首页 > 最新文献

International Journal of Intelligent Robotics and Applications最新文献

英文 中文
Simplified autonomous object grasping in material handling process for human–robot collaboration 简化物料搬运过程中的自主物体抓取,实现人机协作
IF 1.7 Q3 ROBOTICS Pub Date : 2024-08-28 DOI: 10.1007/s41315-024-00375-6
Muhammad Farouk Setiawan, P. Paryanto, Joga Dharma Setiawan

The application of Human–Robot Collaboration (HRC) in the manufacturing sector, especially in the material handling process, is aimed at improving productivity through robots actively working alongside humans. In this condition, the robots need to understand how to handle the objects by themselves according to user preferences with an autonomous system. However, there have been challenges in the aspect of teaching robots to autonomously identify object grasp positions only using an RGB camera due to the effect of camera perspective on object visualization for robots. Therefore, this study aimed to propose a simplified method on an RGB camera for autonomous object grasping in the material handling process and implement it for the HRC concept. The method used a prototype robot manipulator with a computer vision system for object detection. During the execution of object grasping, the robot achieved a success rate of 86% for a single object and 76% for multiple objects. In the HRC concept, the robot achieved a success rate of 92% for placing objects one by one and 84% for placing objects continuously. The result also showed fast inference time when the robot in real-time detected the object, which was even just running on the CPU and in the planning process without complexity and requiring additional equipment aside from an RGB camera.

人机协作(HRC)在制造业中的应用,尤其是在材料处理过程中的应用,旨在通过机器人与人类一起积极工作来提高生产率。在这种情况下,机器人需要了解如何通过自主系统根据用户偏好自行处理物品。然而,由于摄像头视角对机器人物体可视化的影响,仅使用 RGB 摄像头教机器人自主识别物体抓取位置一直是个难题。因此,本研究旨在提出一种在材料处理过程中使用 RGB 摄像机自主抓取物体的简化方法,并将其应用于 HRC 概念。该方法使用带有计算机视觉系统的原型机器人机械手进行物体检测。在物体抓取过程中,机器人抓取单个物体的成功率为 86%,抓取多个物体的成功率为 76%。在 HRC 概念中,机器人逐个放置物体的成功率为 92%,连续放置物体的成功率为 84%。结果还显示,当机器人实时检测到物体时,推理时间很快,甚至只需在中央处理器上运行,在规划过程中,除了一个 RGB 摄像头外,无需复杂的额外设备。
{"title":"Simplified autonomous object grasping in material handling process for human–robot collaboration","authors":"Muhammad Farouk Setiawan, P. Paryanto, Joga Dharma Setiawan","doi":"10.1007/s41315-024-00375-6","DOIUrl":"https://doi.org/10.1007/s41315-024-00375-6","url":null,"abstract":"<p>The application of Human–Robot Collaboration (HRC) in the manufacturing sector, especially in the material handling process, is aimed at improving productivity through robots actively working alongside humans. In this condition, the robots need to understand how to handle the objects by themselves according to user preferences with an autonomous system. However, there have been challenges in the aspect of teaching robots to autonomously identify object grasp positions only using an RGB camera due to the effect of camera perspective on object visualization for robots. Therefore, this study aimed to propose a simplified method on an RGB camera for autonomous object grasping in the material handling process and implement it for the HRC concept. The method used a prototype robot manipulator with a computer vision system for object detection. During the execution of object grasping, the robot achieved a success rate of 86% for a single object and 76% for multiple objects. In the HRC concept, the robot achieved a success rate of 92% for placing objects one by one and 84% for placing objects continuously. The result also showed fast inference time when the robot in real-time detected the object, which was even just running on the CPU and in the planning process without complexity and requiring additional equipment aside from an RGB camera.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":"15 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A biologically-inspired tube inspection robot with friction-based mobility 受生物启发的管道检测机器人,具有基于摩擦的移动能力
IF 1.7 Q3 ROBOTICS Pub Date : 2024-08-25 DOI: 10.1007/s41315-024-00370-x
Nihar Masurkar, Ankit Das, Manoj Rudraboina, Drake Morris-Sjolund, Fernando Alvidrez, Ehsan Dehghan-Niri, Hamid Marvi

The aging power plants are critical infrastructures that require regular inspection to ensure their longevity. Automated inspection, in particular, can save a significant amount of time and cost, and eliminate the safety concerns of manual inspection. For this purpose, we propose a biologically-inspired robot that integrates friction-based mobility and sensing. It is capable of traversing horizontal and vertical boiler tubes as well as tubes with a (45^{circ }) bend. Furthermore, the friction pads on the robot fingers allow for locomotion on the rough surfaces of the boiler tubes. These pads also provide grip on non-magnetic tubes enabling the robot to be deployed on tubes made of any material. In addition, this robot has electromagnetic acoustic transducers (EMAT) embedded in all of its fingers that enable defect detection during locomotion. The presented platform can inspect complex tubular structures and considerably reduce the time, cost, and hazards experienced in manual inspection.

老化的发电厂是重要的基础设施,需要定期检查以确保其使用寿命。自动检查尤其可以节省大量时间和成本,并消除人工检查的安全隐患。为此,我们提出了一种受生物启发的机器人,它集成了基于摩擦力的移动和传感功能。它能够穿越水平和垂直的锅炉管道,也能穿越有(45^{circ } )弯曲的管道。此外,机器人手指上的摩擦垫可以在锅炉管的粗糙表面上移动。这些摩擦垫还能在非磁性管道上提供抓力,使机器人能够在任何材料制成的管道上部署。此外,该机器人的所有手指上都嵌入了电磁声学传感器(EMAT),可在运动过程中进行缺陷检测。所介绍的平台可以检测复杂的管状结构,大大减少人工检测的时间、成本和危险。
{"title":"A biologically-inspired tube inspection robot with friction-based mobility","authors":"Nihar Masurkar, Ankit Das, Manoj Rudraboina, Drake Morris-Sjolund, Fernando Alvidrez, Ehsan Dehghan-Niri, Hamid Marvi","doi":"10.1007/s41315-024-00370-x","DOIUrl":"https://doi.org/10.1007/s41315-024-00370-x","url":null,"abstract":"<p>The aging power plants are critical infrastructures that require regular inspection to ensure their longevity. Automated inspection, in particular, can save a significant amount of time and cost, and eliminate the safety concerns of manual inspection. For this purpose, we propose a biologically-inspired robot that integrates friction-based mobility and sensing. It is capable of traversing horizontal and vertical boiler tubes as well as tubes with a <span>(45^{circ })</span> bend. Furthermore, the friction pads on the robot fingers allow for locomotion on the rough surfaces of the boiler tubes. These pads also provide grip on non-magnetic tubes enabling the robot to be deployed on tubes made of any material. In addition, this robot has electromagnetic acoustic transducers (EMAT) embedded in all of its fingers that enable defect detection during locomotion. The presented platform can inspect complex tubular structures and considerably reduce the time, cost, and hazards experienced in manual inspection.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":"45 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: A human–robot interaction control strategy for teleoperation robot system under multi‑scenario applications 更正为多场景应用下远程操作机器人系统的人机交互控制策略
IF 1.7 Q3 ROBOTICS Pub Date : 2024-08-24 DOI: 10.1007/s41315-024-00366-7
Zhengyu Wang, Mingxin Hai, Xuchang Liu, Zongkun Pei, Sen Qian, Daoming Wang
{"title":"Correction to: A human–robot interaction control strategy for teleoperation robot system under multi‑scenario applications","authors":"Zhengyu Wang, Mingxin Hai, Xuchang Liu, Zongkun Pei, Sen Qian, Daoming Wang","doi":"10.1007/s41315-024-00366-7","DOIUrl":"https://doi.org/10.1007/s41315-024-00366-7","url":null,"abstract":"","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":"109 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on adaptive impedance control strategy for humanoid walking in unstructured dynamic environment 非结构化动态环境中仿人行走的自适应阻抗控制策略研究
IF 1.7 Q3 ROBOTICS Pub Date : 2024-08-23 DOI: 10.1007/s41315-024-00365-8
Helin Wang, Qijun Chen

Adaptability and robustness are the important expressions of intelligent walking ability of humanoid robots. However, they may be in an unstable state due to the huge impact contact forces produced by foot instant landing. This paper is concerned with the problem of dynamical biped walking and robust control of humanoid robots under ground reaction forces (GRF). In order to imitate human’s muscles to absorb the landing force, the robotic system is modeled as a mass–damp–spring model. The novelty of the article lies in the use of impedance control based on ground reaction forces, which deals with the complicated optimization problem subjected to both equality and inequality constraints. A feedback controller is designed to utilize inertial damping to generate the desired motion trajectory of the robot. The constructing autonomous evolution mechanism is mentioned to realize adaptive optimization of walking model. It ensures that the impact of GRF and reinforce stability during transition from single support phase to double support phase. Finally, the effectiveness of the proposed method is verified by simulations.

适应性和鲁棒性是仿人机器人智能行走能力的重要体现。然而,由于脚掌着地瞬间产生的巨大冲击接触力,仿人机器人可能会处于不稳定状态。本文关注地面反作用力(GRF)下仿人机器人的动态双足行走和鲁棒控制问题。为了模仿人的肌肉吸收着地力,机器人系统被建模为质量-阻尼-弹簧模型。文章的新颖之处在于使用了基于地面反作用力的阻抗控制,处理了同时受到相等和不等式约束的复杂优化问题。文章设计了一个反馈控制器,利用惯性阻尼生成机器人所需的运动轨迹。其中提到了构建自主进化机制,以实现行走模型的自适应优化。在单支撑阶段向双支撑阶段过渡时,它确保了 GRF 的影响并增强了稳定性。最后,通过仿真验证了所提方法的有效性。
{"title":"Research on adaptive impedance control strategy for humanoid walking in unstructured dynamic environment","authors":"Helin Wang, Qijun Chen","doi":"10.1007/s41315-024-00365-8","DOIUrl":"https://doi.org/10.1007/s41315-024-00365-8","url":null,"abstract":"<p>Adaptability and robustness are the important expressions of intelligent walking ability of humanoid robots. However, they may be in an unstable state due to the huge impact contact forces produced by foot instant landing. This paper is concerned with the problem of dynamical biped walking and robust control of humanoid robots under ground reaction forces (GRF). In order to imitate human’s muscles to absorb the landing force, the robotic system is modeled as a mass–damp–spring model. The novelty of the article lies in the use of impedance control based on ground reaction forces, which deals with the complicated optimization problem subjected to both equality and inequality constraints. A feedback controller is designed to utilize inertial damping to generate the desired motion trajectory of the robot. The constructing autonomous evolution mechanism is mentioned to realize adaptive optimization of walking model. It ensures that the impact of GRF and reinforce stability during transition from single support phase to double support phase. Finally, the effectiveness of the proposed method is verified by simulations.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of lidar semantic segmentation performance on the structured SemanticKITTI and off-road RELLIS-3D datasets 结构化 SemanticKITTI 和越野 RELLIS-3D 数据集上的激光雷达语义分割性能比较
IF 1.7 Q3 ROBOTICS Pub Date : 2024-08-20 DOI: 10.1007/s41315-024-00376-5
Mason McVicker, Lauren Ervin, Yongzhi Yang, Kenneth G. Ricks

Existing lidar-based semantic segmentation algorithms and datasets focus on autonomous vehicles operating in urban environments. This has greatly improved the safety and reliability of these autonomous vehicles in predictable scenery. A new dataset provides lidar data focusing on off-road environments as seen by autonomous ground vehicles, ushering in a new era of off-road exploration capabilities. To the best of our knowledge, no new algorithms have been developed specifically for this unstructured environment. To gain an understanding of how existing algorithms perform in an off-road environment, we assess the baseline performance of four algorithms, KPConv, SalsaNext, Cylinder3D, and SphereFormer, on a commonly used on-road dataset, SemanticKITTI. We then compare the results with an off-road dataset, RELLIS-3D. We discuss the degradation of each algorithm on the off-road dataset and investigate potential causes such as class imbalance, inconsistencies in the labeled data, and the inherent difficulty of segmenting off-road environments. We present the strengths and weaknesses of each algorithm’s segmentation abilities and provide a comparison of the runtime of each algorithm for real-time capabilities. This is crucial for identifying what network architecture features are potentially the most beneficial for unstructured scenes. A robust, open-source software implementation via docker containers and bash scripts provides simple, repeatable execution of all algorithm training and evaluations. All code is publicly available at https://github.com/UA-Lidar-Segmentation-Research.

现有的基于激光雷达的语义分割算法和数据集主要针对在城市环境中运行的自动驾驶车辆。这大大提高了这些自动驾驶车辆在可预测场景中的安全性和可靠性。一个新的数据集提供的激光雷达数据侧重于自动驾驶地面车辆看到的越野环境,开创了越野探索能力的新时代。据我们所知,还没有专门针对这种非结构化环境开发的新算法。为了了解现有算法在非道路环境中的表现,我们在常用的道路数据集 SemanticKITTI 上评估了 KPConv、SalsaNext、Cylinder3D 和 SphereFormer 四种算法的基准性能。然后,我们将结果与非道路数据集 RELLIS-3D 进行比较。我们讨论了每种算法在非道路数据集上的性能下降情况,并研究了潜在的原因,如类不平衡、标注数据的不一致性以及分割非道路环境的固有难度。我们介绍了每种算法分割能力的优缺点,并比较了每种算法的实时运行时间。这对于确定哪些网络架构功能可能对非结构化场景最有利至关重要。通过 docker 容器和 bash 脚本实现的强大开源软件可简单、可重复地执行所有算法的训练和评估。所有代码均可在 https://github.com/UA-Lidar-Segmentation-Research 上公开获取。
{"title":"Comparison of lidar semantic segmentation performance on the structured SemanticKITTI and off-road RELLIS-3D datasets","authors":"Mason McVicker, Lauren Ervin, Yongzhi Yang, Kenneth G. Ricks","doi":"10.1007/s41315-024-00376-5","DOIUrl":"https://doi.org/10.1007/s41315-024-00376-5","url":null,"abstract":"<p>Existing lidar-based semantic segmentation algorithms and datasets focus on autonomous vehicles operating in urban environments. This has greatly improved the safety and reliability of these autonomous vehicles in predictable scenery. A new dataset provides lidar data focusing on off-road environments as seen by autonomous ground vehicles, ushering in a new era of off-road exploration capabilities. To the best of our knowledge, no new algorithms have been developed specifically for this unstructured environment. To gain an understanding of how existing algorithms perform in an off-road environment, we assess the baseline performance of four algorithms, KPConv, SalsaNext, Cylinder3D, and SphereFormer, on a commonly used on-road dataset, SemanticKITTI. We then compare the results with an off-road dataset, RELLIS-3D. We discuss the degradation of each algorithm on the off-road dataset and investigate potential causes such as class imbalance, inconsistencies in the labeled data, and the inherent difficulty of segmenting off-road environments. We present the strengths and weaknesses of each algorithm’s segmentation abilities and provide a comparison of the runtime of each algorithm for real-time capabilities. This is crucial for identifying what network architecture features are potentially the most beneficial for unstructured scenes. A robust, open-source software implementation via docker containers and bash scripts provides simple, repeatable execution of all algorithm training and evaluations. All code is publicly available at https://github.com/UA-Lidar-Segmentation-Research.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":"158 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Muscle intent-based continuous passive motion machine in a gaming context using a lightweight CNN 使用轻量级 CNN 在游戏环境中开发基于肌肉意图的连续被动运动机
IF 1.7 Q3 ROBOTICS Pub Date : 2024-08-12 DOI: 10.1007/s41315-024-00369-4
V. K. Viekash, Ezhilarasi Deenadayalan

This paper presents a novel approach to control and actuate a Continuous Passive Motion (CPM) machine by integrating a deep learning-based control strategy using convolutional neural networks in a gaming context for providing post-surgical therapy and knee rehabilitation. Electromyography and inertial measurement unit sensors are interfaced with the patient's thigh muscles to record the patient's intent signals and classify them as three states: forward, backward, and rest. Comparison studies have been performed to prove the novelty of the proposed lightweight convolutional neural network architecture over other architectures and machine learning methodologies for real-time implementation. Additionally, gaming software has been interfaced, making the recovery process motivating to deal with the psychological aspects of rehabilitation. A low-cost, ecofriendly alpha prototyped CPM machine is prototyped for implementing the algorithms. Experiments are performed on three healthy subjects to establish the feasibility of this home rehabilitation device under professional guidance. Thus, this study aims to improve home-based knee rehabilitation effectiveness, offering complete recovery to the patients, delivering intensive and motivational rehabilitation.

本文介绍了一种控制和驱动连续被动运动(CPM)机器的新方法,该方法将基于深度学习的控制策略与卷积神经网络整合到游戏环境中,用于提供手术后治疗和膝关节康复。肌电图和惯性测量单元传感器与患者的大腿肌肉连接,记录患者的意向信号,并将其分为三种状态:前进、后退和休息。为了证明所提出的轻量级卷积神经网络架构相对于其他架构和机器学习方法的新颖性,我们进行了实时实施方面的比较研究。此外,还连接了游戏软件,使康复过程充满动力,从而解决康复过程中的心理问题。为实现这些算法,还制作了一台低成本、生态友好的阿尔法原型 CPM 机器。在专业人员的指导下,对三名健康受试者进行了实验,以确定这种家庭康复设备的可行性。因此,本研究旨在提高家庭膝关节康复的有效性,为患者提供完全康复,并提供强化和激励性康复。
{"title":"Muscle intent-based continuous passive motion machine in a gaming context using a lightweight CNN","authors":"V. K. Viekash, Ezhilarasi Deenadayalan","doi":"10.1007/s41315-024-00369-4","DOIUrl":"https://doi.org/10.1007/s41315-024-00369-4","url":null,"abstract":"<p>This paper presents a novel approach to control and actuate a Continuous Passive Motion (CPM) machine by integrating a deep learning-based control strategy using convolutional neural networks in a gaming context for providing post-surgical therapy and knee rehabilitation. Electromyography and inertial measurement unit sensors are interfaced with the patient's thigh muscles to record the patient's intent signals and classify them as three states: forward, backward, and rest. Comparison studies have been performed to prove the novelty of the proposed lightweight convolutional neural network architecture over other architectures and machine learning methodologies for real-time implementation. Additionally, gaming software has been interfaced, making the recovery process motivating to deal with the psychological aspects of rehabilitation. A low-cost, ecofriendly alpha prototyped CPM machine is prototyped for implementing the algorithms. Experiments are performed on three healthy subjects to establish the feasibility of this home rehabilitation device under professional guidance. Thus, this study aims to improve home-based knee rehabilitation effectiveness, offering complete recovery to the patients, delivering intensive and motivational rehabilitation.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":"17 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-ratio planetary gearbox with EC gearing for robot applications 用于机器人应用的带 EC 传动装置的高传动比行星齿轮箱
IF 1.7 Q3 ROBOTICS Pub Date : 2024-08-12 DOI: 10.1007/s41315-024-00373-8
Stefan Landler, Michael Otto, Birgit Vogel-Heuser, Markus Zimmermann, Karsten Stahl

The drive system of robots and robot-like systems (RLS) is often designed with a combination of an e-motor and a gearbox with a high transmission ratio to optimize performance. The various types of possible robot gearboxes can be selected based on their characteristics, which strongly influence the performance of the entire robotic system. Planetary gear drives have advantages due to their high efficiency and low design complexity. Disadvantageous is the low transmission ratio per stage and the resulting large design space required with the currently predominant involute gearing. Using special tooth profile shapes, such as the eccentric cycloid (EC) gearing, enables a high transmission ratio per stage to be achieved, thus reducing the design space required. In order to evaluate the design, a description of the geometry and characteristics of the EC gearing is necessary. The application-optimized design can be made accessible on an interdisciplinary basis using a suitable description language for the product development of the complete robotic system. The paper shows the design and analysis of a planetary gearbox with a high transmission ratio for applications in robotics. The planetary gear stage is designed with the EC gearing, which offers advantages compared to the involute gearing. The performance of the selected gearing is evaluated based on various characteristics. This allows advantages to be identified compared to the established types of transmission for robots and RLS. Overall, the paper presents a new robot gearbox with a comprehensive description and analysis directly accessible for simulation or production using additive manufacturing.

机器人和类机器人系统(RLS)的驱动系统通常采用电动马达和高传动比变速箱的组合设计,以优化性能。各种类型的机器人变速箱可根据其特性进行选择,这些特性对整个机器人系统的性能有很大影响。行星齿轮传动装置具有效率高、设计复杂度低的优点。缺点是每级传动比低,因此目前占主导地位的渐开线齿轮传动需要很大的设计空间。使用特殊齿形,如偏心摆线(EC)齿轮传动,可以实现较高的每级传动比,从而减少所需的设计空间。为了对设计进行评估,有必要对 EC 齿轮箱的几何形状和特性进行描述。应用优化设计可以在跨学科的基础上使用合适的描述语言,用于完整机器人系统的产品开发。本文展示了一种应用于机器人技术的高传动比行星齿轮箱的设计和分析。行星齿轮级采用 EC 传动装置,与渐开线传动装置相比具有优势。根据各种特性对所选传动装置的性能进行了评估。这样就能找出与机器人和 RLS 既有传动类型相比的优势。总之,本文介绍了一种新型机器人变速箱,对其进行了全面的描述和分析,可直接用于模拟或使用增材制造进行生产。
{"title":"High-ratio planetary gearbox with EC gearing for robot applications","authors":"Stefan Landler, Michael Otto, Birgit Vogel-Heuser, Markus Zimmermann, Karsten Stahl","doi":"10.1007/s41315-024-00373-8","DOIUrl":"https://doi.org/10.1007/s41315-024-00373-8","url":null,"abstract":"<p>The drive system of robots and robot-like systems (RLS) is often designed with a combination of an e-motor and a gearbox with a high transmission ratio to optimize performance. The various types of possible robot gearboxes can be selected based on their characteristics, which strongly influence the performance of the entire robotic system. Planetary gear drives have advantages due to their high efficiency and low design complexity. Disadvantageous is the low transmission ratio per stage and the resulting large design space required with the currently predominant involute gearing. Using special tooth profile shapes, such as the eccentric cycloid (EC) gearing, enables a high transmission ratio per stage to be achieved, thus reducing the design space required. In order to evaluate the design, a description of the geometry and characteristics of the EC gearing is necessary. The application-optimized design can be made accessible on an interdisciplinary basis using a suitable description language for the product development of the complete robotic system. The paper shows the design and analysis of a planetary gearbox with a high transmission ratio for applications in robotics. The planetary gear stage is designed with the EC gearing, which offers advantages compared to the involute gearing. The performance of the selected gearing is evaluated based on various characteristics. This allows advantages to be identified compared to the established types of transmission for robots and RLS. Overall, the paper presents a new robot gearbox with a comprehensive description and analysis directly accessible for simulation or production using additive manufacturing.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":"13 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redundancy resolution of a mobile manipulator using the KSOM based learning algorithm 使用基于 KSOM 的学习算法解决移动机械手的冗余问题
IF 1.7 Q3 ROBOTICS Pub Date : 2024-07-25 DOI: 10.1007/s41315-024-00360-z
Tesfaye Deme Tolossa, Rajeev Gupta, M. Felix Orlando, Yogesh V. Hote

A learning-based strategy for the trajectory tracking of redundant mobile manipulators (MM) was presented in this study. A five-degrees-of-freedom (DOF) manipulator is mounted on the differential drive (DD) mobile robot. The advantage of using a redundant system is to avoid joint limits, obstacles, and singularities towards desired trajectory tracking. The proposed approach is based on the Kohonen Self-Organizing Map (KSOM) advanced with Weighted Least Norm (WLN) matrix algorithm. This approach is the recommended neural network for inverse kinematics solutions because of its stability, preserved topology, and capacity to optimize the joint space trajectory while producing a smooth minimal joint angle. A proposed method for redundancy resolution in MM has been simulated using MATLAB simulation code and the Gazebo real-time simulation physical environment. The simulation results are evaluated with the joint limit method of redundancy resolution and other existing controllers for verification purposes. The conventional method of redundancy resolution is local optimum and infeasible for the end-effector motion in the entire workspace. The KSOM uses different steps of error correction that improve the system’s performance as well as ensure the global asymptotical stability of the system. The Root Mean Square Error (RMSE) values for straight-line, circular, Lissajious, and irregular sinusoidal path motions of the proposed method using KSOM are given as 0.0095 m, 0.009945 m, 0.009897 m, and 0.009758 m, respectively. The simulation results of the proposed method confirm the effectiveness of the proposed approach.

本研究提出了一种基于学习的冗余移动机械手(MM)轨迹跟踪策略。五自由度 (DOF) 机械手安装在差分驱动 (DD) 移动机器人上。使用冗余系统的好处是可以避免关节限制、障碍和奇点,从而实现理想的轨迹跟踪。所提出的方法基于 Kohonen 自组织图(KSOM)和加权最小规范(WLN)矩阵算法。这种方法因其稳定性、保留拓扑结构以及在产生平滑最小关节角度的同时优化关节空间轨迹的能力,被推荐用于逆运动学解决方案的神经网络。使用 MATLAB 仿真代码和 Gazebo 实时仿真物理环境,对所提出的 MM 冗余解决方法进行了仿真。仿真结果与冗余解决的联合限制方法和其他现有控制器进行了评估,以进行验证。传统的冗余分辨率方法是局部最优的,对于整个工作空间的末端执行器运动来说是不可行的。KSOM 采用不同的纠错步骤来提高系统性能,并确保系统的全局渐近稳定性。使用 KSOM 的拟议方法的直线、圆周、利萨角形和不规则正弦路径运动的均方根误差(RMSE)值分别为 0.0095 m、0.009945 m、0.009897 m 和 0.009758 m。建议方法的仿真结果证实了建议方法的有效性。
{"title":"Redundancy resolution of a mobile manipulator using the KSOM based learning algorithm","authors":"Tesfaye Deme Tolossa, Rajeev Gupta, M. Felix Orlando, Yogesh V. Hote","doi":"10.1007/s41315-024-00360-z","DOIUrl":"https://doi.org/10.1007/s41315-024-00360-z","url":null,"abstract":"<p>A learning-based strategy for the trajectory tracking of redundant mobile manipulators (MM) was presented in this study. A five-degrees-of-freedom (DOF) manipulator is mounted on the differential drive (DD) mobile robot. The advantage of using a redundant system is to avoid joint limits, obstacles, and singularities towards desired trajectory tracking. The proposed approach is based on the Kohonen Self-Organizing Map (KSOM) advanced with Weighted Least Norm (WLN) matrix algorithm. This approach is the recommended neural network for inverse kinematics solutions because of its stability, preserved topology, and capacity to optimize the joint space trajectory while producing a smooth minimal joint angle. A proposed method for redundancy resolution in MM has been simulated using MATLAB simulation code and the Gazebo real-time simulation physical environment. The simulation results are evaluated with the joint limit method of redundancy resolution and other existing controllers for verification purposes. The conventional method of redundancy resolution is local optimum and infeasible for the end-effector motion in the entire workspace. The KSOM uses different steps of error correction that improve the system’s performance as well as ensure the global asymptotical stability of the system. The Root Mean Square Error (RMSE) values for straight-line, circular, Lissajious, and irregular sinusoidal path motions of the proposed method using KSOM are given as 0.0095 m, 0.009945 m, 0.009897 m, and 0.009758 m, respectively. The simulation results of the proposed method confirm the effectiveness of the proposed approach.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":"39 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141779533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural admittance control based on motion intention estimation and force feedforward compensation for human–robot collaboration 基于运动意图估计和力前馈补偿的神经导纳控制,用于人机协作
IF 1.7 Q3 ROBOTICS Pub Date : 2024-07-22 DOI: 10.1007/s41315-024-00362-x
Wenxu Ai, Xinan Pan, Yong Jiang, Hongguang Wang

To enhance robotic manipulator adaptation to human partners and minimize human energy consumption in human–robot collaboration, this paper introduces a neural admittance control framework, which integrates human motion intention estimation and force feedforward compensation. Maximum likelihood estimation is employed to derive human motion intention and stiffness within human–robot collaboration, which are seamlessly merged into admittance control. Force feedforward compensation is proposed to minimize interaction force and position tracking fluctuations based on estimated human intention and stiffness. RBF neural network control is used to refine position inner loop dynamics and to improve position tracking accuracy and response speed. Comprehensive comparative simulations validate the method’s effectiveness in diminishing human–robot interaction force, enhancing position response speed, and mitigating interaction force and position fluctuations. The experiment performed on the Franka Emika Panda robot platform, illustrates that the proposed method is effective and enhance human-robot collaboration.

为了增强机器人操纵器对人类伙伴的适应性,并最大限度地减少人机协作中的能量消耗,本文介绍了一种神经导纳控制框架,该框架集成了人类运动意图估计和力前馈补偿。最大似然估计用于推导人机协作中的人类运动意图和刚度,并将其无缝整合到导纳控制中。根据估计的人类意图和刚度,提出了力前馈补偿,以尽量减少交互力和位置跟踪波动。RBF 神经网络控制用于完善位置内环动态,提高位置跟踪精度和响应速度。综合比较模拟验证了该方法在减小人机交互力、提高位置响应速度以及减小交互力和位置波动方面的有效性。在 Franka Emika Panda 机器人平台上进行的实验表明,所提出的方法是有效的,能增强人机协作。
{"title":"Neural admittance control based on motion intention estimation and force feedforward compensation for human–robot collaboration","authors":"Wenxu Ai, Xinan Pan, Yong Jiang, Hongguang Wang","doi":"10.1007/s41315-024-00362-x","DOIUrl":"https://doi.org/10.1007/s41315-024-00362-x","url":null,"abstract":"<p>To enhance robotic manipulator adaptation to human partners and minimize human energy consumption in human–robot collaboration, this paper introduces a neural admittance control framework, which integrates human motion intention estimation and force feedforward compensation. Maximum likelihood estimation is employed to derive human motion intention and stiffness within human–robot collaboration, which are seamlessly merged into admittance control. Force feedforward compensation is proposed to minimize interaction force and position tracking fluctuations based on estimated human intention and stiffness. RBF neural network control is used to refine position inner loop dynamics and to improve position tracking accuracy and response speed. Comprehensive comparative simulations validate the method’s effectiveness in diminishing human–robot interaction force, enhancing position response speed, and mitigating interaction force and position fluctuations. The experiment performed on the Franka Emika Panda robot platform, illustrates that the proposed method is effective and enhance human-robot collaboration.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":"63 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141740911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiobjective optimization-based trajectory planning for laser 3D scanner robots 基于多目标优化的激光 3D 扫描机器人轨迹规划
IF 1.7 Q3 ROBOTICS Pub Date : 2024-07-13 DOI: 10.1007/s41315-024-00357-8
Yumeng Huang, Guangyu Liu, Wujia Yu, Shanen Yu

In our industrial material defect detecting processes, the multi criteria is considered in two-level motion planning structure. Firstly, the feed speed of the end-effector should be programmed in optimal time for satisfying the requirement of high efficiency. Secondly, the planned joint velocities and accelaration are characterized by high-order derivatives to guarantee smooth motion, taking into account the kinematic constraints. Last but not least, energy consumption of the robot’s movement is a focus during designing trajectories. The Pareto optimal method is applied to solve the trajectory planning problem. The results of the experiments suggest that the Pareto approach can realize effective multi-objective optimization and deliver a group of Pareto solutions for decision makers. Based on the actual requirements, suitable Pareto-optimal trajectory can be achieved and the practical operation of the industrial robot is good.

在我们的工业材料缺陷检测过程中,两级运动规划结构考虑了多标准。首先,终端执行器的进给速度应在最佳时间内编程,以满足高效率的要求。其次,规划的关节速度和加速度采用高阶导数,以保证运动平稳,同时考虑运动学约束。最后但并非最不重要的一点是,机器人运动的能耗是轨迹设计的重点。我们采用帕累托最优法来解决轨迹规划问题。实验结果表明,帕累托方法可以实现有效的多目标优化,并为决策者提供一组帕累托解决方案。根据实际需求,可以实现合适的帕累托最优轨迹,工业机器人的实际运行效果良好。
{"title":"Multiobjective optimization-based trajectory planning for laser 3D scanner robots","authors":"Yumeng Huang, Guangyu Liu, Wujia Yu, Shanen Yu","doi":"10.1007/s41315-024-00357-8","DOIUrl":"https://doi.org/10.1007/s41315-024-00357-8","url":null,"abstract":"<p>In our industrial material defect detecting processes, the multi criteria is considered in two-level motion planning structure. Firstly, the feed speed of the end-effector should be programmed in optimal time for satisfying the requirement of high efficiency. Secondly, the planned joint velocities and accelaration are characterized by high-order derivatives to guarantee smooth motion, taking into account the kinematic constraints. Last but not least, energy consumption of the robot’s movement is a focus during designing trajectories. The Pareto optimal method is applied to solve the trajectory planning problem. The results of the experiments suggest that the Pareto approach can realize effective multi-objective optimization and deliver a group of Pareto solutions for decision makers. Based on the actual requirements, suitable Pareto-optimal trajectory can be achieved and the practical operation of the industrial robot is good.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":"32 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Intelligent Robotics and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1