Abstract Airborne gravimetry is an efficient and reliable method to obtain information on the gravity field, fundamental to gravity field modelling, geoid determination, and flood risk mapping. In evaluation and utilization of gravity estimates, two measures are of fundamental importance, namely the accuracy and spatial resolution. These measures are related to one another through the filtering required to suppress observational noise. As strapdown inertial measurement units (IMUs) are increasingly deployed for airborne gravity surveys, the Kalman filter estimation method is routinely used for gravity determination. Since filtering is not applied directly to the observations in Kalman filtering, it is not straightforward to associate the derived gravity estimates with a measure of spatial resolution. This investigation presents a method for deriving spatial resolution by evaluating the transfer function formed after applying a delta function to the observed accelerations. The method is applied to Kalman-filter-derived gravity estimates from an airborne strapdown IMU system, yielding a full-wavelength spatial resolution of 5.5 km at an accuracy of 0.6 mGal. These results are consistent with a comparison with upward continued terrestrial gravity observations.
{"title":"Spatial resolution of airborne gravity estimates in Kalman filtering","authors":"T. Jensen","doi":"10.1515/jogs-2022-0143","DOIUrl":"https://doi.org/10.1515/jogs-2022-0143","url":null,"abstract":"Abstract Airborne gravimetry is an efficient and reliable method to obtain information on the gravity field, fundamental to gravity field modelling, geoid determination, and flood risk mapping. In evaluation and utilization of gravity estimates, two measures are of fundamental importance, namely the accuracy and spatial resolution. These measures are related to one another through the filtering required to suppress observational noise. As strapdown inertial measurement units (IMUs) are increasingly deployed for airborne gravity surveys, the Kalman filter estimation method is routinely used for gravity determination. Since filtering is not applied directly to the observations in Kalman filtering, it is not straightforward to associate the derived gravity estimates with a measure of spatial resolution. This investigation presents a method for deriving spatial resolution by evaluating the transfer function formed after applying a delta function to the observed accelerations. The method is applied to Kalman-filter-derived gravity estimates from an airborne strapdown IMU system, yielding a full-wavelength spatial resolution of 5.5 km at an accuracy of 0.6 mGal. These results are consistent with a comparison with upward continued terrestrial gravity observations.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":"1 1","pages":"185 - 194"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89744014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Representing the Earth’s physical features onto a flat surface is a critical and challenging issue for geodesists to build topographic mappings at field scale in various applications. Artificial satellite positioning data are currently defined on a global geocentric frame, while terrestrial geodetic networks are determined on a local ellipsoid. Hence, coordinate transformations in three-dimensional space are required for data fusion involving different coordinate systems utilizing common points in two sets of coordinates. On the other hand, small companies in many developing countries have some data conversion difficulties due to the need for high-cost software and qualified persons. A low-cost automated tool is helpful in achieving this task and ensuring quality and positional accuracy. In this investigation, the problem was undertaken by establishing a software tool in the Microsoft Visual Studio environment for map-matching with global coordinates based on similarity transformations and a conformal polynomial approach. The tool’s performance was evaluated through a numerical example to assign transformation parameters and derive coordinates of checkpoints from the prediction surface.
{"title":"Developing low-cost automated tool for integrating maps with GNSS satellite positioning data","authors":"M. Habib, Ali Farghal, A. Taani","doi":"10.1515/jogs-2022-0134","DOIUrl":"https://doi.org/10.1515/jogs-2022-0134","url":null,"abstract":"Abstract Representing the Earth’s physical features onto a flat surface is a critical and challenging issue for geodesists to build topographic mappings at field scale in various applications. Artificial satellite positioning data are currently defined on a global geocentric frame, while terrestrial geodetic networks are determined on a local ellipsoid. Hence, coordinate transformations in three-dimensional space are required for data fusion involving different coordinate systems utilizing common points in two sets of coordinates. On the other hand, small companies in many developing countries have some data conversion difficulties due to the need for high-cost software and qualified persons. A low-cost automated tool is helpful in achieving this task and ensuring quality and positional accuracy. In this investigation, the problem was undertaken by establishing a software tool in the Microsoft Visual Studio environment for map-matching with global coordinates based on similarity transformations and a conformal polynomial approach. The tool’s performance was evaluated through a numerical example to assign transformation parameters and derive coordinates of checkpoints from the prediction surface.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":"49 1","pages":"141 - 153"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87095195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Lösler, C. Eschelbach, A. Greiwe, R. Brechtken, C. Plötz, G. Kronschnabl, A. Neidhardt
Abstract The precision and the reliability of very long baseline interferometry (VLBI) depend on several factors. Apart from fabrication discrepancies or meteorological effects, gravity-induced deformations of the receiving unit of VLBI radio telescopes are identified as a crucial error source biasing VLBI products and obtained results such as the scale of a realized global geodetic reference frame. Gravity-induced deformations are systematical errors and yield signal path variations (SPVs). In 1988, Clark and Thomsen derived a VLBI delay model, which was adopted by the International VLBI Service for Geodesy and Astrometry (IVS) to reduce these systematic errors. However, the model parametrizes the SPV by a linear substitute function and considers only deformations acting rotationally symmetrically. The aim of this investigation is to derive the signal path variations of a legacy radio telescope and a modern broadband VGOS-specified radio telescope and to study the effect of nonrotationally symmetric deformation patterns. For that purpose, SPVs are obtained from a nonlinear spatial ray tracing approach. For the first time, a tilt and a displacement of the subreflector perpendicular to the optical axis of the feed unit is taken into account. The results prove the commonly used VLBI delay model as a suitable first-order delay model to reduce gravity-induced deformations.
超长基线干涉测量(VLBI)的精度和可靠性取决于几个因素。除了制造误差和气象影响外,超大规模射电望远镜接收单元的重力变形是影响超大规模射电望远镜产品的重要误差源,并得到了实现的全球大地参考系尺度等结果。重力引起的变形是一种系统误差和屈服信号路径变化。1988年,Clark和Thomsen导出了VLBI延迟模型,该模型被国际VLBI服务机构(International VLBI Service for Geodesy and Astrometry, IVS)采用,以减少这些系统误差。然而,该模型通过一个线性替代函数来参数化SPV,并且只考虑旋转对称作用的变形。本研究的目的是推导传统射电望远镜和现代宽带vgos专用射电望远镜的信号路径变化,并研究非旋转对称变形模式的影响。为此,spv是通过非线性空间射线追踪方法获得的。第一次考虑了垂直于进给装置光轴的副反射器的倾斜和位移。结果表明,常用的VLBI延迟模型是一阶延迟模型,可以有效地减小重力引起的变形。
{"title":"Ray tracing-based delay model for compensating gravitational deformations of VLBI radio telescopes","authors":"M. Lösler, C. Eschelbach, A. Greiwe, R. Brechtken, C. Plötz, G. Kronschnabl, A. Neidhardt","doi":"10.1515/jogs-2022-0141","DOIUrl":"https://doi.org/10.1515/jogs-2022-0141","url":null,"abstract":"Abstract The precision and the reliability of very long baseline interferometry (VLBI) depend on several factors. Apart from fabrication discrepancies or meteorological effects, gravity-induced deformations of the receiving unit of VLBI radio telescopes are identified as a crucial error source biasing VLBI products and obtained results such as the scale of a realized global geodetic reference frame. Gravity-induced deformations are systematical errors and yield signal path variations (SPVs). In 1988, Clark and Thomsen derived a VLBI delay model, which was adopted by the International VLBI Service for Geodesy and Astrometry (IVS) to reduce these systematic errors. However, the model parametrizes the SPV by a linear substitute function and considers only deformations acting rotationally symmetrically. The aim of this investigation is to derive the signal path variations of a legacy radio telescope and a modern broadband VGOS-specified radio telescope and to study the effect of nonrotationally symmetric deformation patterns. For that purpose, SPVs are obtained from a nonlinear spatial ray tracing approach. For the first time, a tilt and a displacement of the subreflector perpendicular to the optical axis of the feed unit is taken into account. The results prove the commonly used VLBI delay model as a suitable first-order delay model to reduce gravity-induced deformations.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":"78 1","pages":"165 - 184"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90332401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The wet tropospheric correction (WTC) is a required correction to satellite altimetry measurements, mainly due to the atmospheric water vapor delay. On-board microwave radiometers (MWR) provide information for WTC estimation but fail in coastal zones and inland waters. In view to recover the WTC in these areas, the Global Navigation Satellite System (GNSS)-derived Path Delay Plus (GPD+) method, developed by the University of Porto, uses Zenith Tropospheric Delays from GNSS global and regional networks’ stations combined with other sources of information, providing a WTC solution for all along-track altimeter points. To densify the existing dataset used by GPD+, it is necessary to add new GNSS stations, mainly in the southern hemisphere, in regions such as South America, Africa and Oceania. This work aims to exploit the SIRGAS-CON data and its potential for densification of the GPD+ input dataset in Latin America and to improve GPD+ performance. The results for the three analyzed satellites (Sentinel-3A, Sentinel-3B and CryoSat-2) show that, when compared with the WTC from GNSS and radiosondes, the densified GPD+ WTC leads to a reduction in the RMS of the WTC differences with respect to the non-densified GPD+ solution, up to 2 mm for the whole region and up to 5 mm in some locations.
{"title":"Wet tropospheric correction for satellite altimetry using SIRGAS-CON products","authors":"A. Prado, Telmo Vieira, N. Pires, M. Fernandes","doi":"10.1515/jogs-2022-0146","DOIUrl":"https://doi.org/10.1515/jogs-2022-0146","url":null,"abstract":"Abstract The wet tropospheric correction (WTC) is a required correction to satellite altimetry measurements, mainly due to the atmospheric water vapor delay. On-board microwave radiometers (MWR) provide information for WTC estimation but fail in coastal zones and inland waters. In view to recover the WTC in these areas, the Global Navigation Satellite System (GNSS)-derived Path Delay Plus (GPD+) method, developed by the University of Porto, uses Zenith Tropospheric Delays from GNSS global and regional networks’ stations combined with other sources of information, providing a WTC solution for all along-track altimeter points. To densify the existing dataset used by GPD+, it is necessary to add new GNSS stations, mainly in the southern hemisphere, in regions such as South America, Africa and Oceania. This work aims to exploit the SIRGAS-CON data and its potential for densification of the GPD+ input dataset in Latin America and to improve GPD+ performance. The results for the three analyzed satellites (Sentinel-3A, Sentinel-3B and CryoSat-2) show that, when compared with the WTC from GNSS and radiosondes, the densified GPD+ WTC leads to a reduction in the RMS of the WTC differences with respect to the non-densified GPD+ solution, up to 2 mm for the whole region and up to 5 mm in some locations.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":"96 1","pages":"211 - 229"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74427045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Przewięźlikowska, Wioletta Ślusarczyk, Klauda Wójcik, K. Maciuk
Abstract The result of surveys largely depends on the accuracy and measurement technique of the control network. This research work presents the application Metrica, dedicated for collection and navigation of geodetic control network points. The main goal of this study is to present the motivation, methodology, and issues with analysis of the database of vertical control points. Such analysis covers south part of Poland territory for the update of the existing set of points of the vertical control network on an ongoing basis. The application has been developed with the use of a test database of points. The status of the points was checked by means of a multi-stage analysis. The prepared database of points was verified taking into account the criteria defined by the authors. In order to optimise the scoring analysis process, two groups of criteria were distinguished: independent of each other and those whose analysis was justified only under the condition of prior verification of other criteria. Based on the analysis of the collected data, the main conclusion was the ongoing need to update the data on the matrix points. It was found that information on points is often incomplete and inaccurate, especially in terms of their horizontal position, which often prevents efficient localisation of points. One of the most significant findings was that only 55.6% of the points available in the database were identified in the field. It should be noted that despite the analysis of the state of the matrix carried out in 2019 on behalf of the GUGiK, there are still many points about which information is not fully up-to-date. It is now possible to extend the application with new attributes and validation rules and conduct updates for several types of geodetic networks. Due to the extensive character of the discussed subject, the study has been divided into two parts. The continuation of this study is the second research work, which presents the development of a mobile application for the update of the geodetic control network. It will present in detail the procedures and IT application development processes.
{"title":"Metrica – an application for collecting and navigating geodetic control network points. Part I: Motivation, assumptions, and issues","authors":"Anna Przewięźlikowska, Wioletta Ślusarczyk, Klauda Wójcik, K. Maciuk","doi":"10.1515/jogs-2022-0145","DOIUrl":"https://doi.org/10.1515/jogs-2022-0145","url":null,"abstract":"Abstract The result of surveys largely depends on the accuracy and measurement technique of the control network. This research work presents the application Metrica, dedicated for collection and navigation of geodetic control network points. The main goal of this study is to present the motivation, methodology, and issues with analysis of the database of vertical control points. Such analysis covers south part of Poland territory for the update of the existing set of points of the vertical control network on an ongoing basis. The application has been developed with the use of a test database of points. The status of the points was checked by means of a multi-stage analysis. The prepared database of points was verified taking into account the criteria defined by the authors. In order to optimise the scoring analysis process, two groups of criteria were distinguished: independent of each other and those whose analysis was justified only under the condition of prior verification of other criteria. Based on the analysis of the collected data, the main conclusion was the ongoing need to update the data on the matrix points. It was found that information on points is often incomplete and inaccurate, especially in terms of their horizontal position, which often prevents efficient localisation of points. One of the most significant findings was that only 55.6% of the points available in the database were identified in the field. It should be noted that despite the analysis of the state of the matrix carried out in 2019 on behalf of the GUGiK, there are still many points about which information is not fully up-to-date. It is now possible to extend the application with new attributes and validation rules and conduct updates for several types of geodetic networks. Due to the extensive character of the discussed subject, the study has been divided into two parts. The continuation of this study is the second research work, which presents the development of a mobile application for the update of the geodetic control network. It will present in detail the procedures and IT application development processes.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":"1 1","pages":"230 - 243"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89746958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Sub- and super-harmonics of luni-solar forcing are proxies for the natural variations in sea levels observed at tide gauge stations with long records as demonstrated in earlier studies. This study also identified their signatures in the noisy yearly misclosures of the global mean sea level budget for the period 1900–2018. The analyses of the yearly misclosures revealed a temporal linear systematic error of 0.08 ± 0.02 mm/year, which is not explained by the budget components. The estimate is statistically significant (α = 0.05) but small in magnitude and accounts for only 11% (adjusted R 2) of the variations in the yearly misclosures. Meanwhile, the yearly misclosures have also a statistically significant constant bias as large as −12.2 ± 0.9 mm, which can be attributed to the lack of a common datum definition for the global mean sea level budget components. Modeling the low-frequency changes of luni-solar origin together with a trend and constant bias parameters reduces variability in the misclosures. Accounting for their effects explains 50% (adjusted R 2) of the fluctuations in the yearly misclosures compared to the 11% if they are not. In addition, unmodeled low-frequency variations in the yearly global budget closure assessments have the propensity of confounding the detection of a statistically significant recent uniform global sea level acceleration triggered by anthropogenic contributors.
{"title":"Low-frequency fluctuations in the yearly misclosures of the global mean sea level budget during 1900–2018","authors":"H. Iz","doi":"10.1515/jogs-2022-0130","DOIUrl":"https://doi.org/10.1515/jogs-2022-0130","url":null,"abstract":"Abstract Sub- and super-harmonics of luni-solar forcing are proxies for the natural variations in sea levels observed at tide gauge stations with long records as demonstrated in earlier studies. This study also identified their signatures in the noisy yearly misclosures of the global mean sea level budget for the period 1900–2018. The analyses of the yearly misclosures revealed a temporal linear systematic error of 0.08 ± 0.02 mm/year, which is not explained by the budget components. The estimate is statistically significant (α = 0.05) but small in magnitude and accounts for only 11% (adjusted R 2) of the variations in the yearly misclosures. Meanwhile, the yearly misclosures have also a statistically significant constant bias as large as −12.2 ± 0.9 mm, which can be attributed to the lack of a common datum definition for the global mean sea level budget components. Modeling the low-frequency changes of luni-solar origin together with a trend and constant bias parameters reduces variability in the misclosures. Accounting for their effects explains 50% (adjusted R 2) of the fluctuations in the yearly misclosures compared to the 11% if they are not. In addition, unmodeled low-frequency variations in the yearly global budget closure assessments have the propensity of confounding the detection of a statistically significant recent uniform global sea level acceleration triggered by anthropogenic contributors.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":"61 1","pages":"55 - 64"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73889153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Ground-based augmentation system (GBAS) was developed to guide aircraft precision approach and landing, aiming to replace the instrument landing system (ILS), which is currently used in most airports worldwide. GBAS based on differential positioning with reference stations that provide differential corrections to the aircraft to improve its positioning accuracy and ensure other performance parameters such as integrity, continuity, and availability. However, using GBAS in low latitude regions such as Brazil, the occurrence of ionospheric irregularities can affect global navigation satellite system (GNSS) performance so that it does not meet the requirements for aviation. This article evaluates five vertical ionospheric gradient variability scenarios for a GNSS data set of four reference stations, one station simulating an aircraft with GBAS in a static model based on performance requirements for Category Approach Type – CAT I. The results showed that the increase in the variability of the ionosphere and the geometry of satellites used in positioning could affect the integrity and availability of GBAS. In the scenario of more significant variability of the ionosphere evaluated, there was a loss of 38.4% of the availability of GBAS for the CAT I approach.
{"title":"GBAS: fundamentals and availability analysis according to σvig","authors":"Weverton da Costa Silva, J. F. G. Monico","doi":"10.1515/jogs-2022-0132","DOIUrl":"https://doi.org/10.1515/jogs-2022-0132","url":null,"abstract":"Abstract Ground-based augmentation system (GBAS) was developed to guide aircraft precision approach and landing, aiming to replace the instrument landing system (ILS), which is currently used in most airports worldwide. GBAS based on differential positioning with reference stations that provide differential corrections to the aircraft to improve its positioning accuracy and ensure other performance parameters such as integrity, continuity, and availability. However, using GBAS in low latitude regions such as Brazil, the occurrence of ionospheric irregularities can affect global navigation satellite system (GNSS) performance so that it does not meet the requirements for aviation. This article evaluates five vertical ionospheric gradient variability scenarios for a GNSS data set of four reference stations, one station simulating an aircraft with GBAS in a static model based on performance requirements for Category Approach Type – CAT I. The results showed that the increase in the variability of the ionosphere and the geometry of satellites used in positioning could affect the integrity and availability of GBAS. In the scenario of more significant variability of the ionosphere evaluated, there was a loss of 38.4% of the availability of GBAS for the CAT I approach.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":"55 1","pages":"22 - 37"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77843086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Today, most of the aircrafts are navigated by global navigation satellite systems (GNSSs). Landing is a dangerous phase of a flight especially when an airport runway is not clearly seen from the aircrafts. In such cases, GNSSs are useful for a safe landing under the circumstances that healthy signals, free of any interference, reach to GNSSs receiver antennas mounted on the aircrafts. This shows the importance of establishing GNSS interference localisation security networks around airports. Designing a good configuration for the points with GNSS antennas at for receiving interference signals is important for a successful localisation of the interference device. Here, the time-difference of the arrivals of an interference signal to such points or anchor nodes (ANs), are used as observables, and a security network with four ANs is optimally designed along the runways of the Arlanda airport to reduce the dilution of precision (DOP) of the network. Our study showed that by such an optimisation, the maximum DOP value can reduce by 50% meaning a significant increase in the probability of a successful interference device localisation.
{"title":"An optimal design of GNSS interference localisation wireless security network based on time-difference of arrivals for the Arlanda international airport","authors":"M. Eshagh","doi":"10.1515/jogs-2022-0142","DOIUrl":"https://doi.org/10.1515/jogs-2022-0142","url":null,"abstract":"Abstract Today, most of the aircrafts are navigated by global navigation satellite systems (GNSSs). Landing is a dangerous phase of a flight especially when an airport runway is not clearly seen from the aircrafts. In such cases, GNSSs are useful for a safe landing under the circumstances that healthy signals, free of any interference, reach to GNSSs receiver antennas mounted on the aircrafts. This shows the importance of establishing GNSS interference localisation security networks around airports. Designing a good configuration for the points with GNSS antennas at for receiving interference signals is important for a successful localisation of the interference device. Here, the time-difference of the arrivals of an interference signal to such points or anchor nodes (ANs), are used as observables, and a security network with four ANs is optimally designed along the runways of the Arlanda airport to reduce the dilution of precision (DOP) of the network. Our study showed that by such an optimisation, the maximum DOP value can reduce by 50% meaning a significant increase in the probability of a successful interference device localisation.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":"5 1","pages":"154 - 164"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84509489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The high-frequency effects of the gravity field can be obtained from residual terrain modeling (RTM) technique. However, for the International height reference system (IHRS), this is an open problem. Over the last decades, various approaches have been proposed for the practical solution of Newton’s Integral, such as point-mass, tesseroid, prism, and polyhedron. Harmonic correction (HC) and the use of more realistic mass density values have also been studied. In this work, in order to calculate RTM height anomalies at BRAZ and PPTE IHRS future stations in Brazil, such approaches and issues have been evaluated. Density values have been obtained from CRUST 1.0 global model. For the HC, the traditional mass condensation technique and Poisson’s equation have been used. The resulting values proposed by different approaches are very close to each other, with differences at the submillimeter-level. The RTM height anomaly values reached 1.5 and 1.4 mm at the BRAZ and PPTE stations, respectively. HC at BRAZ station can be disregarded without prejudice since its order of magnitude was 10−5 m. The use of CRUST 1.0 density values has proposed slight improvements of 0.8 and 0. 4 mm at BRAZ and PPTE station, respectively, in relation to the use of Harkness constant density value.
{"title":"A contribution for the study of RTM effect in height anomalies at two future IHRS stations in Brazil using different approaches, harmonic correction, and global density model","authors":"T. L. Rodrigues","doi":"10.1515/jogs-2022-0140","DOIUrl":"https://doi.org/10.1515/jogs-2022-0140","url":null,"abstract":"Abstract The high-frequency effects of the gravity field can be obtained from residual terrain modeling (RTM) technique. However, for the International height reference system (IHRS), this is an open problem. Over the last decades, various approaches have been proposed for the practical solution of Newton’s Integral, such as point-mass, tesseroid, prism, and polyhedron. Harmonic correction (HC) and the use of more realistic mass density values have also been studied. In this work, in order to calculate RTM height anomalies at BRAZ and PPTE IHRS future stations in Brazil, such approaches and issues have been evaluated. Density values have been obtained from CRUST 1.0 global model. For the HC, the traditional mass condensation technique and Poisson’s equation have been used. The resulting values proposed by different approaches are very close to each other, with differences at the submillimeter-level. The RTM height anomaly values reached 1.5 and 1.4 mm at the BRAZ and PPTE stations, respectively. HC at BRAZ station can be disregarded without prejudice since its order of magnitude was 10−5 m. The use of CRUST 1.0 density values has proposed slight improvements of 0.8 and 0. 4 mm at BRAZ and PPTE station, respectively, in relation to the use of Harkness constant density value.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":"257 1","pages":"75 - 91"},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82949107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Detection and quantification of sea level accelerations at tide gauge stations are needed for assessing anthropogenic contributions to the climate change. Nonetheless, uniform or non-uniform sea level accelerations/decelerations are particularly di˚cult to discern partly because of their small magnitudes and partly because of the low frequency sea level variations as confounders. Moreover, noisy excursions in the observed sea level variations also exacerbate reliability of estimated sea level accelerations. This study explores the uniformity of a sea level acceleration graphically that is left unmodeled in the residuals of a least squares solution using cumulative sum charts. Key West, USA tide gauge station’s record is studied for a demonstration. The cumulative sum charts of the residuals of a rigorous kinematic model solution without the acceleration parameter revealed its crisp and uniform signature experienced at this station since 1913.
{"title":"Sea level acceleration under the magnifier","authors":"H. Iz","doi":"10.1515/jogs-2020-0118","DOIUrl":"https://doi.org/10.1515/jogs-2020-0118","url":null,"abstract":"Abstract Detection and quantification of sea level accelerations at tide gauge stations are needed for assessing anthropogenic contributions to the climate change. Nonetheless, uniform or non-uniform sea level accelerations/decelerations are particularly di˚cult to discern partly because of their small magnitudes and partly because of the low frequency sea level variations as confounders. Moreover, noisy excursions in the observed sea level variations also exacerbate reliability of estimated sea level accelerations. This study explores the uniformity of a sea level acceleration graphically that is left unmodeled in the residuals of a least squares solution using cumulative sum charts. Key West, USA tide gauge station’s record is studied for a demonstration. The cumulative sum charts of the residuals of a rigorous kinematic model solution without the acceleration parameter revealed its crisp and uniform signature experienced at this station since 1913.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":"1 1","pages":"7 - 13"},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86476118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}