. Applying the standard approximations of electron-phonon coupling theory for metals to the distorted wave Born approximation leads to expressions which relate the elastic and inelastic scattering intensities, as well as the Debye-Waller factor, to the well known electron-phonon coupling constant </span></span></span><em>λ</em><span>. This treatment reproduces the previously obtained result that the intensities for single phonon inelastic peaks in the scattered spectra are proportional to the mode specific mass correction components </span><em>λ</em><sub><strong>Q</strong>,<em>ν</em></sub> defined by the relationship <em>λ</em> = 〈<em>λ</em><sub><strong>Q</strong>,<em>ν</em></sub>〉. The intensities of elastic diffraction peaks are shown to be a weighted sum over the <em>λ</em><sub><strong>Q</strong>,<em>ν</em></sub>, and the Debye-Waller factor can also be expressed in terms of a similar weighted summation. In the simplest case the Debye-Waller exponent is shown to be proportional to <em>λ</em> and for simple metals, metal overlayers, and other kinds of conducting surfaces values of <em>λ</em> are extracted from available experimental data. This dependence of the elastic and inelastic scattering, and that of the Debye-Waller factor, on the electron-phonon coupling constant <em>λ</em> shows that measurements of elastic and inelastic spectra of atomic scattering are capable of revealing detailed information about the electron-phonon coupling mechanism in the surface electron density.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"77 2","pages":"Article 100552"},"PeriodicalIF":9.8,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1823160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
QuickStats: Rate* of Unintentional Traumatic Brain Injury-Related Deaths Among Persons Aged ≤19 Years, by Age Group and Sex - National Vital Statistics System, United States, 2018-2020. QuickStats:美国2018-2020年按年龄组和性别分列的≤19岁人群中与意外创伤性脑损伤相关的死亡比率† - 国家生命统计系统。
IF 33.9 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2022-03-18 DOI: 10.15585/mmwr.mm7111a5
{"title":"QuickStats: Rate* of Unintentional Traumatic Brain Injury-Related Deaths<sup>†</sup> Among Persons Aged ≤19 Years, by Age Group and Sex - National Vital Statistics System, United States, 2018-2020.","authors":"","doi":"10.15585/mmwr.mm7111a5","DOIUrl":"10.15585/mmwr.mm7111a5","url":null,"abstract":"","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"30 1","pages":"437"},"PeriodicalIF":33.9,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78034370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Water-solid interfaces probed by high-resolution atomic force microscopy 高分辨率原子力显微镜探测的水-固界面
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2022-03-01 DOI: 10.1016/j.surfrep.2021.100549
Jinbo Peng , Jing Guo , Runze Ma , Ying Jiang

Water-solid interfaces play important roles across a broad range of scientific and application fields. In the past decades, atomic force microscopy (AFM) has significantly deepened our understanding of water-solid interfaces at molecular scale. In this review, we describe the recent progresses on probing water-solid interfaces by noncontact AFM, highlighting the imaging of interfacial water with ultrahigh spatial resolution. In particular, the recent development of qPlus-based AFM with functionalized tips has made it possible to directly image the H-bonding skeleton of interfacial water under UHV environment. Based on high-order electrostatic forces, such a technique even enables submolecular-level imaging of weakly bonded water structures with negligible disturbance. In addition, the three-dimensional (3D) AFM using low-noise cantilever deflection sensors can achieve atomic resolution imaging at liquid/solid interfaces, which opens up the possibility of probing the hydration layer structures under realistic conditions. We then discuss the application of those AFM techniques to various interfacial water systems, including water clusters, ion hydrates, water chains, water monolayers/multilayers and bulk water/ice on different surfaces under UHV or ambient environments. Some important issues will be addressed, including the H-bonding topology, ice nucleation and growth, ion hydration and transport, dielectric properties of water, etc. In the end, we present an outlook on the directions of future AFM studies of water at interfaces and the challenges faced by this field, as well as the development of new AFM techniques.

水-固界面在广泛的科学和应用领域中发挥着重要作用。在过去的几十年里,原子力显微镜(AFM)极大地加深了我们在分子尺度上对水-固界面的理解。本文综述了近年来非接触式原子力显微镜探测水-固界面的研究进展,重点介绍了超高空间分辨率的界面水成像技术。特别是最近基于qplus的带有功能化尖端的原子力显微镜的发展,使得在特高压环境下直接成像界面水的氢键骨架成为可能。基于高阶静电力,这种技术甚至可以在亚分子水平上对弱键水结构进行成像,而干扰可以忽略不计。此外,采用低噪声悬臂式偏转传感器的三维原子力显微镜(3D)可以在液/固界面上实现原子分辨率成像,这为在现实条件下探测水化层结构提供了可能。然后,我们讨论了这些AFM技术在各种界面水系统中的应用,包括在特高压或环境环境下不同表面上的水簇、离子水合物、水链、单层/多层水和散装水/冰。讨论了氢键拓扑结构、冰的成核与生长、离子的水化与输运、水的介电性质等重要问题。最后,展望了未来界面水原子力显微镜研究的方向和面临的挑战,以及新的原子力显微镜技术的发展。
{"title":"Water-solid interfaces probed by high-resolution atomic force microscopy","authors":"Jinbo Peng ,&nbsp;Jing Guo ,&nbsp;Runze Ma ,&nbsp;Ying Jiang","doi":"10.1016/j.surfrep.2021.100549","DOIUrl":"https://doi.org/10.1016/j.surfrep.2021.100549","url":null,"abstract":"<div><p>Water-solid interfaces play important roles across a broad range of scientific and application fields. In the past decades, atomic force microscopy (AFM) has significantly deepened our understanding of water-solid interfaces at molecular scale. In this review, we describe the recent progresses on probing water-solid interfaces by noncontact AFM, highlighting the imaging of interfacial water with ultrahigh spatial resolution. In particular, the recent development of qPlus-based AFM with functionalized tips has made it possible to directly image the H-bonding skeleton of interfacial water under UHV environment. Based on high-order electrostatic forces, such a technique even enables submolecular-level imaging of weakly bonded water structures with negligible disturbance. In addition, the three-dimensional (3D) AFM using low-noise cantilever deflection sensors can achieve atomic resolution imaging at liquid/solid interfaces, which opens up the possibility of probing the hydration layer structures under realistic conditions. We then discuss the application of those AFM techniques to various interfacial water systems, including water clusters, ion hydrates, water chains, water monolayers/multilayers and bulk water/ice on different surfaces under UHV or ambient environments. Some important issues will be addressed, including the H-bonding topology, ice nucleation and growth, ion hydration and transport, dielectric properties of water, etc. In the end, we present an outlook on the directions of future AFM studies of water at interfaces and the challenges faced by this field, as well as the development of new AFM techniques.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"77 1","pages":"Article 100549"},"PeriodicalIF":9.8,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1948770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
The metallic nature of two-dimensional transition-metal dichalcogenides and MXenes 二维过渡金属二硫族化合物和MXenes的金属性质
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2021-11-01 DOI: 10.1016/j.surfrep.2021.100542
Wenshuo Xu , Yuxuan Ke , Zhuo Wang , Wenjing Zhang , Andrew Thye Shen Wee

Metallic two-dimensional (2D) materials such as transition-metal dichalcogenides (TMDCs) and MXenes exhibit intriguing properties, including superconductivity, magnetism and electrocatalysis. Studies on the correlation between their nanoscale structures and properties can facilitate the development of photodetectors, supercapacitors, nanocatalysts, etc., but this topic has not been reviewed systematically. Here, we provide a comprehensive overview on the key factors that dictate the structures and properties of these 2D metals. We examine their phase transitions induced by structural or electronic modifications based on microscopic imaging, spectral characterization, and electrical measurements. From the perspective of surface and interface engineering, we elucidate the influences of lattice defects, dopants, and intercalated species between adjacent layers. Moreover, heterostructures involving highly conductive 2D component(s) are discussed, which may enable the observation of fascinating phenomena and/or synergistic effects due to the interlayer interactions. Finally, we provide insights into opportunities for new applications, e.g., radio-frequency antennas and electromagnetic interference shields. Feasible routes are also proposed to overcome the current challenges.

金属二维(2D)材料,如过渡金属二硫族化合物(TMDCs)和MXenes,表现出有趣的特性,包括超导性、磁性和电催化。研究它们的纳米级结构和性能之间的相关性有助于光电探测器、超级电容器、纳米催化剂等的发展,但这一主题尚未得到系统的综述。在这里,我们对决定这些二维金属的结构和性质的关键因素进行了全面的概述。我们研究了基于显微成像、光谱表征和电测量的结构或电子修饰引起的相变。从表面和界面工程的角度,阐述了相邻层间晶格缺陷、掺杂物和插层物质的影响。此外,还讨论了涉及高导电性二维组分的异质结构,这可能使观察到有趣的现象和/或由于层间相互作用而产生的协同效应成为可能。最后,我们提供了对新应用机会的见解,例如射频天线和电磁干扰屏蔽。为克服当前的挑战,提出了可行的路线。
{"title":"The metallic nature of two-dimensional transition-metal dichalcogenides and MXenes","authors":"Wenshuo Xu ,&nbsp;Yuxuan Ke ,&nbsp;Zhuo Wang ,&nbsp;Wenjing Zhang ,&nbsp;Andrew Thye Shen Wee","doi":"10.1016/j.surfrep.2021.100542","DOIUrl":"https://doi.org/10.1016/j.surfrep.2021.100542","url":null,"abstract":"<div><p>Metallic two-dimensional (2D) materials such as transition-metal dichalcogenides (TMDCs) and MXenes exhibit intriguing properties, including superconductivity, magnetism and electrocatalysis. Studies on the correlation between their nanoscale structures and properties can facilitate the development of photodetectors, supercapacitors, nanocatalysts, etc., but this topic has not been reviewed systematically. Here, we provide a comprehensive overview on the key factors that dictate the structures and properties of these 2D metals. We examine their phase transitions induced by structural or electronic modifications based on microscopic imaging, spectral characterization, and electrical measurements. From the perspective of surface and interface engineering, we elucidate the influences of lattice defects, dopants, and intercalated species between adjacent layers. Moreover, heterostructures involving highly conductive 2D component(s) are discussed, which may enable the observation of fascinating phenomena and/or synergistic effects due to the interlayer interactions. Finally, we provide insights into opportunities for new applications, e.g., radio-frequency antennas and electromagnetic interference shields. Feasible routes are also proposed to overcome the current challenges.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"76 4","pages":"Article 100542"},"PeriodicalIF":9.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2143435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Solvent effects on catalytic reactions and related phenomena at liquid-solid interfaces 溶剂对液固界面催化反应的影响及相关现象
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2021-11-01 DOI: 10.1016/j.surfrep.2021.100541
Gengnan Li, Bin Wang, Daniel E. Resasco

Catalytic reactions involve the direct interaction of reactants, intermediates and products with the catalyst surface. We not only need to control the atomic structure and electronic properties of the active site, but also explore the multiple molecular interactions that occur beyond the active site; they play an essential role in altering the binding and reactivity of surface species. In liquid-phase catalysis, solvents provide additional degrees of freedom in the design of the catalytic process for desirable activity and selectivity. The multi-faceted effects of solvents have a profound impact on the catalyst performance by restricting the mass transfer to the site, tuning the chemical potential of the surface species, competing for active sites, stabilizing the initial and transition states, and causing mechanistic changes by participating in the kinetically relevant elementary steps. This review addresses the different aspects of solvent effects, using a few prototype solid-liquid interfaces to illustrate these fundamental features. Recent experimental and computational studies that provide new insight at the molecular level are examined. Solvent structures in the proximity of the catalyst surface are discussed along with their influence in molecular binding and reaction at the solid-liquid interfaces. Furthermore, opportunities to alter such a solid-liquid interaction by tuning the wettability of the catalyst surfaces are explored.

催化反应包括反应物、中间体和产物与催化剂表面的直接相互作用。我们不仅需要控制活性位点的原子结构和电子性质,还需要探索活性位点之外发生的多种分子相互作用;它们在改变表面物质的结合和反应性方面起着重要作用。在液相催化中,溶剂为设计理想的活性和选择性的催化过程提供了额外的自由度。溶剂的多方面影响对催化剂的性能有着深远的影响,它限制了催化剂的传质,调节了表面物质的化学势,竞争了活性位点,稳定了初始态和过渡态,并通过参与动力学相关的基本步骤引起了机理变化。本综述讨论了溶剂效应的不同方面,使用几个原型固液界面来说明这些基本特征。最近的实验和计算研究在分子水平上提供了新的见解。讨论了催化剂表面附近的溶剂结构及其对分子结合和固液界面反应的影响。此外,还探讨了通过调整催化剂表面的润湿性来改变这种固液相互作用的机会。
{"title":"Solvent effects on catalytic reactions and related phenomena at liquid-solid interfaces","authors":"Gengnan Li,&nbsp;Bin Wang,&nbsp;Daniel E. Resasco","doi":"10.1016/j.surfrep.2021.100541","DOIUrl":"https://doi.org/10.1016/j.surfrep.2021.100541","url":null,"abstract":"<div><p>Catalytic reactions involve the direct interaction of reactants, intermediates and products with the catalyst surface. We not only need to control the atomic structure and electronic properties of the active site, but also explore the multiple molecular interactions<span> that occur beyond the active site; they play an essential role in altering the binding and reactivity of surface species. In liquid-phase catalysis, solvents provide additional degrees of freedom in the design of the catalytic process for desirable activity and selectivity<span>. The multi-faceted effects of solvents have a profound impact on the catalyst performance by restricting the mass transfer to the site, tuning the chemical potential of the surface species, competing for active sites, stabilizing the initial and transition states, and causing mechanistic changes by participating in the kinetically relevant elementary steps. This review addresses the different aspects of solvent effects<span>, using a few prototype solid-liquid interfaces to illustrate these fundamental features. Recent experimental and computational studies that provide new insight at the molecular level are examined. Solvent structures in the proximity of the catalyst surface are discussed along with their influence in molecular binding and reaction at the solid-liquid interfaces. Furthermore, opportunities to alter such a solid-liquid interaction by tuning the wettability of the catalyst surfaces are explored.</span></span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"76 4","pages":"Article 100541"},"PeriodicalIF":9.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1745528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Chirality of molecular nanostructures on surfaces via molecular assembly and reaction: manifestation and control 通过分子组装和反应在表面上的分子纳米结构的手性:表现和控制
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2021-08-01 DOI: 10.1016/j.surfrep.2021.100531
Ying Xu , Jun-Jie Duan , Zhen-Yu Yi , Ke-Xin Zhang , Ting Chen , Dong Wang

The formation of chiral nanostructures via molecular assembly and reaction on solid surfaces is a ubiquitous surface process due to the symmetry-breaking at 2D surface. Studying chirality during the adsorption, assembly, and reaction of molecules on 2D solid surfaces at molecular level not only sheds deep insights into the enantioselective heterogeneous catalysis, chiral recognition, origin and evolution of chirality, and many important physical chemistry processes but also provides an important strategy to create chiral nanostructures. Here, we give a survey of recent advances in chiral expression and control in molecular assemblies and reactions on surfaces. We firstly give a brief introduction to the general concepts of chiral molecular nanostructures on surfaces. And then we focus on the induction and control of chirality expressed in molecular assemblies. The recent developments in the control strategies such as chiral co-adsorber, chiral auxiliary, chiral solvent, chiral templated surfaces, as well as the underlying mechanism to achieve the chiral induction and amplification, are reviewed. After that, we review the studies of chirality expressed in on-surface synthesis which has been proved to be a promising strategy to fabricate covalently bonded low-dimensional nanostructures and materials. In this respect, we introduce the chiral expression in the intramolecular and intermolecular coupling reactions on surfaces. In addition, we survey the methods to steer the stereoselectivity of on-surface reactions including the design of precursor structure, steric hindrance effect, substrate, kinetic parameters et al. Finally, the future outlook in this field is discussed.

由于二维表面的对称性破坏,在固体表面上通过分子组装和反应形成手性纳米结构是一种普遍存在的表面过程。在分子水平上研究分子在二维固体表面的吸附、组装和反应过程中的手性,不仅可以深入了解手性的对映选择性多相催化、手性识别、手性的起源和演化以及许多重要的物理化学过程,而且为创建手性纳米结构提供了重要的策略。在这里,我们给出了手性表达和控制分子组装和表面反应的最新进展的调查。本文首先简要介绍了表面上的手性分子纳米结构的一般概念。然后我们将重点关注手性在分子组装中的诱导和控制。综述了近年来手性共吸附剂、手性助剂、手性溶剂、手性模板表面等控制策略的研究进展,以及实现手性诱导和扩增的机理。然后,我们回顾了手性在表面合成中的研究,手性已被证明是制造共价键低维纳米结构和材料的一种很有前途的策略。在这方面,我们介绍了表面分子内和分子间偶联反应中的手性表达。此外,我们还从前驱体结构设计、位阻效应、底物设计、动力学参数等方面综述了控制表面反应立体选择性的方法。最后,对该领域的发展前景进行了展望。
{"title":"Chirality of molecular nanostructures on surfaces via molecular assembly and reaction: manifestation and control","authors":"Ying Xu ,&nbsp;Jun-Jie Duan ,&nbsp;Zhen-Yu Yi ,&nbsp;Ke-Xin Zhang ,&nbsp;Ting Chen ,&nbsp;Dong Wang","doi":"10.1016/j.surfrep.2021.100531","DOIUrl":"https://doi.org/10.1016/j.surfrep.2021.100531","url":null,"abstract":"<div><p><span><span>The formation of chiral nanostructures via molecular assembly and reaction on </span>solid surfaces<span><span> is a ubiquitous surface process due to the symmetry-breaking at 2D surface. Studying chirality during the adsorption, assembly, and reaction of molecules on 2D solid surfaces at molecular level not only sheds deep insights into the enantioselective </span>heterogeneous catalysis, chiral recognition, origin and evolution of chirality, and many important </span></span>physical chemistry<span><span> processes but also provides an important strategy to create chiral nanostructures. Here, we give a survey of recent advances in chiral expression and control in molecular assemblies and reactions on surfaces. We firstly give a brief introduction to the general concepts of chiral molecular nanostructures on surfaces. And then we focus on the induction and control of chirality expressed in molecular assemblies. The recent developments in the control strategies such as chiral co-adsorber, chiral auxiliary, chiral solvent, chiral templated surfaces, as well as the underlying mechanism to achieve the chiral induction and amplification, are reviewed. After that, we review the studies of chirality expressed in on-surface synthesis which has been proved to be a promising strategy to fabricate covalently bonded low-dimensional nanostructures and materials. In this respect, we introduce the chiral expression in the intramolecular and intermolecular coupling reactions on surfaces. In addition, we survey the methods to steer the </span>stereoselectivity<span><span> of on-surface reactions including the design of precursor structure, steric hindrance effect, substrate, </span>kinetic parameters et al. Finally, the future outlook in this field is discussed.</span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"76 3","pages":"Article 100531"},"PeriodicalIF":9.8,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2021.100531","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3072075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Surface chemistry of hot electron and metal-oxide interfaces 热电子和金属氧化物界面的表面化学
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2021-08-01 DOI: 10.1016/j.surfrep.2021.100532
Si Woo Lee , Hyunhwa Lee , Yujin Park , Heeyoung Kim , Gabor A. Somorjai , Jeong Young Park

Fundamental mechanisms for energy conversion and dissipation on surfaces and at interfaces have been significant issues in the community of surface science. Electronic excitation in exothermic chemical reactions or photon absorption involves the generation of energetic or hot electrons that are not in thermal equilibrium via non-adiabatic electronic excitation. A number of experimental and theoretical studies have demonstrated the influence of excited hot electrons on atomic and molecular processes, and it is a key moderator in the surface energy conversion process. The charge transfer through the metal-oxide interfaces has a significant impact on catalytic performance in mixed metal-oxide catalysts. In order to understand the influence of hot electrons and metal-oxide interfaces on the surface reactions, various detection schemes of exoelectron detection, including metal-insulator-metal and metal-semiconductor Schottky diodes, have been developed. Catalysts coupled with surface plasmons exhibit peculiar catalytic performance related to hot electron flow. In this review, we outline recent research efforts to relate hot electron flow with surface reactions occurring at metal-oxide interfaces. We report recent studies on the observation of hot electrons and the correlation between hot electrons and catalytic activity and selectivity on metallic surfaces. We show recent results from studies of surface reactions on nanocatalysts coupled with surface plasmons, where hot electron transport is the key process in energy dissipation and conversion processes.

表面和界面上能量转换和耗散的基本机制一直是表面科学界关注的重要问题。放热化学反应或光子吸收中的电子激发涉及通过非绝热电子激发产生不处于热平衡的高能电子或热电子。大量的实验和理论研究已经证明了激发态热电子对原子和分子过程的影响,它是表面能转换过程中的关键调节因子。金属-氧化物界面的电荷转移对混合金属-氧化物催化剂的催化性能有重要影响。为了了解热电子和金属-氧化物界面对表面反应的影响,人们开发了多种外电子检测方案,包括金属-绝缘体-金属和金属-半导体肖特基二极管。与表面等离子体耦合的催化剂表现出与热电子流动有关的特殊催化性能。在这篇综述中,我们概述了最近的研究成果,将热电子流动与发生在金属-氧化物界面的表面反应联系起来。本文报道了金属表面上热电子的观察以及热电子与催化活性和选择性之间的关系的最新研究。我们展示了纳米催化剂与表面等离子体耦合表面反应的最新研究结果,其中热电子传输是能量耗散和转换过程的关键过程。
{"title":"Surface chemistry of hot electron and metal-oxide interfaces","authors":"Si Woo Lee ,&nbsp;Hyunhwa Lee ,&nbsp;Yujin Park ,&nbsp;Heeyoung Kim ,&nbsp;Gabor A. Somorjai ,&nbsp;Jeong Young Park","doi":"10.1016/j.surfrep.2021.100532","DOIUrl":"https://doi.org/10.1016/j.surfrep.2021.100532","url":null,"abstract":"<div><p><span><span><span><span>Fundamental mechanisms for energy conversion and dissipation on surfaces and at interfaces have been significant issues in the community of surface science. </span>Electronic excitation in exothermic chemical reactions or </span>photon absorption involves the generation of </span>energetic<span> or hot electrons that are not in thermal equilibrium via non-adiabatic electronic excitation. A number of experimental and theoretical studies have demonstrated the influence of excited hot electrons on atomic and molecular processes, and it is a key moderator in the surface energy conversion process. The charge transfer through the metal-oxide interfaces has a significant impact on catalytic performance in mixed metal-oxide catalysts. In order to understand the influence of hot electrons and metal-oxide interfaces on the surface reactions, various detection schemes of exoelectron detection, including metal-insulator-metal and metal-semiconductor </span></span>Schottky diodes<span>, have been developed. Catalysts coupled with surface plasmons<span> exhibit peculiar catalytic performance related to hot electron flow. In this review, we outline recent research efforts to relate hot electron flow with surface reactions occurring at metal-oxide interfaces. We report recent studies on the observation of hot electrons and the correlation between hot electrons and catalytic activity and selectivity on metallic surfaces. We show recent results from studies of surface reactions on nanocatalysts coupled with surface plasmons, where hot electron transport is the key process in energy dissipation and conversion processes.</span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"76 3","pages":"Article 100532"},"PeriodicalIF":9.8,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2021.100532","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2266158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Experimental and theoretical studies of reaction pathways of direct propylene epoxidation on model catalyst surfaces 模型催化剂表面丙烯直接环氧化反应途径的实验与理论研究
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2021-05-01 DOI: 10.1016/j.surfrep.2021.100524
William N. Porter, Zhexi Lin, Jingguang G. Chen

The direct epoxidation of propylene to propylene oxide (PO) using molecular oxygen is an attractive alternative to current production methods using chlorohydrin or hydroperoxide-mediated processes, which are environmentally harmful and expensive. Although direct ethylene epoxidation using Ag-based catalysts has been practiced industrially for decades, due to the presence of allylic hydrogen in propylene the selectivity toward epoxide is generally much lower for propylene than for ethylene. Mechanistic understanding on well-characterized surfaces of model catalysts can potentially provide guidance to effectively alter the electronic properties of the catalyst in order to increase PO selectivity. This review summarizes both experimental and theoretical studies on model catalysts for propylene epoxidation and their contributions to elucidating the reaction mechanism, intermediates, and active sites. We first show examples of experimental studies on Cu, Ag, and Au surfaces, and compare the reaction pathways and intermediates on these surfaces. Novel approaches including plasmon-mediated catalysis and utilization of shape-controlled crystal facets that open new opportunities for improving PO selectivity will also be discussed. We then describe how density functional theory (DFT) calculations have provided important insights into the reaction mechanism and active sites on Cu, Ag, and Au surfaces and clusters. Propylene oxidation pathways on other relevant metal surfaces will also be discussed. The combined experimental and computational studies elucidate the nature of surface oxygen species and the role of the oxametallacycle intermediate. We conclude by highlighting design principles and insights for guiding further development of active and selective propylene epoxidation catalysts.

利用分子氧将丙烯直接环氧化为环氧丙烷(PO)是目前使用氯丙烷或过氧化氢介导的生产方法的一种有吸引力的替代方法,这些方法对环境有害且价格昂贵。虽然使用银基催化剂直接环氧化乙烯已经在工业上实践了几十年,但由于丙烯中烯丙基氢的存在,丙烯对环氧化物的选择性通常比乙烯低得多。对模型催化剂表征良好的表面的机理理解,可能为有效改变催化剂的电子性质以提高PO选择性提供指导。本文综述了丙烯环氧化模型催化剂的实验和理论研究,以及它们在阐明反应机理、中间体和活性位点方面的贡献。我们首先展示了Cu、Ag和Au表面的实验研究实例,并比较了这些表面上的反应途径和中间体。新的方法包括等离子体介导的催化和利用形状控制的晶体面,为提高PO选择性开辟了新的机会,也将讨论。然后,我们描述了密度泛函理论(DFT)计算如何为Cu, Ag和Au表面和簇上的反应机理和活性位点提供了重要的见解。丙烯在其他相关金属表面的氧化途径也将讨论。实验和计算相结合的研究阐明了表面氧的性质和氧金属环中间体的作用。最后,我们强调了设计原则和见解,以指导进一步开发活性和选择性丙烯环氧化催化剂。
{"title":"Experimental and theoretical studies of reaction pathways of direct propylene epoxidation on model catalyst surfaces","authors":"William N. Porter,&nbsp;Zhexi Lin,&nbsp;Jingguang G. Chen","doi":"10.1016/j.surfrep.2021.100524","DOIUrl":"https://doi.org/10.1016/j.surfrep.2021.100524","url":null,"abstract":"<div><p><span><span><span>The direct epoxidation of </span>propylene to propylene oxide (PO) using </span>molecular oxygen<span> is an attractive alternative to current production methods using chlorohydrin or hydroperoxide-mediated processes, which are environmentally harmful and expensive. Although direct ethylene epoxidation using Ag-based catalysts has been practiced industrially for decades, due to the presence of allylic hydrogen in propylene the selectivity<span> toward epoxide is generally much lower for propylene than for ethylene. Mechanistic understanding on well-characterized surfaces of model catalysts can potentially provide guidance to effectively alter the electronic properties of the catalyst in order to increase PO selectivity. This review summarizes both experimental and theoretical studies on model catalysts for propylene epoxidation and their contributions to elucidating the reaction mechanism, intermediates, and active sites. We first show examples of experimental studies on Cu, Ag, and Au surfaces, and compare the reaction pathways and intermediates on these surfaces. Novel approaches including plasmon-mediated catalysis and utilization of shape-controlled crystal facets that open new opportunities for improving PO selectivity will also be discussed. We then describe how </span></span></span>density functional theory<span> (DFT) calculations have provided important insights into the reaction mechanism and active sites on Cu, Ag, and Au surfaces and clusters. Propylene oxidation<span> pathways on other relevant metal surfaces will also be discussed. The combined experimental and computational studies elucidate the nature of surface oxygen species and the role of the oxametallacycle intermediate. We conclude by highlighting design principles and insights for guiding further development of active and selective propylene epoxidation catalysts.</span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"76 2","pages":"Article 100524"},"PeriodicalIF":9.8,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2021.100524","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2186996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Synthesis and characterization of 2D transition metal dichalcogenides: Recent progress from a vacuum surface science perspective 二维过渡金属二硫族化合物的合成与表征:真空表面科学的最新进展
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2021-05-01 DOI: 10.1016/j.surfrep.2021.100523
Kinga Lasek , Jingfeng Li , Sadhu Kolekar , Paula Mariel Coelho , Lu'an Guo , Min Zhang , Zhiming Wang , Matthias Batzill

Layered transition metal dichalcogenides (TMDs) are a diverse group of materials whose properties vary from semiconducting to metallic with a variety of many body phenomena, ranging from charge density wave (CDW), superconductivity, to Mott-insulators. Recent interest in topologically protected states revealed also that some TMDs host bulk Dirac- or Wyle-semimetallic states and their corresponding surface states. In this review, we focus on the synthesis of TMDs by vacuum processes, such as molecular beam epitaxy (MBE). After an introduction of these preparation methods and categorize the basic electronic properties of TMDs, we address the characterization of vacuum synthesized materials in their ultrathin limit-mainly as a single monolayer material. Scanning tunneling microscopy and angle resolved photoemission spectroscopy has revealed detailed information on how monolayers differ in their properties from multi-layer and bulk materials. The status of monolayer properties is given for the TMDs, where data are available. Distinct modifications of monolayer properties compared to their bulk counterparts are highlighted. This includes the well-known transition from indirect to direct band gap in semiconducting group VI-B TMDs as the material-thickness is reduced to a single molecular layer. In addition, we discuss the new or modified CDW states in monolayer VSe2 and TiTe2, a Mott-insulating state in monolayer 1T-TaSe2, and the monolayer specific 2D topological insulator 1T′-WTe2, which gives rise to a quantum spin Hall insulator. New structural phases, that do not exist in the bulk, may be synthesized in the monolayer by MBE. These phases have special properties, including the Mott insulator 1T-NbSe2, the 2D topological insulators of 1T′-MoTe2, and the CDW material 1T-VTe2. After discussing the pure TMDs, we report the properties of nanostructured or modified TMDs. Edges and mirror twin grain boundaries (MTBs) in 2D materials are 1D structures. In group VI-B semiconductors, these 1D structures may be metallic and their properties obey Tomonaga Luttinger quantum liquid behavior. Formation of Mo-rich MTBs in Mo-dichalcogenides and self-intercalation in between TMD-layers are discussed as potential compositional variants that may occur during MBE synthesis of TMDs or may be induced intentionally during post-growth modifications. In addition to compositional modifications, phase switching and control, in particular between the 1H and 1T (or 1T′) phases, is a recurring theme in TMDs. Methods of phase control by tuning growth conditions or by post-growth modifications, e.g. by electron doping, are discussed. The properties of heterostructures of TMD monolayers are also introduced, with a focus

层状过渡金属二硫族化合物(TMDs)是一组不同的材料,其性质从半导体到金属不等,具有各种各样的体现象,从电荷密度波(CDW),超导性到莫特绝缘体。最近对拓扑保护态的研究表明,一些tmd具有大块的狄拉克或威尔半金属态及其相应的表面态。本文综述了分子束外延(MBE)等真空工艺合成tmd的研究进展。在介绍了这些制备方法并对tmd的基本电子性质进行了分类之后,我们讨论了真空合成材料在其超薄极限下的表征-主要是作为单层材料。扫描隧道显微镜和角度分辨光谱学揭示了单层材料与多层材料和块状材料的性能差异的详细信息。对于数据可用的tmd,给出了单层属性的状态。与它们的散装对应物相比,单层性质的明显变化被突出显示。这包括半导体族VI-B tmd中众所周知的从间接带隙到直接带隙的转变,因为材料厚度减少到单个分子层。此外,我们还讨论了单层VSe2和TiTe2中新的或修饰的CDW态,单层1T- tase2中的mott绝缘态,以及单层特定的二维拓扑绝缘体1T ' -WTe2,从而产生量子自旋霍尔绝缘体。用MBE可以在单层中合成新的结构相,而这些相在本体中不存在。这些相具有特殊的性质,包括Mott绝缘体1T- nbse2、1T ' -MoTe2的二维拓扑绝缘体和CDW材料1T- vte2。在讨论了纯TMDs之后,我们报告了纳米结构或修饰的TMDs的性质。二维材料中的边缘和镜像孪晶界(MTBs)是一维结构。在VI-B族半导体中,这些一维结构可能是金属的,它们的性质符合Tomonaga Luttinger量子液体行为。在mo -二硫族化合物中富mo MTBs的形成和tmd层之间的自嵌入被认为是潜在的组成变异,这些变异可能在MBE合成tmd过程中发生,也可能在生长后修饰过程中有意诱导。除了成分修改,相位切换和控制,特别是在1H和1T(或1T ')相之间,是tmd中反复出现的主题。讨论了通过调整生长条件或通过生长后修饰(如电子掺杂)来控制相的方法。本文还介绍了TMD单层异质结构的性质,重点介绍了VI-B族TMD的moirsami结构的横向电子修饰。在moir结构中产生的横向电位构成了目前争论不休的moir激子的基础。最后,对纳米结构单层tmd的分子吸附进行了综述。本文综述了tmd基本材料性能的真空研究,并对剥离法和化学气相沉积法制备tmd及其应用的研究进行了补充。
{"title":"Synthesis and characterization of 2D transition metal dichalcogenides: Recent progress from a vacuum surface science perspective","authors":"Kinga Lasek ,&nbsp;Jingfeng Li ,&nbsp;Sadhu Kolekar ,&nbsp;Paula Mariel Coelho ,&nbsp;Lu'an Guo ,&nbsp;Min Zhang ,&nbsp;Zhiming Wang ,&nbsp;Matthias Batzill","doi":"10.1016/j.surfrep.2021.100523","DOIUrl":"https://doi.org/10.1016/j.surfrep.2021.100523","url":null,"abstract":"<div><p><span><span>Layered transition metal dichalcogenides<span> (TMDs) are a diverse group of materials whose properties vary from semiconducting to metallic with a variety of many body phenomena, ranging from charge density wave (CDW), </span></span>superconductivity<span><span>, to Mott-insulators. Recent interest in topologically protected states revealed also that some TMDs host bulk Dirac- or Wyle-semimetallic states and their corresponding surface states. In this review, we focus on the synthesis of TMDs by vacuum processes, such as molecular beam epitaxy<span> (MBE). After an introduction of these preparation methods and categorize the basic electronic properties of TMDs, we address the characterization of vacuum synthesized materials in their ultrathin limit-mainly as a single monolayer material. Scanning tunneling microscopy and angle resolved </span></span>photoemission<span><span> spectroscopy has revealed detailed information on how monolayers differ in their properties from multi-layer and bulk materials. The status of monolayer properties is given for the TMDs, where data are available. Distinct modifications of monolayer properties compared to their bulk counterparts are highlighted. This includes the well-known transition from indirect to direct band gap in semiconducting group VI-B TMDs as the material-thickness is reduced to a single </span>molecular layer. In addition, we discuss the new or modified CDW states in monolayer VSe</span></span></span><sub>2</sub> and TiTe<sub>2</sub>, a Mott-insulating state in monolayer 1T-TaSe<sub>2</sub><span>, and the monolayer specific 2D topological insulator 1T′-WTe</span><sub>2</sub>, which gives rise to a quantum spin Hall insulator. New structural phases, that do not exist in the bulk, may be synthesized in the monolayer by MBE. These phases have special properties, including the Mott insulator 1T-NbSe<sub>2</sub><span>, the 2D topological insulators of 1T′-MoTe</span><sub>2</sub>, and the CDW material 1T-VTe<sub>2</sub><span><span>. After discussing the pure<span> TMDs, we report the properties of nanostructured or modified TMDs. Edges and mirror twin grain boundaries (MTBs) in 2D materials are 1D structures. In group VI-B semiconductors, these 1D structures may be metallic and their properties obey Tomonaga Luttinger quantum liquid behavior. Formation of Mo-rich MTBs in Mo-dichalcogenides and self-intercalation in between TMD-layers are discussed as potential compositional variants that may occur during MBE synthesis of TMDs or may be induced intentionally during post-growth modifications. In addition to compositional modifications, </span></span>phase switching<span> and control, in particular between the 1H and 1T (or 1T′) phases, is a recurring theme in TMDs. Methods of phase control by tuning growth conditions or by post-growth modifications, e.g. by electron doping, are discussed. The properties of heterostructures<span><span> of TMD monolayers are also introduced, with a focus ","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"76 2","pages":"Article 100523"},"PeriodicalIF":9.8,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2021.100523","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2344304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 39
Adsorption and valence electronic states of nitric oxide on metal surfaces 金属表面一氧化氮的吸附和价电子态
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2021-03-01 DOI: 10.1016/j.surfrep.2020.100500
Akitoshi Shiotari , Hiroyuki Koshida , Hiroshi Okuyama

Among fundamental diatomic molecules, the adsorption of carbon monoxide (CO) and nitric oxide (NO) on metal surfaces has been a subject of intensive research in the surface science community, partly owing to its relevance to heterogeneous catalysis used for environmental control. Compared to the rather well-defined adsorption mechanism of CO, that of NO is less understood because the adsorption results in much more complex reactions. The complexity is ascribed to the open-shell structure of valence electrons, making the molecule readily interact with the metal surface itself as well as with co-adsorbed molecules. Furthermore, the interaction crucially depends on the local structure of the surface. Therefore, to elucidate the interaction at the molecular scale, it is essential to study the valence state as well as the bonding geometry for individual NO molecules placed in a well-defined environment on the surface. Scanning tunneling microscopy (STM) is suitable for this purpose. In this review, we summarize the knowledge about the interaction of NO with metal surfaces, mainly focused on the valence electronic states, followed by recent studies using STM and atomic force microscopy (AFM) at the level of individual molecules.

在基本双原子分子中,一氧化碳(CO)和一氧化氮(NO)在金属表面的吸附一直是表面科学界深入研究的课题,部分原因是它与用于环境控制的多相催化有关。与CO的相当明确的吸附机制相比,NO的吸附机制鲜为人知,因为吸附会导致更复杂的反应。这种复杂性归因于价电子的开壳结构,使得分子很容易与金属表面本身以及共吸附的分子相互作用。此外,相互作用主要取决于表面的局部结构。因此,为了阐明分子尺度上的相互作用,有必要研究放置在表面明确环境中的单个NO分子的价态和成键几何形状。扫描隧道显微镜(STM)适用于此目的。本文综述了NO与金属表面相互作用的研究进展,主要集中在价电子态方面,其次是近年来利用STM和原子力显微镜(AFM)在单个分子水平上的研究。
{"title":"Adsorption and valence electronic states of nitric oxide on metal surfaces","authors":"Akitoshi Shiotari ,&nbsp;Hiroyuki Koshida ,&nbsp;Hiroshi Okuyama","doi":"10.1016/j.surfrep.2020.100500","DOIUrl":"https://doi.org/10.1016/j.surfrep.2020.100500","url":null,"abstract":"<div><p>Among fundamental diatomic molecules<span><span>, the adsorption of carbon monoxide (CO) and </span>nitric oxide<span><span><span><span> (NO) on metal surfaces has been a subject of intensive research in the </span>surface science<span> community, partly owing to its relevance to heterogeneous catalysis used for environmental control. Compared to the rather well-defined adsorption mechanism of CO, that of NO is less understood because the adsorption results in much more </span></span>complex reactions<span>. The complexity is ascribed to the open-shell structure of valence electrons, making the molecule readily interact with the metal surface itself as well as with co-adsorbed molecules. Furthermore, the interaction crucially depends on the local structure of the surface. Therefore, to elucidate the interaction at the molecular scale, it is essential to study the valence state as well as the bonding geometry for individual NO molecules placed in a well-defined environment on the surface. Scanning tunneling microscopy (STM) is suitable for this purpose. In this review, we summarize the knowledge about the interaction of NO with metal surfaces, mainly focused on the valence electronic states, followed by recent studies using STM and </span></span>atomic force microscopy (AFM) at the level of individual molecules.</span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"76 1","pages":"Article 100500"},"PeriodicalIF":9.8,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2020.100500","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1945435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
期刊
Surface Science Reports
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1