首页 > 最新文献

Surface Science Reports最新文献

英文 中文
Exploring 2D materials at surfaces through synchrotron-based core-level photoelectron spectroscopy 通过基于同步加速器的核能级光电子能谱在表面探索二维材料
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2023-03-01 DOI: 10.1016/j.surfrep.2023.100586
Luca Bignardi , Paolo Lacovig , Rosanna Larciprete , Dario Alfè , Silvano Lizzit , Alessandro Baraldi

The interest in understanding and controlling the properties of two-dimensional materials (2DMs) has fostered in the last years a significant and multidisciplinary research effort involving condensed matter physics and materials science. Although 2DMs have been investigated with a wide set of different experimental and theoretical methodologies, experiments carried out with surface-science based techniques were essential to elucidate many aspects of the properties of this family of materials. In particular, synchrotron-based X-ray photoelectron spectroscopy (XPS) has been playing a central role in casting light on the properties of 2DMs, providing an in-depth and precise characterization of these materials and helping to elucidate many elusive and intricate aspects related to them. XPS was crucial, for example, in understanding the mechanism of growth of several 2DMs at surfaces and in identifying the parameters governing it. Moreover, the chemical sensitivity of this technique is crucial in obtaining knowledge about functionalized 2DMs and in testing their behavior in several model chemical reactions. The achievements accomplished so far in this field have reached a maturity point for which a recap of the milestones is desirable. In this review, we will showcase relevant examples of studies on 2DMs for which synchrotron-based XPS, in combination with other techniques and state-of-the-art theoretical modeling of the electronic structure and of the growth mechanisms, was essential to unravel many aspects connected to the synthesis and properties of 2DMs at surfaces. The results highlighted herein and the methodologies followed to achieve them will serve as a guidance to researchers in testing and comparing their research outcomes and in stimulating further investigations to expand the knowledge of the broad and versatile 2DMs family.

在过去的几年里,人们对理解和控制二维材料(2dm)的特性产生了浓厚的兴趣,这促成了涉及凝聚态物理和材料科学的重要的多学科研究。虽然2dm已经用一系列不同的实验和理论方法进行了研究,但使用基于表面科学的技术进行的实验对于阐明该材料家族的许多特性至关重要。特别是,基于同步加速器的x射线光电子能谱(XPS)在研究2dm的特性方面发挥了核心作用,为这些材料提供了深入和精确的表征,并有助于阐明与它们相关的许多难以捉摸和复杂的方面。例如,XPS对于理解几种2dm在表面的生长机制和确定控制它的参数至关重要。此外,该技术的化学敏感性对于获得功能化2dm的知识以及在几种模型化学反应中测试其行为至关重要。迄今在这一领域所取得的成就已达到成熟的程度,因此有必要对其里程碑进行回顾。在这篇综述中,我们将展示相关的2dm研究实例,其中基于同步加速器的XPS,结合其他技术和电子结构和生长机制的最新理论建模,对于揭示与表面2dm合成和性质相关的许多方面至关重要。本文强调的结果和实现这些结果所遵循的方法将作为研究人员测试和比较其研究成果的指导,并促进进一步的研究,以扩展广泛而通用的2dm家族的知识。
{"title":"Exploring 2D materials at surfaces through synchrotron-based core-level photoelectron spectroscopy","authors":"Luca Bignardi ,&nbsp;Paolo Lacovig ,&nbsp;Rosanna Larciprete ,&nbsp;Dario Alfè ,&nbsp;Silvano Lizzit ,&nbsp;Alessandro Baraldi","doi":"10.1016/j.surfrep.2023.100586","DOIUrl":"https://doi.org/10.1016/j.surfrep.2023.100586","url":null,"abstract":"<div><p>The interest in understanding and controlling the properties of two-dimensional materials (2DMs) has fostered in the last years a significant and multidisciplinary research effort involving condensed matter physics and materials science. Although 2DMs have been investigated with a wide set of different experimental and theoretical methodologies, experiments carried out with surface-science based techniques were essential to elucidate many aspects of the properties of this family of materials. In particular, synchrotron-based X-ray photoelectron spectroscopy (XPS) has been playing a central role in casting light on the properties of 2DMs, providing an in-depth and precise characterization of these materials and helping to elucidate many elusive and intricate aspects related to them. XPS was crucial, for example, in understanding the mechanism of growth of several 2DMs at surfaces and in identifying the parameters governing it. Moreover, the chemical sensitivity of this technique is crucial in obtaining knowledge about functionalized 2DMs and in testing their behavior in several model chemical reactions. The achievements accomplished so far in this field have reached a maturity point for which a recap of the milestones is desirable. In this review, we will showcase relevant examples of studies on 2DMs for which synchrotron-based XPS, in combination with other techniques and state-of-the-art theoretical modeling of the electronic structure and of the growth mechanisms, was essential to unravel many aspects connected to the synthesis and properties of 2DMs at surfaces. The results highlighted herein and the methodologies followed to achieve them will serve as a guidance to researchers in testing and comparing their research outcomes and in stimulating further investigations to expand the knowledge of the broad and versatile 2DMs family.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"78 1","pages":"Article 100586"},"PeriodicalIF":9.8,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3398759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Electrochemical tip-enhanced Raman Spectroscopy for microscopic studies of electrochemical interfaces 电化学尖端增强拉曼光谱用于电化学界面的微观研究
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2022-11-01 DOI: 10.1016/j.surfrep.2022.100576
Yasuyuki Yokota , Misun Hong , Norihiko Hayazawa , Yousoo Kim

The review describes electrochemical applications of tip-enhanced Raman spectroscopy (TERS). These applications combine the merits of both scanning probe microscopy (SPM) and Raman spectroscopy, which enables us to simultaneously obtain high-resolution images of surface morphology and chemical information under the electrochemical environment. This review, first summarizes the pioneering work done on the TERS systems that operate in liquid and electrochemical environments, and then gives an overview of the typical instrumentation of electrochemical TERS (EC-TERS) based on electrochemical scanning tunneling microscopy (EC-STM). Furthermore, this review summarizes the advancements in EC-TERS studies of events that occur at the interfaces. These include potential dependent structural changes and electrochemical reactions. Finally, we discuss the current issues and future prospects of EC-TERS for microscopic studies of electrochemical interfaces.

综述了尖端增强拉曼光谱(TERS)在电化学中的应用。这些应用结合了扫描探针显微镜(SPM)和拉曼光谱的优点,使我们能够同时获得电化学环境下表面形貌和化学信息的高分辨率图像。本文首先综述了在液体和电化学环境下工作的电化学检测系统的开创性工作,然后介绍了基于电化学扫描隧道显微镜(EC-STM)的电化学检测系统的典型仪器。此外,本文还综述了EC-TERS在界面上发生的事件的研究进展。这些包括依赖电位的结构变化和电化学反应。最后,讨论了电化学界面微观研究中存在的问题和未来的发展前景。
{"title":"Electrochemical tip-enhanced Raman Spectroscopy for microscopic studies of electrochemical interfaces","authors":"Yasuyuki Yokota ,&nbsp;Misun Hong ,&nbsp;Norihiko Hayazawa ,&nbsp;Yousoo Kim","doi":"10.1016/j.surfrep.2022.100576","DOIUrl":"https://doi.org/10.1016/j.surfrep.2022.100576","url":null,"abstract":"<div><p><span>The review describes electrochemical applications of tip-enhanced Raman spectroscopy (TERS). These applications combine the merits of both </span>scanning probe microscopy<span> (SPM) and Raman spectroscopy, which enables us to simultaneously obtain high-resolution images of surface morphology<span> and chemical information under the electrochemical environment. This review, first summarizes the pioneering work done on the TERS systems that operate in liquid and electrochemical environments, and then gives an overview of the typical instrumentation of electrochemical TERS (EC-TERS) based on electrochemical scanning tunneling microscopy<span> (EC-STM). Furthermore, this review summarizes the advancements in EC-TERS studies of events that occur at the interfaces. These include potential dependent structural changes and electrochemical reactions. Finally, we discuss the current issues and future prospects of EC-TERS for microscopic studies of electrochemical interfaces.</span></span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"77 4","pages":"Article 100576"},"PeriodicalIF":9.8,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1741705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The charge exchange of slow highly charged ions at surfaces unraveled with freestanding 2D materials 缓慢的高电荷离子在独立的二维材料表面上的电荷交换
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2022-11-01 DOI: 10.1016/j.surfrep.2022.100577
Richard A. Wilhelm

The property of a variable charge state makes ions unique to other types of radiation a material surface can be exposed to. As a consequence of charge exchange between ions and surfaces, energy is transferred to the surface and material damage may be triggered. Furthermore, a changing charge state of the ion alters its slowing down process in solids and has important implications when back-scattered ions are to be measured for material analysis purposes. Over the last decades extensive research was devoted to the understanding of ion charge exchange with solids. Here I review recent progress in this field with special emphasize on slow ions in high charge states. This class of ions allows a detailed analysis of charge exchange in experiments, which employ also ultra-thin solid targets and therefore give experimental access to electronic processes on the femtosecond timescale. In this review I will discuss general properties of charge exchange and present typical experimental techniques. I will also discuss current developments in the modelling and simulation of ion-surface interaction. Recent findings using freestanding 2D materials are discussed as well as results from spectroscopy of emitted secondary particles. The paper concludes with a unified picture of ion charge exchange at surfaces and presents possible applications based on the understanding of the underlying physics.

可变电荷状态的特性使得离子对于材料表面可以暴露的其他类型的辐射是独一无二的。由于离子和表面之间的电荷交换,能量被转移到表面,并可能引发材料损坏。此外,离子电荷状态的变化改变了其在固体中的减速过程,并且在为材料分析目的测量背散射离子时具有重要意义。在过去的几十年里,广泛的研究致力于理解离子与固体的电荷交换。本文综述了这一领域的最新进展,重点介绍了高电荷态慢离子的研究进展。这类离子允许在实验中详细分析电荷交换,也使用超薄固体目标,因此可以在飞秒时间尺度上进行电子过程的实验。本文将讨论电荷交换的一般性质,并提出典型的实验技术。我还将讨论离子表面相互作用的建模和模拟的最新进展。讨论了使用独立二维材料的最新发现以及发射二次粒子的光谱结果。本文总结了表面离子电荷交换的统一图景,并基于对潜在物理的理解提出了可能的应用。
{"title":"The charge exchange of slow highly charged ions at surfaces unraveled with freestanding 2D materials","authors":"Richard A. Wilhelm","doi":"10.1016/j.surfrep.2022.100577","DOIUrl":"https://doi.org/10.1016/j.surfrep.2022.100577","url":null,"abstract":"<div><p>The property of a variable charge state makes ions unique to other types of radiation a material surface can be exposed to. As a consequence of charge exchange between ions and surfaces, energy is transferred to the surface and material damage may be triggered. Furthermore, a changing charge state of the ion alters its slowing down process in solids and has important implications when back-scattered ions are to be measured for material analysis purposes. Over the last decades extensive research was devoted to the understanding of ion charge exchange with solids. Here I review recent progress in this field with special emphasize on slow ions in high charge states. This class of ions allows a detailed analysis of charge exchange in experiments, which employ also ultra-thin solid targets and therefore give experimental access to electronic processes on the femtosecond timescale. In this review I will discuss general properties of charge exchange and present typical experimental techniques. I will also discuss current developments in the modelling and simulation of ion-surface interaction. Recent findings using freestanding 2D materials are discussed as well as results from spectroscopy of emitted secondary particles. The paper concludes with a unified picture of ion charge exchange at surfaces and presents possible applications based on the understanding of the underlying physics.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"77 4","pages":"Article 100577"},"PeriodicalIF":9.8,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3398760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Graphene grown on transition metal substrates: Versatile templates for organic molecules with new properties and structures 在过渡金属衬底上生长的石墨烯:具有新性质和结构的有机分子的多功能模板
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2022-11-01 DOI: 10.1016/j.surfrep.2022.100575
Cristina Díaz , Fabián Calleja , Amadeo L. Vázquez de Parga , Fernando Martín

The interest in graphene (a carbon monolayer) adsorbed on metal surfaces goes back to the 60's, long before isolated graphene was produced in the laboratory. Owing to the carbon-metal interaction and the lattice mismatch between the carbon monolayer and the metal surface, graphene usually adopts a rippled structure, known as moiré, that confers it interesting electronic properties not present in isolated graphene. These moiré structures can be used as versatile templates where to adsorb, isolate and assemble organic-molecule structures with some desired geometric and electronic properties. In this review, we first describe the main experimental techniques and the theoretical methods currently available to produce and characterize these complex systems. Then, we review the diversity of moiré structures that have been reported in the literature and the consequences for the electronic properties of graphene, attending to the magnitude of the lattice mismatch and the type of interaction, chemical or physical, between graphene and the metal surface. Subsequently, we address the problem of the adsorption of single organic molecules and then of several ones, from dimers to complete monolayers, describing both the different arrangements that these molecules can adopt as well as their physical and chemical properties. We pay a special attention to graphene/Ru(0001) due to its exceptional electronic properties, which have been used to induce long-range magnetic order in tetracyanoquinodimethane (TCNQ) monolayers, to catalyze the (reversible) reaction between acetonitrile and TCNQ molecules and to efficiently photogenerate large acenes.

人们对吸附在金属表面的石墨烯(一种碳单分子层)的兴趣可以追溯到上世纪60年代,那时候实验室里还没有分离出石墨烯。由于碳-金属相互作用以及碳单层和金属表面之间的晶格不匹配,石墨烯通常采用波纹结构,称为波纹结构,这赋予了它在孤立的石墨烯中不存在的有趣的电子特性。这些波纹结构可以用作多功能模板,用于吸附、分离和组装具有某些所需几何和电子特性的有机分子结构。在这篇综述中,我们首先描述了目前用于产生和表征这些复杂系统的主要实验技术和理论方法。然后,我们回顾了文献中报道的波纹结构的多样性,以及对石墨烯电子特性的影响,包括晶格失配的大小和石墨烯与金属表面之间化学或物理相互作用的类型。随后,我们解决了单个有机分子的吸附问题,然后是几个有机分子的吸附问题,从二聚体到完整的单层,描述了这些分子可以采用的不同排列以及它们的物理和化学性质。我们特别关注石墨烯/Ru(0001),因为它具有特殊的电子性质,它已被用于在四氰喹诺二甲烷(TCNQ)单层中诱导远程磁序,催化乙腈和TCNQ分子之间的(可逆)反应,并有效地产生大的烯。
{"title":"Graphene grown on transition metal substrates: Versatile templates for organic molecules with new properties and structures","authors":"Cristina Díaz ,&nbsp;Fabián Calleja ,&nbsp;Amadeo L. Vázquez de Parga ,&nbsp;Fernando Martín","doi":"10.1016/j.surfrep.2022.100575","DOIUrl":"https://doi.org/10.1016/j.surfrep.2022.100575","url":null,"abstract":"<div><p>The interest in graphene (a carbon monolayer) adsorbed on metal surfaces goes back to the 60's, long before isolated graphene was produced in the laboratory. Owing to the carbon-metal interaction and the lattice mismatch between the carbon monolayer and the metal surface, graphene usually adopts a rippled structure, known as moiré, that confers it interesting electronic properties not present in isolated graphene. These moiré structures can be used as versatile templates where to adsorb, isolate and assemble organic-molecule structures with some desired geometric and electronic properties. In this review, we first describe the main experimental techniques and the theoretical methods currently available to produce and characterize these complex systems. Then, we review the diversity of moiré structures that have been reported in the literature and the consequences for the electronic properties of graphene, attending to the magnitude of the lattice mismatch and the type of interaction, chemical or physical, between graphene and the metal surface. Subsequently, we address the problem of the adsorption of single organic molecules and then of several ones, from dimers to complete monolayers, describing both the different arrangements that these molecules can adopt as well as their physical and chemical properties. We pay a special attention to graphene/Ru(0001) due to its exceptional electronic properties, which have been used to induce long-range magnetic order in tetracyanoquinodimethane (TCNQ) monolayers, to catalyze the (reversible) reaction between acetonitrile and TCNQ molecules and to efficiently photogenerate large acenes.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"77 4","pages":"Article 100575"},"PeriodicalIF":9.8,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1760214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Single atom doping in 2D layered MoS2 from a periodic table perspective 从元素周期表的角度研究二维层状二硫化钼的单原子掺杂
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2022-08-01 DOI: 10.1016/j.surfrep.2022.100567
Saeed Sovizi, Robert Szoszkiewicz

Molybdenum Disulfide (MoS2) is a well-known transition metal dichalcogenide with a hexagonal structure arrangement analogous to graphene. Two dimensional (2D) MoS2 has attracted wide attention in various applications such as energy storage, catalysis, sensing, energy conversion and optoelectronics due to its unique properties including tunable bandgap, substantial carrier mobility, outstanding mechanical strength and dangling-bond free basal surface. Moreover, MoS2 has shown an excellent capability to be a host for foreign atoms which tune its physicochemical properties. Herein, currently known structural changes in the MoS2 crystals introduced by various single atom dopants coming from all over the chemical table of elements are reviewed. Accompanying electrical, optical and magnetic properties of such structures are discussed in detail. Potential applications of the doped MoS2 are introduced briefly as well. The review concentrates on the recent state-of-the-art results obtained mostly by the high resolution scanning transmission electron microscopy (STEM), such as high angle annular dark field (HAADF) imaging as well as scanning probe microscopy (SPM) such as scanning tunneling microscopy (STM). These techniques have been used to decipher dopant positions and other sub-atomic structural changes introduced to the MoS2 structure by isolated dopants.

二硫化钼(MoS2)是一种众所周知的过渡金属二硫化物,具有类似石墨烯的六方结构排列。二维二硫化钼具有带隙可调、载流子迁移率高、机械强度强、基面无悬垂键等独特性能,在储能、催化、传感、能量转换和光电子等领域受到广泛关注。此外,二硫化钼表现出作为外来原子宿主的优异能力,从而调整其物理化学性质。本文综述了目前已知的由元素化学表中各种单原子掺杂剂引起的二硫化钼晶体结构变化。详细讨论了这种结构的电学、光学和磁学性质。简要介绍了掺杂二硫化钼的潜在应用。本文主要综述了高分辨率扫描透射电子显微镜(STEM),如高角度环形暗场成像(HAADF),以及扫描探针显微镜(SPM),如扫描隧道显微镜(STM)所获得的最新研究成果。这些技术已经被用来破译掺杂剂的位置和其他亚原子结构的变化引入到二硫化钼的结构中。
{"title":"Single atom doping in 2D layered MoS2 from a periodic table perspective","authors":"Saeed Sovizi,&nbsp;Robert Szoszkiewicz","doi":"10.1016/j.surfrep.2022.100567","DOIUrl":"https://doi.org/10.1016/j.surfrep.2022.100567","url":null,"abstract":"<div><p><span>Molybdenum Disulfide (MoS</span><sub>2</sub><span>) is a well-known transition metal dichalcogenide with a hexagonal structure arrangement analogous to graphene. Two dimensional (2D) MoS</span><sub>2</sub><span><span> has attracted wide attention in various applications such as energy storage, catalysis, sensing, energy conversion and optoelectronics<span> due to its unique properties including tunable bandgap, substantial carrier mobility, outstanding </span></span>mechanical strength and dangling-bond free basal surface. Moreover, MoS</span><sub>2</sub> has shown an excellent capability to be a host for foreign atoms which tune its physicochemical properties. Herein, currently known structural changes in the MoS<sub>2</sub><span> crystals introduced by various single atom dopants<span> coming from all over the chemical table of elements are reviewed. Accompanying electrical, optical and magnetic properties of such structures are discussed in detail. Potential applications of the doped MoS</span></span><sub>2</sub><span><span> are introduced briefly as well. The review concentrates on the recent state-of-the-art results obtained mostly by the high resolution scanning transmission electron microscopy (STEM), such as high angle annular dark field (HAADF) imaging as well as </span>scanning probe microscopy<span> (SPM) such as scanning tunneling microscopy (STM). These techniques have been used to decipher dopant positions and other sub-atomic structural changes introduced to the MoS</span></span><sub>2</sub> structure by isolated dopants.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"77 3","pages":"Article 100567"},"PeriodicalIF":9.8,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3081423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Atom scattering as a probe of the surface electron-phonon interaction at conducting surfaces 原子散射作为导电表面电子-声子相互作用的探针
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2022-05-01 DOI: 10.1016/j.surfrep.2022.100552
J.R. Manson , G. Benedek , Salvador Miret-Artés

An atomic projectile colliding with a surface at kinetic energies in the thermal or hyperthermal range interacts with and is reflected by the electronic density well in front of the first layer of target atoms, and it is generally accepted that the repulsive interaction potential is proportional to the density of electrons extending outside the surface. This review develops a complete treatment of the elastic and inelastic scattering of atoms from a conducting surface in which the interaction with the electron density and its vibrations is treated using electron-phonon coupling theory. Starting from the basic principles of formal scattering theory, the elastic and inelastic scattering intensities are developed in a manner that identifies the small overlap region in the surface electron density where the projectile atom is repelled. The effective vibrational displacements of the electron gas, which lead to energy transfer through excitation of phonons, are directly related to the vibrational displacements of the atomic cores in the target crystal via electron-phonon coupling. The effective Debye-Waller factor for atom-surface scattering is developed and related to the mean square displacements of the atomic cores. The complex dependence of the Debye-Waller factor on momentum and energy of the projectile, including the effects of the attractive adsorption well in the interaction potential, are clearly defined. Applying the standard approximations of electron-phonon coupling theory for metals to the distorted wave Born approximation leads to expressions which relate the elastic and inelastic scattering intensities, as well as the Debye-Waller factor, to the well known electron-phonon coupling constant λ. This treatment reproduces the previously obtained result that the intensities for single phonon inelastic peaks in the scattered spectra are proportional to the mode specific mass correction components λQ,ν defined by the relationship λ = 〈λQ,ν〉. The intensities of elastic diffraction peaks are shown to be a weighted sum over the λQ,ν, and the Debye-Waller factor can also be expressed in terms of a similar weighted summation. In the simplest case the Debye-Waller exponent is shown to be proportional to λ and for simple metals, metal overlayers, and other kinds of conducting surfaces values of λ are extracted from available experimental data. This dependence of the elastic and inelastic scattering, and that of the Debye-Waller factor, on the electron-phonon coupling constant λ shows that measurements of elastic and inelastic spectra of atomic scattering are capable of revealing detailed information about the electron-phonon coupling mechanism in the surface electron density.

在热或超热动能范围内与表面碰撞的原子抛射体与目标原子第一层前的电子密度相互作用并被反射,一般认为排斥相互作用势与延伸到表面外的电子密度成正比。本文用电子-声子耦合理论对原子在导电表面的弹性和非弹性散射进行了完整的处理,其中电子密度及其振动与原子的相互作用进行了处理。从形式散射理论的基本原理出发,以确定抛射原子被排斥的表面电子密度中的小重叠区域的方式开发了弹性和非弹性散射强度。电子气体的有效振动位移通过激发声子导致能量传递,与目标晶体中原子核的电子-声子耦合振动位移直接相关。建立了原子表面散射的有效德拜-沃勒因子,并将其与原子核的均方位移联系起来。明确地定义了德拜-沃勒因子对弹丸动量和能量的复杂依赖关系,包括相互作用势中吸引吸附阱的影响。将金属电子-声子耦合理论的标准近似应用于畸变波玻恩近似,可以得到弹性和非弹性散射强度以及Debye-Waller因子与众所周知的电子-声子耦合常数λ相关的表达式。这种处理再现了先前得到的结果,即散射光谱中单声子非弹性峰的强度与模式比质量修正分量λ q,ν成正比,由关系λ = < λ q,ν >定义。弹性衍射峰的强度是λQ,ν的加权和,Debye-Waller因子也可以用类似的加权和来表示。在最简单的情况下,Debye-Waller指数被证明与λ成正比,对于简单金属,金属覆盖层和其他类型的导电表面,λ的值是从可用的实验数据中提取的。弹性和非弹性散射以及德拜-沃勒因子对电子-声子耦合常数λ的依赖表明,原子散射的弹性和非弹性光谱的测量能够揭示表面电子密度中电子-声子耦合机制的详细信息。
{"title":"Atom scattering as a probe of the surface electron-phonon interaction at conducting surfaces","authors":"J.R. Manson ,&nbsp;G. Benedek ,&nbsp;Salvador Miret-Artés","doi":"10.1016/j.surfrep.2022.100552","DOIUrl":"https://doi.org/10.1016/j.surfrep.2022.100552","url":null,"abstract":"<div><p><span>An atomic projectile colliding with a surface at kinetic energies in the thermal or hyperthermal range interacts with and is reflected by the electronic density well in front of the first layer of target atoms, and it is generally accepted that the repulsive interaction potential is proportional to the density of electrons extending outside the surface. This review develops a complete treatment of the elastic and inelastic scattering<span> of atoms from a conducting surface in which the interaction with the electron density and its vibrations is treated using electron-phonon coupling theory. Starting from the basic principles of formal scattering theory, the elastic and inelastic scattering intensities are developed in a manner that identifies the small overlap region in the surface electron density where the projectile atom is repelled. The effective vibrational displacements of the electron gas<span>, which lead to energy transfer through excitation of phonons, are directly related to the vibrational displacements of the atomic cores in the target crystal via electron-phonon coupling. The effective Debye-Waller factor for atom-surface scattering is developed and related to the mean square displacements of the atomic cores. The complex dependence of the Debye-Waller factor on momentum and energy of the projectile, including the effects of the attractive adsorption well in the interaction potential, are clearly defined. Applying the standard approximations of electron-phonon coupling theory for metals to the distorted wave Born approximation leads to expressions which relate the elastic and inelastic scattering intensities, as well as the Debye-Waller factor, to the well known electron-phonon coupling constant </span></span></span><em>λ</em><span>. This treatment reproduces the previously obtained result that the intensities for single phonon inelastic peaks in the scattered spectra are proportional to the mode specific mass correction components </span><em>λ</em><sub><strong>Q</strong>,<em>ν</em></sub> defined by the relationship <em>λ</em> = 〈<em>λ</em><sub><strong>Q</strong>,<em>ν</em></sub>〉. The intensities of elastic diffraction peaks are shown to be a weighted sum over the <em>λ</em><sub><strong>Q</strong>,<em>ν</em></sub>, and the Debye-Waller factor can also be expressed in terms of a similar weighted summation. In the simplest case the Debye-Waller exponent is shown to be proportional to <em>λ</em> and for simple metals, metal overlayers, and other kinds of conducting surfaces values of <em>λ</em> are extracted from available experimental data. This dependence of the elastic and inelastic scattering, and that of the Debye-Waller factor, on the electron-phonon coupling constant <em>λ</em> shows that measurements of elastic and inelastic spectra of atomic scattering are capable of revealing detailed information about the electron-phonon coupling mechanism in the surface electron density.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"77 2","pages":"Article 100552"},"PeriodicalIF":9.8,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1823160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
QuickStats: Rate* of Unintentional Traumatic Brain Injury-Related Deaths Among Persons Aged ≤19 Years, by Age Group and Sex - National Vital Statistics System, United States, 2018-2020. QuickStats:美国2018-2020年按年龄组和性别分列的≤19岁人群中与意外创伤性脑损伤相关的死亡比率† - 国家生命统计系统。
IF 33.9 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2022-03-18 DOI: 10.15585/mmwr.mm7111a5
{"title":"QuickStats: Rate* of Unintentional Traumatic Brain Injury-Related Deaths<sup>†</sup> Among Persons Aged ≤19 Years, by Age Group and Sex - National Vital Statistics System, United States, 2018-2020.","authors":"","doi":"10.15585/mmwr.mm7111a5","DOIUrl":"10.15585/mmwr.mm7111a5","url":null,"abstract":"","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"30 1","pages":"437"},"PeriodicalIF":33.9,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78034370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Water-solid interfaces probed by high-resolution atomic force microscopy 高分辨率原子力显微镜探测的水-固界面
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2022-03-01 DOI: 10.1016/j.surfrep.2021.100549
Jinbo Peng , Jing Guo , Runze Ma , Ying Jiang

Water-solid interfaces play important roles across a broad range of scientific and application fields. In the past decades, atomic force microscopy (AFM) has significantly deepened our understanding of water-solid interfaces at molecular scale. In this review, we describe the recent progresses on probing water-solid interfaces by noncontact AFM, highlighting the imaging of interfacial water with ultrahigh spatial resolution. In particular, the recent development of qPlus-based AFM with functionalized tips has made it possible to directly image the H-bonding skeleton of interfacial water under UHV environment. Based on high-order electrostatic forces, such a technique even enables submolecular-level imaging of weakly bonded water structures with negligible disturbance. In addition, the three-dimensional (3D) AFM using low-noise cantilever deflection sensors can achieve atomic resolution imaging at liquid/solid interfaces, which opens up the possibility of probing the hydration layer structures under realistic conditions. We then discuss the application of those AFM techniques to various interfacial water systems, including water clusters, ion hydrates, water chains, water monolayers/multilayers and bulk water/ice on different surfaces under UHV or ambient environments. Some important issues will be addressed, including the H-bonding topology, ice nucleation and growth, ion hydration and transport, dielectric properties of water, etc. In the end, we present an outlook on the directions of future AFM studies of water at interfaces and the challenges faced by this field, as well as the development of new AFM techniques.

水-固界面在广泛的科学和应用领域中发挥着重要作用。在过去的几十年里,原子力显微镜(AFM)极大地加深了我们在分子尺度上对水-固界面的理解。本文综述了近年来非接触式原子力显微镜探测水-固界面的研究进展,重点介绍了超高空间分辨率的界面水成像技术。特别是最近基于qplus的带有功能化尖端的原子力显微镜的发展,使得在特高压环境下直接成像界面水的氢键骨架成为可能。基于高阶静电力,这种技术甚至可以在亚分子水平上对弱键水结构进行成像,而干扰可以忽略不计。此外,采用低噪声悬臂式偏转传感器的三维原子力显微镜(3D)可以在液/固界面上实现原子分辨率成像,这为在现实条件下探测水化层结构提供了可能。然后,我们讨论了这些AFM技术在各种界面水系统中的应用,包括在特高压或环境环境下不同表面上的水簇、离子水合物、水链、单层/多层水和散装水/冰。讨论了氢键拓扑结构、冰的成核与生长、离子的水化与输运、水的介电性质等重要问题。最后,展望了未来界面水原子力显微镜研究的方向和面临的挑战,以及新的原子力显微镜技术的发展。
{"title":"Water-solid interfaces probed by high-resolution atomic force microscopy","authors":"Jinbo Peng ,&nbsp;Jing Guo ,&nbsp;Runze Ma ,&nbsp;Ying Jiang","doi":"10.1016/j.surfrep.2021.100549","DOIUrl":"https://doi.org/10.1016/j.surfrep.2021.100549","url":null,"abstract":"<div><p>Water-solid interfaces play important roles across a broad range of scientific and application fields. In the past decades, atomic force microscopy (AFM) has significantly deepened our understanding of water-solid interfaces at molecular scale. In this review, we describe the recent progresses on probing water-solid interfaces by noncontact AFM, highlighting the imaging of interfacial water with ultrahigh spatial resolution. In particular, the recent development of qPlus-based AFM with functionalized tips has made it possible to directly image the H-bonding skeleton of interfacial water under UHV environment. Based on high-order electrostatic forces, such a technique even enables submolecular-level imaging of weakly bonded water structures with negligible disturbance. In addition, the three-dimensional (3D) AFM using low-noise cantilever deflection sensors can achieve atomic resolution imaging at liquid/solid interfaces, which opens up the possibility of probing the hydration layer structures under realistic conditions. We then discuss the application of those AFM techniques to various interfacial water systems, including water clusters, ion hydrates, water chains, water monolayers/multilayers and bulk water/ice on different surfaces under UHV or ambient environments. Some important issues will be addressed, including the H-bonding topology, ice nucleation and growth, ion hydration and transport, dielectric properties of water, etc. In the end, we present an outlook on the directions of future AFM studies of water at interfaces and the challenges faced by this field, as well as the development of new AFM techniques.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"77 1","pages":"Article 100549"},"PeriodicalIF":9.8,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1948770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
The metallic nature of two-dimensional transition-metal dichalcogenides and MXenes 二维过渡金属二硫族化合物和MXenes的金属性质
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2021-11-01 DOI: 10.1016/j.surfrep.2021.100542
Wenshuo Xu , Yuxuan Ke , Zhuo Wang , Wenjing Zhang , Andrew Thye Shen Wee

Metallic two-dimensional (2D) materials such as transition-metal dichalcogenides (TMDCs) and MXenes exhibit intriguing properties, including superconductivity, magnetism and electrocatalysis. Studies on the correlation between their nanoscale structures and properties can facilitate the development of photodetectors, supercapacitors, nanocatalysts, etc., but this topic has not been reviewed systematically. Here, we provide a comprehensive overview on the key factors that dictate the structures and properties of these 2D metals. We examine their phase transitions induced by structural or electronic modifications based on microscopic imaging, spectral characterization, and electrical measurements. From the perspective of surface and interface engineering, we elucidate the influences of lattice defects, dopants, and intercalated species between adjacent layers. Moreover, heterostructures involving highly conductive 2D component(s) are discussed, which may enable the observation of fascinating phenomena and/or synergistic effects due to the interlayer interactions. Finally, we provide insights into opportunities for new applications, e.g., radio-frequency antennas and electromagnetic interference shields. Feasible routes are also proposed to overcome the current challenges.

金属二维(2D)材料,如过渡金属二硫族化合物(TMDCs)和MXenes,表现出有趣的特性,包括超导性、磁性和电催化。研究它们的纳米级结构和性能之间的相关性有助于光电探测器、超级电容器、纳米催化剂等的发展,但这一主题尚未得到系统的综述。在这里,我们对决定这些二维金属的结构和性质的关键因素进行了全面的概述。我们研究了基于显微成像、光谱表征和电测量的结构或电子修饰引起的相变。从表面和界面工程的角度,阐述了相邻层间晶格缺陷、掺杂物和插层物质的影响。此外,还讨论了涉及高导电性二维组分的异质结构,这可能使观察到有趣的现象和/或由于层间相互作用而产生的协同效应成为可能。最后,我们提供了对新应用机会的见解,例如射频天线和电磁干扰屏蔽。为克服当前的挑战,提出了可行的路线。
{"title":"The metallic nature of two-dimensional transition-metal dichalcogenides and MXenes","authors":"Wenshuo Xu ,&nbsp;Yuxuan Ke ,&nbsp;Zhuo Wang ,&nbsp;Wenjing Zhang ,&nbsp;Andrew Thye Shen Wee","doi":"10.1016/j.surfrep.2021.100542","DOIUrl":"https://doi.org/10.1016/j.surfrep.2021.100542","url":null,"abstract":"<div><p>Metallic two-dimensional (2D) materials such as transition-metal dichalcogenides (TMDCs) and MXenes exhibit intriguing properties, including superconductivity, magnetism and electrocatalysis. Studies on the correlation between their nanoscale structures and properties can facilitate the development of photodetectors, supercapacitors, nanocatalysts, etc., but this topic has not been reviewed systematically. Here, we provide a comprehensive overview on the key factors that dictate the structures and properties of these 2D metals. We examine their phase transitions induced by structural or electronic modifications based on microscopic imaging, spectral characterization, and electrical measurements. From the perspective of surface and interface engineering, we elucidate the influences of lattice defects, dopants, and intercalated species between adjacent layers. Moreover, heterostructures involving highly conductive 2D component(s) are discussed, which may enable the observation of fascinating phenomena and/or synergistic effects due to the interlayer interactions. Finally, we provide insights into opportunities for new applications, e.g., radio-frequency antennas and electromagnetic interference shields. Feasible routes are also proposed to overcome the current challenges.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"76 4","pages":"Article 100542"},"PeriodicalIF":9.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2143435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Solvent effects on catalytic reactions and related phenomena at liquid-solid interfaces 溶剂对液固界面催化反应的影响及相关现象
IF 9.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2021-11-01 DOI: 10.1016/j.surfrep.2021.100541
Gengnan Li, Bin Wang, Daniel E. Resasco

Catalytic reactions involve the direct interaction of reactants, intermediates and products with the catalyst surface. We not only need to control the atomic structure and electronic properties of the active site, but also explore the multiple molecular interactions that occur beyond the active site; they play an essential role in altering the binding and reactivity of surface species. In liquid-phase catalysis, solvents provide additional degrees of freedom in the design of the catalytic process for desirable activity and selectivity. The multi-faceted effects of solvents have a profound impact on the catalyst performance by restricting the mass transfer to the site, tuning the chemical potential of the surface species, competing for active sites, stabilizing the initial and transition states, and causing mechanistic changes by participating in the kinetically relevant elementary steps. This review addresses the different aspects of solvent effects, using a few prototype solid-liquid interfaces to illustrate these fundamental features. Recent experimental and computational studies that provide new insight at the molecular level are examined. Solvent structures in the proximity of the catalyst surface are discussed along with their influence in molecular binding and reaction at the solid-liquid interfaces. Furthermore, opportunities to alter such a solid-liquid interaction by tuning the wettability of the catalyst surfaces are explored.

催化反应包括反应物、中间体和产物与催化剂表面的直接相互作用。我们不仅需要控制活性位点的原子结构和电子性质,还需要探索活性位点之外发生的多种分子相互作用;它们在改变表面物质的结合和反应性方面起着重要作用。在液相催化中,溶剂为设计理想的活性和选择性的催化过程提供了额外的自由度。溶剂的多方面影响对催化剂的性能有着深远的影响,它限制了催化剂的传质,调节了表面物质的化学势,竞争了活性位点,稳定了初始态和过渡态,并通过参与动力学相关的基本步骤引起了机理变化。本综述讨论了溶剂效应的不同方面,使用几个原型固液界面来说明这些基本特征。最近的实验和计算研究在分子水平上提供了新的见解。讨论了催化剂表面附近的溶剂结构及其对分子结合和固液界面反应的影响。此外,还探讨了通过调整催化剂表面的润湿性来改变这种固液相互作用的机会。
{"title":"Solvent effects on catalytic reactions and related phenomena at liquid-solid interfaces","authors":"Gengnan Li,&nbsp;Bin Wang,&nbsp;Daniel E. Resasco","doi":"10.1016/j.surfrep.2021.100541","DOIUrl":"https://doi.org/10.1016/j.surfrep.2021.100541","url":null,"abstract":"<div><p>Catalytic reactions involve the direct interaction of reactants, intermediates and products with the catalyst surface. We not only need to control the atomic structure and electronic properties of the active site, but also explore the multiple molecular interactions<span> that occur beyond the active site; they play an essential role in altering the binding and reactivity of surface species. In liquid-phase catalysis, solvents provide additional degrees of freedom in the design of the catalytic process for desirable activity and selectivity<span>. The multi-faceted effects of solvents have a profound impact on the catalyst performance by restricting the mass transfer to the site, tuning the chemical potential of the surface species, competing for active sites, stabilizing the initial and transition states, and causing mechanistic changes by participating in the kinetically relevant elementary steps. This review addresses the different aspects of solvent effects<span>, using a few prototype solid-liquid interfaces to illustrate these fundamental features. Recent experimental and computational studies that provide new insight at the molecular level are examined. Solvent structures in the proximity of the catalyst surface are discussed along with their influence in molecular binding and reaction at the solid-liquid interfaces. Furthermore, opportunities to alter such a solid-liquid interaction by tuning the wettability of the catalyst surfaces are explored.</span></span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"76 4","pages":"Article 100541"},"PeriodicalIF":9.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1745528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
期刊
Surface Science Reports
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1