首页 > 最新文献

Communications on Pure & Applied Analysis最新文献

英文 中文
Energy considerations for nonlinear equatorial water waves 非线性赤道水波的能量考虑
Pub Date : 1900-01-01 DOI: 10.3934/cpaa.2022057
D. Henry
In this article we consider the excess kinetic and potential energies for exact nonlinear equatorial water waves. An investigation of linear waves establishes that the excess kinetic energy density is always negative, whereas the excess potential energy density is always positive, for periodic travelling irrotational water waves in the steady reference frame. For negative wavespeeds, we prove that similar inequalities must also hold for nonlinear wave solutions. Characterisations of the various excess energy densities as integrals along the wave surface profile are also derived.
本文考虑了精确非线性赤道水波的多余动能和势能。对线性波的研究表明,对于稳定参照系中周期性行进的无旋水波,其多余动能密度总是负的,而多余势能密度总是正的。对于负波速,我们证明了类似的不等式对于非线性波解也必须成立。还推导了各种过剩能量密度沿波面剖面的积分特征。
{"title":"Energy considerations for nonlinear equatorial water waves","authors":"D. Henry","doi":"10.3934/cpaa.2022057","DOIUrl":"https://doi.org/10.3934/cpaa.2022057","url":null,"abstract":"In this article we consider the excess kinetic and potential energies for exact nonlinear equatorial water waves. An investigation of linear waves establishes that the excess kinetic energy density is always negative, whereas the excess potential energy density is always positive, for periodic travelling irrotational water waves in the steady reference frame. For negative wavespeeds, we prove that similar inequalities must also hold for nonlinear wave solutions. Characterisations of the various excess energy densities as integrals along the wave surface profile are also derived.","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127132044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Liouville type theorem for Hartree-Fock Equation on half space 半空间上Hartree-Fock方程的Liouville型定理
Pub Date : 1900-01-01 DOI: 10.3934/cpaa.2022050
Xiaomei Chen, Xiaohui Yu

In this paper, we study the Liouville type theorem for the following Hartree-Fock equation in half space

where begin{document}$ mathbb{R}_+^N = {xin{mathbb{R}^N}: x_N > 0}, f_1, f_2, g_1, g_2, F_1, F_2, G_1, G_2 $end{document} are some nonlinear functions. Under some assumptions on the nonlinear functions begin{document}$ F, G, f, g $end{document}, we will prove the above equation only possesses trivial positive solution. We use the moving plane method in an integral form to prove our result.

In this paper, we study the Liouville type theorem for the following Hartree-Fock equation in half space begin{document}$ begin{align*} begin{cases} - Delta {u_i}(y) = sumlimits_{j = 1}^n {{int _{partial mathbb{R}_ + ^N}}} frac{{{u_j}(bar x, 0){F_1}({u_j}(bar x, 0))}} {{|(bar x, 0) - y{|^{N - alpha }}}}dbar x{f_2}({u_i}(y)) qquad qquad qquad + sumlimits_{j = 1}^n {{int _{partial mathbb{R}_ + ^N}}} frac{{{u_j}(bar x, 0){F_2}({u_i}(bar x, 0))}} {{|(bar x, 0) - y{|^{N - alpha }}}}dbar x{f_1}({u_j}(y)), y in mathbb{R}_ + ^N, hfill frac{{partial {u_i}}} {{partial nu }}(bar x, 0) = sumlimits_{j = 1}^n {{int _{ mathbb{R}_ + ^N}}} frac{{{u_j}(y){G_1}({u_j}(y))}} {{|(bar x, 0) - y{|^{N - alpha }}}}dy{g_2}({u_i}(bar x, 0)) qquad qquad qquad + sumlimits_{j = 1}^n {{int _{ mathbb{R}_ + ^N}}} frac{{{u_j}(y){G_2}({u_i}(y))}} {{|(bar x, 0) - y{|^{N - alpha }}}}dy{g_1}({u_j}(bar x, 0)), quad quad(bar x, 0) in partial mathbb{R}_ + ^N, end{cases} end{align*} $end{document} where begin{document}$ mathbb{R}_+^N = {xin{mathbb{R}^N}: x_N > 0}, f_1, f_2, g_1, g_2, F_1, F_2, G_1, G_2 $end{document} are some nonlinear functions. Under some assumptions on the nonlinear functions begin{document}$ F, G, f, g $end{document}, we will prove the above equation only possesses trivial positive solution. We use the moving plane method in an integral form to prove our result.
{"title":"Liouville type theorem for Hartree-Fock Equation on half space","authors":"Xiaomei Chen, Xiaohui Yu","doi":"10.3934/cpaa.2022050","DOIUrl":"https://doi.org/10.3934/cpaa.2022050","url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we study the Liouville type theorem for the following Hartree-Fock equation in half space</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> begin{document}$ begin{align*} begin{cases} - Delta {u_i}(y) = sumlimits_{j = 1}^n {{int _{partial mathbb{R}_ + ^N}}} frac{{{u_j}(bar x, 0){F_1}({u_j}(bar x, 0))}} {{|(bar x, 0) - y{|^{N - alpha }}}}dbar x{f_2}({u_i}(y)) qquad qquad qquad + sumlimits_{j = 1}^n {{int _{partial mathbb{R}_ + ^N}}} frac{{{u_j}(bar x, 0){F_2}({u_i}(bar x, 0))}} {{|(bar x, 0) - y{|^{N - alpha }}}}dbar x{f_1}({u_j}(y)), y in mathbb{R}_ + ^N, hfill frac{{partial {u_i}}} {{partial nu }}(bar x, 0) = sumlimits_{j = 1}^n {{int _{ mathbb{R}_ + ^N}}} frac{{{u_j}(y){G_1}({u_j}(y))}} {{|(bar x, 0) - y{|^{N - alpha }}}}dy{g_2}({u_i}(bar x, 0)) qquad qquad qquad + sumlimits_{j = 1}^n {{int _{ mathbb{R}_ + ^N}}} frac{{{u_j}(y){G_2}({u_i}(y))}} {{|(bar x, 0) - y{|^{N - alpha }}}}dy{g_1}({u_j}(bar x, 0)), quad quad(bar x, 0) in partial mathbb{R}_ + ^N, end{cases} end{align*} $end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">begin{document}$ mathbb{R}_+^N = {xin{mathbb{R}^N}: x_N > 0}, f_1, f_2, g_1, g_2, F_1, F_2, G_1, G_2 $end{document}</tex-math></inline-formula> are some nonlinear functions. Under some assumptions on the nonlinear functions <inline-formula><tex-math id=\"M2\">begin{document}$ F, G, f, g $end{document}</tex-math></inline-formula>, we will prove the above equation only possesses trivial positive solution. We use the moving plane method in an integral form to prove our result.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"282 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129989422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On three-dimensional free surface water flows with constant vorticity 在三维自由表面上,水以定涡量流动
Pub Date : 1900-01-01 DOI: 10.3934/cpaa.2022053
Calin Iulian Martin
We present a survey of recent results on gravity water flows satisfying the three-dimensional water wave problem with constant (non-vanishing) vorticity vector. The main focus is to show that a gravity water flow with constant non-vanishing vorticity has a two-dimensional character in spite of satisfying the three-dimensional water wave equations. More precisely, the flow does not change in one of the two horizontal directions. Passing to a rotating frame, and introducing thus geophysical effects (in the form of Coriolis acceleration) into the governing equations, the two-dimensional character of the flow remains in place. However, the two-dimensionality of the flow manifests now in a horizontal plane. Adding also centripetal terms into the equations further simplifies the flow (under the assumption of constant vorticity vector): the velocity field vanishes, but, however, the pressure function is a quadratic polynomial in the horizontal and vertical variables, and, surprisingly, the surface is non-flat.
本文综述了满足三维常涡量(不消失)水波问题的重力水流的最新研究结果。本文的主要目的是证明具有恒定不消失涡量的重力水流虽然满足三维水波方程,但具有二维特征。更准确地说,流动不会在两个水平方向中的任何一个方向上改变。通过旋转框架,并将地球物理效应(以科里奥利加速度的形式)引入控制方程,流的二维特征仍然存在。然而,流的二维现在在水平面上表现出来。在方程中加入向心项进一步简化了流动(在恒定涡量矢量的假设下):速度场消失了,但是,压力函数在水平和垂直变量中是二次多项式,并且,令人惊讶的是,表面是非平坦的。
{"title":"On three-dimensional free surface water flows with constant vorticity","authors":"Calin Iulian Martin","doi":"10.3934/cpaa.2022053","DOIUrl":"https://doi.org/10.3934/cpaa.2022053","url":null,"abstract":"We present a survey of recent results on gravity water flows satisfying the three-dimensional water wave problem with constant (non-vanishing) vorticity vector. The main focus is to show that a gravity water flow with constant non-vanishing vorticity has a two-dimensional character in spite of satisfying the three-dimensional water wave equations. More precisely, the flow does not change in one of the two horizontal directions. Passing to a rotating frame, and introducing thus geophysical effects (in the form of Coriolis acceleration) into the governing equations, the two-dimensional character of the flow remains in place. However, the two-dimensionality of the flow manifests now in a horizontal plane. Adding also centripetal terms into the equations further simplifies the flow (under the assumption of constant vorticity vector): the velocity field vanishes, but, however, the pressure function is a quadratic polynomial in the horizontal and vertical variables, and, surprisingly, the surface is non-flat.","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125207926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Exact solution and instability for geophysical edge waves 地球物理边缘波的精确解和不稳定性
Pub Date : 1900-01-01 DOI: 10.3934/cpaa.2022067
Fahe Miao, Michal Feckan, Jinrong Wang

We present an exact solution to the nonlinear governing equations in the begin{document}$ beta $end{document}-plane approximation for geophysical edge waves at an arbitrary latitude. Such an exact solution is derived in the Lagrange framework, which describes trapped waves propagating eastward or westward along a sloping beach with a shoreline parallel to the latitude line. Using the short-wavelength instability method, we establish a criterion for the instability of such waves.

We present an exact solution to the nonlinear governing equations in the begin{document}$ beta $end{document}-plane approximation for geophysical edge waves at an arbitrary latitude. Such an exact solution is derived in the Lagrange framework, which describes trapped waves propagating eastward or westward along a sloping beach with a shoreline parallel to the latitude line. Using the short-wavelength instability method, we establish a criterion for the instability of such waves.
{"title":"Exact solution and instability for geophysical edge waves","authors":"Fahe Miao, Michal Feckan, Jinrong Wang","doi":"10.3934/cpaa.2022067","DOIUrl":"https://doi.org/10.3934/cpaa.2022067","url":null,"abstract":"<p style='text-indent:20px;'>We present an exact solution to the nonlinear governing equations in the <inline-formula><tex-math id=\"M1\">begin{document}$ beta $end{document}</tex-math></inline-formula>-plane approximation for geophysical edge waves at an arbitrary latitude. Such an exact solution is derived in the Lagrange framework, which describes trapped waves propagating eastward or westward along a sloping beach with a shoreline parallel to the latitude line. Using the short-wavelength instability method, we establish a criterion for the instability of such waves.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133890960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Random attractors for non-autonomous stochastic Brinkman-Forchheimer equations on unbounded domains 无界区域上非自治随机Brinkman-Forchheimer方程的随机吸引子
Pub Date : 1900-01-01 DOI: 10.3934/cpaa.2022034
Shu Wang, Mengmeng Si, Rong Yang
In this paper, we study the asymptotic behavior of the non-autono-mous stochastic 3D Brinkman-Forchheimer equations on unbounded domains. We first define a continuous non-autonomous cocycle for the stochastic equations, and then prove that the existence of tempered random attractors by Ball's idea of energy equations. Furthermore, we obtain that the tempered random attractors are periodic when the deterministic non-autonomous external term is periodic in time.
本文研究了非自治随机三维Brinkman-Forchheimer方程在无界域上的渐近行为。首先定义了随机方程的连续非自治循环,然后利用能量方程的Ball思想证明了随机吸引子的存在性。进一步,当确定性非自治外部项在时间上具有周期性时,我们得到了缓和随机吸引子是周期性的。
{"title":"Random attractors for non-autonomous stochastic Brinkman-Forchheimer equations on unbounded domains","authors":"Shu Wang, Mengmeng Si, Rong Yang","doi":"10.3934/cpaa.2022034","DOIUrl":"https://doi.org/10.3934/cpaa.2022034","url":null,"abstract":"In this paper, we study the asymptotic behavior of the non-autono-mous stochastic 3D Brinkman-Forchheimer equations on unbounded domains. We first define a continuous non-autonomous cocycle for the stochastic equations, and then prove that the existence of tempered random attractors by Ball's idea of energy equations. Furthermore, we obtain that the tempered random attractors are periodic when the deterministic non-autonomous external term is periodic in time.","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132455368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
On the spherical geopotential approximation for Saturn 关于土星的球形位势近似
Pub Date : 1900-01-01 DOI: 10.3934/cpaa.2022035
Susanna V. Haziot

In this paper, we show by means of a diffeomorphism that when approximating the planet Saturn by a sphere, the errors associated with the spherical geopotential approximation are so significant that this approach is rendered unsuitable for any rigorous mathematical analysis.

在本文中,我们通过一个微分同构表明,当用一个球体近似土星时,与球形位势近似相关的误差是如此显著,以至于这种方法不适合任何严格的数学分析。
{"title":"On the spherical geopotential approximation for Saturn","authors":"Susanna V. Haziot","doi":"10.3934/cpaa.2022035","DOIUrl":"https://doi.org/10.3934/cpaa.2022035","url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we show by means of a diffeomorphism that when approximating the planet Saturn by a sphere, the errors associated with the spherical geopotential approximation are so significant that this approach is rendered unsuitable for any rigorous mathematical analysis.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130688341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Singular quasilinear critical Schrödinger equations in $ mathbb {R}^N $ $ mathbb {R}^N $中的奇异拟线性临界Schrödinger方程
Pub Date : 1900-01-01 DOI: 10.3934/cpaa.2022060
Laura Baldelli, Roberta Filippucci

We prove multiplicity results for solutions, both with positive and negative energy, for a class of singular quasilinear Schrödinger equations in the entire begin{document}$ mathbb {R}^N $end{document} involving a critical term, nontrivial weights and positive parameters begin{document}$ lambda $end{document}, begin{document}$ beta $end{document}, covering several physical models, coming from plasma physics as well as high-power ultra short laser in matter. Also the symmetric setting is investigated. Our proofs relay on variational tools, including concentration compactness principles because of the delicate situation of the double lack of compactness. In addition, a necessary reformulation of the original problem in a suitable variational setting, produces a singular function, delicate to be managed.

We prove multiplicity results for solutions, both with positive and negative energy, for a class of singular quasilinear Schrödinger equations in the entire begin{document}$ mathbb {R}^N $end{document} involving a critical term, nontrivial weights and positive parameters begin{document}$ lambda $end{document}, begin{document}$ beta $end{document}, covering several physical models, coming from plasma physics as well as high-power ultra short laser in matter. Also the symmetric setting is investigated. Our proofs relay on variational tools, including concentration compactness principles because of the delicate situation of the double lack of compactness. In addition, a necessary reformulation of the original problem in a suitable variational setting, produces a singular function, delicate to be managed.
{"title":"Singular quasilinear critical Schrödinger equations in $ mathbb {R}^N $","authors":"Laura Baldelli, Roberta Filippucci","doi":"10.3934/cpaa.2022060","DOIUrl":"https://doi.org/10.3934/cpaa.2022060","url":null,"abstract":"<p style='text-indent:20px;'>We prove multiplicity results for solutions, both with positive and negative energy, for a class of singular quasilinear Schrödinger equations in the entire <inline-formula><tex-math id=\"M2\">begin{document}$ mathbb {R}^N $end{document}</tex-math></inline-formula> involving a critical term, nontrivial weights and positive parameters <inline-formula><tex-math id=\"M3\">begin{document}$ lambda $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M4\">begin{document}$ beta $end{document}</tex-math></inline-formula>, covering several physical models, coming from plasma physics as well as high-power ultra short laser in matter. Also the symmetric setting is investigated. Our proofs relay on variational tools, including concentration compactness principles because of the delicate situation of the double lack of compactness. In addition, a necessary reformulation of the original problem in a suitable variational setting, produces a singular function, delicate to be managed.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124999990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Semi-classical states for fractional Schrödinger equations with magnetic fields and fast decaying potentials 具有磁场和快速衰减电位的分数阶Schrödinger方程的半经典态
Pub Date : 1900-01-01 DOI: 10.3934/cpaa.2022038
Xiaoming An, Xian Yang

This paper deals with the following fractional magnetic Schrödinger equations

where begin{document}$ varepsilon>0 $end{document} is a parameter, begin{document}$ sin(0,1) $end{document}, begin{document}$ Ngeq3 $end{document}, begin{document}$ 2+2s/(N-2s), begin{document}$ Ain C^{0,alpha}({mathbb R}^N,{mathbb R}^N) $end{document} with begin{document}$ alphain(0,1] $end{document} is a magnetic field, begin{document}$ V:{mathbb R}^Nto{mathbb R} $end{document} is a nonnegative continuous potential. By variational methods and penalized idea, we show that the problem has a family of solutions concentrating at a local minimum of begin{document}$ V $end{document} as begin{document}$ varepsilonto 0 $end{document}. There is no restriction on the decay rates of begin{document}$ V $end{document}. Especially, begin{document}$ V $end{document} can be compactly supported. The appearance of begin{document}$ A $end{document} and the nonlocal of begin{document}$ (-Delta)^s $end{document} makes the proof more difficult than that in [7], which considered the case begin{document}$ Aequiv 0 $end{document}.

本文处理以下分数磁性Schrödinger方程begin{document}$ varepsilon^{2s}(-Delta)^s_{A/varepsilon} u +V(x)u = |u|^{p-2}u, xin{mathbb R}^N, $end{document}是一个参数,begin{document}$ sin(0,1) $end{document}, begin{document}$ Ngeq3 $end{document}, begin{document}$ 2+2s/(N-2s),begin{document}$ Ain C^{0,alpha}({mathbb R}^N,{mathbb R}^N) $end{document} with begin{document}$ alphain(0,1) $end{document}是一个磁场, begin{document}$ V:{mathbb R}^N到{mathbb R} $end{document}是一个非负的连续电位。通过变分方法和惩罚思想,我们证明了问题有一组解集中在begin{document}$ V $end{document}的局部极小值处,即begin{document}$ varepsilon到0 $end{document}。begin{document}$ V $end{document}的衰减率没有限制。特别地,可以紧凑地支持begin{document}$ V $end{document}。begin{document}$ A $end{document}的出现和begin{document}$ (-Delta)^s $end{document}的非局部化使得证明比[7]中的证明更加困难,[7]考虑了begin{document}$ Aequiv 0 $end{document}的情况。
{"title":"Semi-classical states for fractional Schrödinger equations with magnetic fields and fast decaying potentials","authors":"Xiaoming An, Xian Yang","doi":"10.3934/cpaa.2022038","DOIUrl":"https://doi.org/10.3934/cpaa.2022038","url":null,"abstract":"<p style='text-indent:20px;'>This paper deals with the following fractional magnetic Schrödinger equations</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> begin{document}$ varepsilon^{2s}(-Delta)^s_{A/varepsilon} u +V(x)u = |u|^{p-2}u, xin{mathbb R}^N, $end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">begin{document}$ varepsilon>0 $end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id=\"M2\">begin{document}$ sin(0,1) $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M3\">begin{document}$ Ngeq3 $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M4\">begin{document}$ 2+2s/(N-2s)<p<2_s^*: = 2N/(N-2s) $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M5\">begin{document}$ Ain C^{0,alpha}({mathbb R}^N,{mathbb R}^N) $end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\"M6\">begin{document}$ alphain(0,1] $end{document}</tex-math></inline-formula> is a magnetic field, <inline-formula><tex-math id=\"M7\">begin{document}$ V:{mathbb R}^Nto{mathbb R} $end{document}</tex-math></inline-formula> is a nonnegative continuous potential. By variational methods and penalized idea, we show that the problem has a family of solutions concentrating at a local minimum of <inline-formula><tex-math id=\"M8\">begin{document}$ V $end{document}</tex-math></inline-formula> as <inline-formula><tex-math id=\"M9\">begin{document}$ varepsilonto 0 $end{document}</tex-math></inline-formula>. There is no restriction on the decay rates of <inline-formula><tex-math id=\"M10\">begin{document}$ V $end{document}</tex-math></inline-formula>. Especially, <inline-formula><tex-math id=\"M11\">begin{document}$ V $end{document}</tex-math></inline-formula> can be compactly supported. The appearance of <inline-formula><tex-math id=\"M12\">begin{document}$ A $end{document}</tex-math></inline-formula> and the nonlocal of <inline-formula><tex-math id=\"M13\">begin{document}$ (-Delta)^s $end{document}</tex-math></inline-formula> makes the proof more difficult than that in [<xref ref-type=\"bibr\" rid=\"b7\">7</xref>], which considered the case <inline-formula><tex-math id=\"M14\">begin{document}$ Aequiv 0 $end{document}</tex-math></inline-formula>.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116828628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of one-sided 1-D fractional diffusion operator 单侧一维分数扩散算子的分析
Pub Date : 1900-01-01 DOI: 10.3934/cpaa.2022039
Yulong Li, A. Telyakovskiy, E. Celik
This work establishes the parallel between the properties of classic elliptic PDEs and the one-sided 1-D fractional diffusion equation, that includes the characterization of fractional Sobolev spaces in terms of fractional Riemann-Liouville (R-L) derivatives, variational formulation, maximum principle, Hopf's Lemma, spectral analysis, and theory on the principal eigenvalue and its characterization, etc. As an application, the developed results provide a novel perspective to study the distribution of complex roots of a class of Mittag-Leffler functions and, furthermore, prove the existence of real roots.
本文建立了经典椭圆偏微分方程与单面一维分数阶扩散方程性质的相似性,包括分数阶Riemann-Liouville (R-L)导数对分数阶Sobolev空间的表征、变分公式、极大值原理、Hopf引理、谱分析、主特征值及其表征理论等。作为应用,所得到的结果为研究一类Mittag-Leffler函数的复根分布提供了一个新的视角,并进一步证明了实根的存在性。
{"title":"Analysis of one-sided 1-D fractional diffusion operator","authors":"Yulong Li, A. Telyakovskiy, E. Celik","doi":"10.3934/cpaa.2022039","DOIUrl":"https://doi.org/10.3934/cpaa.2022039","url":null,"abstract":"This work establishes the parallel between the properties of classic elliptic PDEs and the one-sided 1-D fractional diffusion equation, that includes the characterization of fractional Sobolev spaces in terms of fractional Riemann-Liouville (R-L) derivatives, variational formulation, maximum principle, Hopf's Lemma, spectral analysis, and theory on the principal eigenvalue and its characterization, etc. As an application, the developed results provide a novel perspective to study the distribution of complex roots of a class of Mittag-Leffler functions and, furthermore, prove the existence of real roots.","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129203244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Symmetry and monotonicity of positive solutions for a class of general pseudo-relativistic systems 一类广义伪相对论系统正解的对称性和单调性
Pub Date : 1900-01-01 DOI: 10.3934/cpaa.2022045
Xueying Chen, Guanfeng Li, Sijia Bao

In this paper, we focus on a class of general pseudo-relativistic systems

where begin{document}$ m in (0, +infty) $end{document} and begin{document}$ s, t in (0,1) $end{document}. Before giving the main results, we first introduce a decay at infinity and a narrow region principle. Then we implement the direct method of moving planes to show the radial symmetry and monotonicity of positive solutions for the above system in both the unit ball and the whole space.

In this paper, we focus on a class of general pseudo-relativistic systems begin{document}$ begin{equation*} begin{cases} begin{aligned} &(-Delta+m^2)^su(x) = f(u(x), v(x)), &(-Delta+m^2)^tv(x) = g(u(x), v(x)), end{aligned} end{cases} end{equation*} $end{document} where begin{document}$ m in (0, +infty) $end{document} and begin{document}$ s, t in (0,1) $end{document}. Before giving the main results, we first introduce a decay at infinity and a narrow region principle. Then we implement the direct method of moving planes to show the radial symmetry and monotonicity of positive solutions for the above system in both the unit ball and the whole space.
{"title":"Symmetry and monotonicity of positive solutions for a class of general pseudo-relativistic systems","authors":"Xueying Chen, Guanfeng Li, Sijia Bao","doi":"10.3934/cpaa.2022045","DOIUrl":"https://doi.org/10.3934/cpaa.2022045","url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we focus on a class of general pseudo-relativistic systems</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> begin{document}$ begin{equation*} begin{cases} begin{aligned} &(-Delta+m^2)^su(x) = f(u(x), v(x)), &(-Delta+m^2)^tv(x) = g(u(x), v(x)), end{aligned} end{cases} end{equation*} $end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">begin{document}$ m in (0, +infty) $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M2\">begin{document}$ s, t in (0,1) $end{document}</tex-math></inline-formula>. Before giving the main results, we first introduce a decay at infinity and a narrow region principle. Then we implement the direct method of moving planes to show the radial symmetry and monotonicity of positive solutions for the above system in both the unit ball and the whole space.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure &amp; Applied Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128263674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Communications on Pure &amp; Applied Analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1