Pub Date : 2019-03-19DOI: 10.1142/S2424905X18420023
Fan Yang, Mahdieh Babaiasl, J. Swensen
Steerable needles hold the promise of improving the accuracy of both therapies and biopsies as they are able to steer to a target location around obstructions, correct for disturbances, and account for movement of internal organs. However, their ability to make late-insertion corrections has always been limited by the lower bound on the attainable radius of curvature. This paper presents a new class of steerable needle insertion where the objective is to first control the direction of tissue fracture with an inner stylet and later follow with the hollow needle. This method is shown to be able to achieve radius of curvature as low as 6.9[Formula: see text]mm across a range of tissue stiffnesses and the radius of curvature is controllable from the lower bound up to a near infinite radius of curvature based on the stylet/needle step size. The approach of “fracture-directed” steerable needles indicates the promise of the technique for providing a tissue-agnostic method of achieving high steerability that can account for variability in tissues during a typical procedure and achieve radii of curvature unattainable through current bevel-tipped techniques. A variety of inner stylet geometries are investigated using tissue phantoms with multiple stiffnesses and discrete-step kinematic models of motion are derived heuristically from the experiments. The key finding presented is that it is the geometry of the stylet and the tuning of the bending stiffnesses of both the stylet and the tube, relative to the stiffness of the tissue, that allow for such small radius of curvature even in very soft tissues.
{"title":"Fracture-Directed Steerable Needles","authors":"Fan Yang, Mahdieh Babaiasl, J. Swensen","doi":"10.1142/S2424905X18420023","DOIUrl":"https://doi.org/10.1142/S2424905X18420023","url":null,"abstract":"Steerable needles hold the promise of improving the accuracy of both therapies and biopsies as they are able to steer to a target location around obstructions, correct for disturbances, and account for movement of internal organs. However, their ability to make late-insertion corrections has always been limited by the lower bound on the attainable radius of curvature. This paper presents a new class of steerable needle insertion where the objective is to first control the direction of tissue fracture with an inner stylet and later follow with the hollow needle. This method is shown to be able to achieve radius of curvature as low as 6.9[Formula: see text]mm across a range of tissue stiffnesses and the radius of curvature is controllable from the lower bound up to a near infinite radius of curvature based on the stylet/needle step size. The approach of “fracture-directed” steerable needles indicates the promise of the technique for providing a tissue-agnostic method of achieving high steerability that can account for variability in tissues during a typical procedure and achieve radii of curvature unattainable through current bevel-tipped techniques. A variety of inner stylet geometries are investigated using tissue phantoms with multiple stiffnesses and discrete-step kinematic models of motion are derived heuristically from the experiments. The key finding presented is that it is the geometry of the stylet and the tuning of the bending stiffnesses of both the stylet and the tube, relative to the stiffness of the tissue, that allow for such small radius of curvature even in very soft tissues.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117133977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-19DOI: 10.1142/S2424905X18420059
R. Tsumura, Y. Takishita, H. Iwata
Because fine needles can easily be deflected, accurate needle insertion is often difficult. Lower abdominal insertion is particularly difficult because of less imaging feedback; thus, an approach for allowing a straight insertion path by minimizing deflection is beneficial in cases of lower abdominal insertion. Although insertion with axial rotation can minimize deflection, the rotational insertion may cause tissue damage. Therefore, we established a novel insertion method for minimizing both deflection and tissue damage by combining rotation and vibration. Using layered tissues, we evaluated the effect of a combination of rotation and vibration in terms of deflection and tissue damage, which were measured by the insertion force and torque, and the area of the hole created by the needle using histological tissue sections to measure tissue damage. The experimental results demonstrated that insertion with unidirectional rotation is risky in terms of tissue wind-up, while insertion with bidirectional rotation can decrease deflection and avoid wind-up. We also found that insertion with vibration can decrease the insertion force and torque. Therefore, insertion with a combination of bidirectional rotation and vibration can minimize needle deflection and tissue damage, including the insertion force and torque and the hole area.
{"title":"Needle Insertion Control Method for Minimizing Both Deflection and Tissue Damage","authors":"R. Tsumura, Y. Takishita, H. Iwata","doi":"10.1142/S2424905X18420059","DOIUrl":"https://doi.org/10.1142/S2424905X18420059","url":null,"abstract":"Because fine needles can easily be deflected, accurate needle insertion is often difficult. Lower abdominal insertion is particularly difficult because of less imaging feedback; thus, an approach for allowing a straight insertion path by minimizing deflection is beneficial in cases of lower abdominal insertion. Although insertion with axial rotation can minimize deflection, the rotational insertion may cause tissue damage. Therefore, we established a novel insertion method for minimizing both deflection and tissue damage by combining rotation and vibration. Using layered tissues, we evaluated the effect of a combination of rotation and vibration in terms of deflection and tissue damage, which were measured by the insertion force and torque, and the area of the hole created by the needle using histological tissue sections to measure tissue damage. The experimental results demonstrated that insertion with unidirectional rotation is risky in terms of tissue wind-up, while insertion with bidirectional rotation can decrease deflection and avoid wind-up. We also found that insertion with vibration can decrease the insertion force and torque. Therefore, insertion with a combination of bidirectional rotation and vibration can minimize needle deflection and tissue damage, including the insertion force and torque and the hole area.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116495745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-01DOI: 10.1142/S2424905X18420011
E. Matheson, R. Secoli, Christopher Burrows, A. Leibinger, F. Baena
Robotic-assisted steered needles aim to accurately control the deflection of the flexible needle’s tip to achieve accurate path following. In doing so, they can decrease trauma to the patient, by avoiding sensitive regions while increasing placement accuracy. This class of needle presents more complicated kinematics compared to straight needles, which can be exploited to produce specific motion profiles via careful controller design and tuning. Motion profiles can be optimized to minimize certain conditions such as maximum tissue deformation and target migration, which was the goal of the formalized cyclic, low-level controller for a Programmable Bevel-tip Needle (PBN) presented in this work. PBNs are composed of a number of interlocked segments that are able to slide with respect to one another. Producing a controlled, desired offset of the tip geometry leads to the corresponding desired curvature of the PBN, and hence desired path trajectory of the system. Here, we propose a cyclical actuation strategy, where the tip configuration is achieved over a number of reciprocal motion cycles, which we hypothesize will reduce tissue deformation during the insertion process. A series of in vitro, planar needle insertion experiments are performed in order to compare the cyclic controller performance with the previously used direct push controller, in terms of targeting accuracy and tissue deformation. It is found that there is no significant difference between the target tracking performance of the controllers, but a significant decrease in axial tissue deformation when using the cyclic controller.
{"title":"Cyclic Motion Control for Programmable Bevel-Tip Needles to Reduce Tissue Deformation","authors":"E. Matheson, R. Secoli, Christopher Burrows, A. Leibinger, F. Baena","doi":"10.1142/S2424905X18420011","DOIUrl":"https://doi.org/10.1142/S2424905X18420011","url":null,"abstract":"Robotic-assisted steered needles aim to accurately control the deflection of the flexible needle’s tip to achieve accurate path following. In doing so, they can decrease trauma to the patient, by avoiding sensitive regions while increasing placement accuracy. This class of needle presents more complicated kinematics compared to straight needles, which can be exploited to produce specific motion profiles via careful controller design and tuning. Motion profiles can be optimized to minimize certain conditions such as maximum tissue deformation and target migration, which was the goal of the formalized cyclic, low-level controller for a Programmable Bevel-tip Needle (PBN) presented in this work. PBNs are composed of a number of interlocked segments that are able to slide with respect to one another. Producing a controlled, desired offset of the tip geometry leads to the corresponding desired curvature of the PBN, and hence desired path trajectory of the system. Here, we propose a cyclical actuation strategy, where the tip configuration is achieved over a number of reciprocal motion cycles, which we hypothesize will reduce tissue deformation during the insertion process. A series of in vitro, planar needle insertion experiments are performed in order to compare the cyclic controller performance with the previously used direct push controller, in terms of targeting accuracy and tissue deformation. It is found that there is no significant difference between the target tracking performance of the controllers, but a significant decrease in axial tissue deformation when using the cyclic controller.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"88 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116715213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-01DOI: 10.1142/S2424905X18410076
T. Cheng, Xue Zhang, C. Ng, P. Chiu, Zheng Li
A major challenge of minimally invasive surgery (MIS), particularly in laparoendoscopic single site (LESS) surgery, is trocar crowding. Trocar crowding causes instruments fencing, limited instrument access and limited endoscope views. It also increases the workload of surgeons. One strategy to alleviate the problem is to use magnetic anchored and guided system (MAGS). Existing MAGS endoscopes are assembled by multiple miniature components and actuated by onboard motors. This makes them complex, difficult to manufacture as well as requires additional power consumption. In this work, we present a novel soft-bodied magnetic anchored and guided endoscope, which comprises of a silicon structure, the magnets and a wireless camera module. The developed endoscope incorporates benefits of both MAGS (e.g. wireless steering and translation) and soft-bodied devices (e.g. compactness, lightweight, safety and simple fabrication). We model the moment loads experienced by the silicon structure to optimize the design of the endoscope. Performance and feasibility of the endoscope are validated using both benchtop setting and animal cadaver.
{"title":"Design and Evaluation of a Soft-Bodied Magnetic Anchored and Guided Endoscope","authors":"T. Cheng, Xue Zhang, C. Ng, P. Chiu, Zheng Li","doi":"10.1142/S2424905X18410076","DOIUrl":"https://doi.org/10.1142/S2424905X18410076","url":null,"abstract":"A major challenge of minimally invasive surgery (MIS), particularly in laparoendoscopic single site (LESS) surgery, is trocar crowding. Trocar crowding causes instruments fencing, limited instrument access and limited endoscope views. It also increases the workload of surgeons. One strategy to alleviate the problem is to use magnetic anchored and guided system (MAGS). Existing MAGS endoscopes are assembled by multiple miniature components and actuated by onboard motors. This makes them complex, difficult to manufacture as well as requires additional power consumption. In this work, we present a novel soft-bodied magnetic anchored and guided endoscope, which comprises of a silicon structure, the magnets and a wireless camera module. The developed endoscope incorporates benefits of both MAGS (e.g. wireless steering and translation) and soft-bodied devices (e.g. compactness, lightweight, safety and simple fabrication). We model the moment loads experienced by the silicon structure to optimize the design of the endoscope. Performance and feasibility of the endoscope are validated using both benchtop setting and animal cadaver.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134310164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-01DOI: 10.1142/S2424905X18410039
Lingbo Cheng, M. Tavakoli
A novel switched-impedance control method is proposed and implemented for telerobotic beating-heart surgery. Differing from cardiopulmonary-bypass-based arrested-heart surgery, beating-heart surgery creates challenges for the human operator (surgeon) due to the heart’s fast motions and, in the case of a teleoperated surgical robot, the oscillatory haptic feedback to the operator. This paper designs two switched reference impedance models for the master and slave robots to achieve both motion compensation and nonoscillatory force feedback during slave–heart interaction. By changing the parameters of the impedance models, different performances for both robots are obtained: (a) when the slave robot does not make contact with the beating heart, the slave robot closely follows the motion of the master robot as in a regular teleoperation system, (b) when contact occurs, the slave robot automatically compensates for the fast motions of the beating heart while the human operator perceives the nonoscillatory component of the slave–heart interaction forces, creating the feeling of making contact with an idle heart for the human operator. The proposed method is validated through simulations and experiments.
{"title":"Switched-Impedance Control of Surgical Robots in Teleoperated Beating-Heart Surgery","authors":"Lingbo Cheng, M. Tavakoli","doi":"10.1142/S2424905X18410039","DOIUrl":"https://doi.org/10.1142/S2424905X18410039","url":null,"abstract":"A novel switched-impedance control method is proposed and implemented for telerobotic beating-heart surgery. Differing from cardiopulmonary-bypass-based arrested-heart surgery, beating-heart surgery creates challenges for the human operator (surgeon) due to the heart’s fast motions and, in the case of a teleoperated surgical robot, the oscillatory haptic feedback to the operator. This paper designs two switched reference impedance models for the master and slave robots to achieve both motion compensation and nonoscillatory force feedback during slave–heart interaction. By changing the parameters of the impedance models, different performances for both robots are obtained: (a) when the slave robot does not make contact with the beating heart, the slave robot closely follows the motion of the master robot as in a regular teleoperation system, (b) when contact occurs, the slave robot automatically compensates for the fast motions of the beating heart while the human operator perceives the nonoscillatory component of the slave–heart interaction forces, creating the feeling of making contact with an idle heart for the human operator. The proposed method is validated through simulations and experiments.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"115 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114733765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-01DOI: 10.1142/s2424905x18410088
Y. Sharon, I. Nisky
Quantitative characterization of surgical movements can improve the quality of patient care by informing the development of new training protocols for surgeons, and the design and control of surgical robots. Here, we focus on the relationship between the speed of movement and its geometry that was extensively studied in computational motor control. In three-dimensional movements, this relationship is defined by a family of speed–curvature–torsion power laws, such as the one-sixth power law. We present a novel characterization of open and teleoperated suturing movements using the speed–curvature–torsion power-law analysis. We fitted the gain and the exponents of this power law to suturing movements of participants with different levels of surgical experience in open (using sensorized forceps) and teleoperated (using the da Vinci Research Kit/da Vinci Surgical System) conditions from two different datasets. We found that expertise and teleoperation significantly affected the gain and exponents of the power law, and that there were large differences between different segments of movement. These results confirm that the relationship between the speed and geometry of surgical movements is indicative of surgical skill, open a new avenue for understanding the effect of teleoperation on the movements of surgeons, and lay the foundation for the development of new algorithms for automatic segmentation of surgical tasks.
{"title":"Expertise, Teleoperation, and Task Constraints Affect the Speed-Curvature-Torsion Power Law in RAMIS","authors":"Y. Sharon, I. Nisky","doi":"10.1142/s2424905x18410088","DOIUrl":"https://doi.org/10.1142/s2424905x18410088","url":null,"abstract":"Quantitative characterization of surgical movements can improve the quality of patient care by informing the development of new training protocols for surgeons, and the design and control of surgical robots. Here, we focus on the relationship between the speed of movement and its geometry that was extensively studied in computational motor control. In three-dimensional movements, this relationship is defined by a family of speed–curvature–torsion power laws, such as the one-sixth power law. We present a novel characterization of open and teleoperated suturing movements using the speed–curvature–torsion power-law analysis. We fitted the gain and the exponents of this power law to suturing movements of participants with different levels of surgical experience in open (using sensorized forceps) and teleoperated (using the da Vinci Research Kit/da Vinci Surgical System) conditions from two different datasets. We found that expertise and teleoperation significantly affected the gain and exponents of the power law, and that there were large differences between different segments of movement. These results confirm that the relationship between the speed and geometry of surgical movements is indicative of surgical skill, open a new avenue for understanding the effect of teleoperation on the movements of surgeons, and lay the foundation for the development of new algorithms for automatic segmentation of surgical tasks.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"979 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114058381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-01DOI: 10.1142/S2424905X18410064
Z. Tse, Yue Chen, Sierra E. Hovet, Hongliang Ren, K. Cleary, Sheng Xu, B. Wood, R. Monfaredi
Soft robotics are robotic systems made of materials that are similar in softness to human soft tissues. Recent medical soft robot designs, including rehabilitation, surgical, and diagnostic soft robots, are categorized by application and reviewed for functionality. Each design is analyzed for engineering characteristics and clinical significance. Current technical challenges in soft robotics fabrication, sensor integration, and control are discussed. Future directions including portable and robust actuation power sources, clinical adoptability, and clinical regulatory issues are summarized.
{"title":"Soft Robotics in Medical Applications","authors":"Z. Tse, Yue Chen, Sierra E. Hovet, Hongliang Ren, K. Cleary, Sheng Xu, B. Wood, R. Monfaredi","doi":"10.1142/S2424905X18410064","DOIUrl":"https://doi.org/10.1142/S2424905X18410064","url":null,"abstract":"Soft robotics are robotic systems made of materials that are similar in softness to human soft tissues. Recent medical soft robot designs, including rehabilitation, surgical, and diagnostic soft robots, are categorized by application and reviewed for functionality. Each design is analyzed for engineering characteristics and clinical significance. Current technical challenges in soft robotics fabrication, sensor integration, and control are discussed. Future directions including portable and robust actuation power sources, clinical adoptability, and clinical regulatory issues are summarized.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127086138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-01DOI: 10.1142/S2424905X18410040
B. Fallahi, R. Sloboda, N. Usmani, M. Tavakoli
In this paper, a duty-cycle-based method is proposed for needle steering in 3D. The paper models the continuous 3D needle steering problem as a four-mode switching system and provides a new average-based formulation to transform the continuous input into a switching sequence. In this structure, the needle tip deflection control system is decomposed to two different 2D subsystems. Each subsystem has its own input, for which a controller can be designed to adjust a switching duty cycle. The duty cycles from the two subsystems are then combined to provide an axial needle rotation command to control the needle deflection in 3D. In order to show the application of the proposed formulation, robust sliding mode technique is employed to design controllers for each subsystem and, thus for the total system in 3D. The controllers are designed to be robust with respect to uncertainties in the value of the needle path curvature and to deal with measurement limitations. The performance of the proposed framework is shown by performing experiments in different scenarios.
{"title":"Model Averaging and Input Transformation for 3D Needle Steering","authors":"B. Fallahi, R. Sloboda, N. Usmani, M. Tavakoli","doi":"10.1142/S2424905X18410040","DOIUrl":"https://doi.org/10.1142/S2424905X18410040","url":null,"abstract":"In this paper, a duty-cycle-based method is proposed for needle steering in 3D. The paper models the continuous 3D needle steering problem as a four-mode switching system and provides a new average-based formulation to transform the continuous input into a switching sequence. In this structure, the needle tip deflection control system is decomposed to two different 2D subsystems. Each subsystem has its own input, for which a controller can be designed to adjust a switching duty cycle. The duty cycles from the two subsystems are then combined to provide an axial needle rotation command to control the needle deflection in 3D. In order to show the application of the proposed formulation, robust sliding mode technique is employed to design controllers for each subsystem and, thus for the total system in 3D. The controllers are designed to be robust with respect to uncertainties in the value of the needle path curvature and to deal with measurement limitations. The performance of the proposed framework is shown by performing experiments in different scenarios.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127348106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-01DOI: 10.1142/S2424905X18410027
Sabine Thürauf, Oliver Hornung, M. Körner, F. Vogt, A. Knoll, M. Nasseri
In interventional radiology or surgery, C-arm systems are typical imaging modalities. Apart from 2D X-ray images, C-arm systems are able to perform 2D/3D overlays. For this application, a previously recorded 3D volume is projected on a 2D X-ray image for providing additional information to the clinician. The required accuracy for this application is 1.5[Formula: see text]mm. Such a spatial accuracy is only achievable with C-arms, if a calibration is performed. State-of-the-art approaches interpolate between values of lookup tables of a sampled Cartesian volume. However, due to the non-linear system behavior in Cartesian space, a trade-off between the calibration effort and the calibrated volume is necessary. This leads to the calibration of the most relevant subvolume and high calibration times. We discuss a new model-based calibration approach for C-arm systems which potentially leads to a smaller calibration effort and simultaneously to an increased calibrated volume. In this work, we demonstrate that it is possible to calibrate a robotic C-arm system using X-ray images and that a static model of the system is required to achieve the desired accuracy for 2D/3D overlays, if re-orientations of the system are performed.
{"title":"Model-Based Calibration of a Robotic C-Arm System Using X-Ray Imaging","authors":"Sabine Thürauf, Oliver Hornung, M. Körner, F. Vogt, A. Knoll, M. Nasseri","doi":"10.1142/S2424905X18410027","DOIUrl":"https://doi.org/10.1142/S2424905X18410027","url":null,"abstract":"In interventional radiology or surgery, C-arm systems are typical imaging modalities. Apart from 2D X-ray images, C-arm systems are able to perform 2D/3D overlays. For this application, a previously recorded 3D volume is projected on a 2D X-ray image for providing additional information to the clinician. The required accuracy for this application is 1.5[Formula: see text]mm. Such a spatial accuracy is only achievable with C-arms, if a calibration is performed. State-of-the-art approaches interpolate between values of lookup tables of a sampled Cartesian volume. However, due to the non-linear system behavior in Cartesian space, a trade-off between the calibration effort and the calibrated volume is necessary. This leads to the calibration of the most relevant subvolume and high calibration times. We discuss a new model-based calibration approach for C-arm systems which potentially leads to a smaller calibration effort and simultaneously to an increased calibrated volume. In this work, we demonstrate that it is possible to calibrate a robotic C-arm system using X-ray images and that a static model of the system is required to achieve the desired accuracy for 2D/3D overlays, if re-orientations of the system are performed.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130023213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-01DOI: 10.1142/S2424905X18410052
D. A. Nagy, T. D. Nagy, R. Elek, I. Rudas, T. Haidegger
Automation of surgical processes (SPs) is an utterly complex, yet highly demanded feature by medical experts. Currently, surgical tools with advanced sensory and diagnostic capabilities are only available. A major criticism towards the newly developed instruments that they are not fitting into the existing medical workflow often creating more annoyance than benefit for the surgeon. The first step in achieving streamlined integration of computer technologies is gaining a better understanding of the SP. Surgical ontologies provide a generic platform for describing elements of the surgical procedures. Surgical Process Models (SPMs) built on top of these ontologies have the potential to accurately represent the surgical workflow. SPMs provide the opportunity to use ontological terms as the basis of automation, allowing the developed algorithm to easily integrate into the surgical workflow, and to apply the automated SPMs wherever the linked ontological term appears in the workflow. In this work, as an example to this concept, the subtask level ontological term “blunt dissection” was targeted for automation. We implemented a computer vision-driven approach to demonstrate that automation on this task level is feasible. The algorithm was tested on an experimental silicone phantom as well as in several ex vivo environments. The implementation used the da Vinci surgical robot, controlled via the Da Vinci Research Kit (DVRK), relying on a shared code-base among the DVRK institutions. It is believed that developing and linking further building blocks of lower level surgical subtasks could lead to the introduction of automated soft tissue surgery. In the future, the building blocks could be individually unit tested, leading to incremental automation of the domain. This framework could potentially standardize surgical performance, eventually improving patient outcomes.
{"title":"Ontology-Based Surgical Subtask Automation, Automating Blunt Dissection","authors":"D. A. Nagy, T. D. Nagy, R. Elek, I. Rudas, T. Haidegger","doi":"10.1142/S2424905X18410052","DOIUrl":"https://doi.org/10.1142/S2424905X18410052","url":null,"abstract":"Automation of surgical processes (SPs) is an utterly complex, yet highly demanded feature by medical experts. Currently, surgical tools with advanced sensory and diagnostic capabilities are only available. A major criticism towards the newly developed instruments that they are not fitting into the existing medical workflow often creating more annoyance than benefit for the surgeon. The first step in achieving streamlined integration of computer technologies is gaining a better understanding of the SP. Surgical ontologies provide a generic platform for describing elements of the surgical procedures. Surgical Process Models (SPMs) built on top of these ontologies have the potential to accurately represent the surgical workflow. SPMs provide the opportunity to use ontological terms as the basis of automation, allowing the developed algorithm to easily integrate into the surgical workflow, and to apply the automated SPMs wherever the linked ontological term appears in the workflow. In this work, as an example to this concept, the subtask level ontological term “blunt dissection” was targeted for automation. We implemented a computer vision-driven approach to demonstrate that automation on this task level is feasible. The algorithm was tested on an experimental silicone phantom as well as in several ex vivo environments. The implementation used the da Vinci surgical robot, controlled via the Da Vinci Research Kit (DVRK), relying on a shared code-base among the DVRK institutions. It is believed that developing and linking further building blocks of lower level surgical subtasks could lead to the introduction of automated soft tissue surgery. In the future, the building blocks could be individually unit tested, leading to incremental automation of the domain. This framework could potentially standardize surgical performance, eventually improving patient outcomes.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124377423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}