首页 > 最新文献

APSIPA Transactions on Signal and Information Processing最新文献

英文 中文
The Age of Synthetic Realities: Challenges and Opportunities 合成现实时代:挑战与机遇
Q1 Computer Science Pub Date : 2023-01-01 DOI: 10.1561/116.00000138
João Phillipe Cardenuto, Jing Yang, Rafael Padilha, Renjie Wan, Daniel Moreira, Haoliang Li, Shiqi Wang, Fernanda Andaló, Sébastien Marcel, Anderson Rocha
{"title":"The Age of Synthetic Realities: Challenges and Opportunities","authors":"João Phillipe Cardenuto, Jing Yang, Rafael Padilha, Renjie Wan, Daniel Moreira, Haoliang Li, Shiqi Wang, Fernanda Andaló, Sébastien Marcel, Anderson Rocha","doi":"10.1561/116.00000138","DOIUrl":"https://doi.org/10.1561/116.00000138","url":null,"abstract":"","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135447314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial for Special Issue on Emerging AI Technologies for Smart Infrastructure “面向智能基础设施的新兴人工智能技术”特刊社论
Q1 Computer Science Pub Date : 2023-01-01 DOI: 10.1561/116.00001101
Jiaying Liu, Wen-Huang Cheng, Jenq-Neng Hwang, lvan V. Bajic, Shiqi Wang, Junseok Kwon, Ngai-Man Cheung, Rei Kawakami
The continuously expanding urban environment introduces a significant amount of both physical and digital infrastructure. The accompanying solution that collects environmental big data through the Internet of Things (IoT) holds great promise, opening up new opportunities as well as challenges. On one hand, billions of sensors and devices continuously collect, process, and transmit data. The data volume poses the challenge for supporting the decision-making in an automatic and intelligent way. On the other hand, the dynamism of data, the complexity of the environment, and the diversity of tasks also set the barrier to the intelligent processing paradigm of smart infrastructure. Fortunately, recent advancements in AI technologies offer cost-effective solutions that are capable of substantially improving modern metropolitan smart infrastructure. This special issue focuses smart sensors, smart communications, smart analytics, and applications for smart infrastructure, introducing the relevant background and discussing potential beneficial technical routes. This special issue has collected seven excellent articles recognized by the reviewers and highly recommended by the editors.
{"title":"Editorial for Special Issue on Emerging AI Technologies for Smart Infrastructure","authors":"Jiaying Liu, Wen-Huang Cheng, Jenq-Neng Hwang, lvan V. Bajic, Shiqi Wang, Junseok Kwon, Ngai-Man Cheung, Rei Kawakami","doi":"10.1561/116.00001101","DOIUrl":"https://doi.org/10.1561/116.00001101","url":null,"abstract":"The continuously expanding urban environment introduces a significant amount of both physical and digital infrastructure. The accompanying solution that collects environmental big data through the Internet of Things (IoT) holds great promise, opening up new opportunities as well as challenges. On one hand, billions of sensors and devices continuously collect, process, and transmit data. The data volume poses the challenge for supporting the decision-making in an automatic and intelligent way. On the other hand, the dynamism of data, the complexity of the environment, and the diversity of tasks also set the barrier to the intelligent processing paradigm of smart infrastructure. Fortunately, recent advancements in AI technologies offer cost-effective solutions that are capable of substantially improving modern metropolitan smart infrastructure. This special issue focuses smart sensors, smart communications, smart analytics, and applications for smart infrastructure, introducing the relevant background and discussing potential beneficial technical routes. This special issue has collected seven excellent articles recognized by the reviewers and highly recommended by the editors.","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135450871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PointFlowHop: Green and Interpretable Scene Flow Estimation from Consecutive Point Clouds PointFlowHop:绿色和可解释的场景流估计从连续点云
Q1 Computer Science Pub Date : 2023-01-01 DOI: 10.1561/116.00000006
Pranav Kadam, Jiahao Gu, Shan Liu, C.-C. Jay Kuo
{"title":"PointFlowHop: Green and Interpretable Scene Flow Estimation from Consecutive Point Clouds","authors":"Pranav Kadam, Jiahao Gu, Shan Liu, C.-C. Jay Kuo","doi":"10.1561/116.00000006","DOIUrl":"https://doi.org/10.1561/116.00000006","url":null,"abstract":"","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135733701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Overview of Intelligent Signal Processing Systems 智能信号处理系统概述
IF 3.2 Q1 Computer Science Pub Date : 2023-01-01 DOI: 10.1561/116.00000053
Kun-Chih (Jimmy) Chen, Wen-Hsiao Peng, Chris Gwo Giun Lee
{"title":"Overview of Intelligent Signal Processing Systems","authors":"Kun-Chih (Jimmy) Chen, Wen-Hsiao Peng, Chris Gwo Giun Lee","doi":"10.1561/116.00000053","DOIUrl":"https://doi.org/10.1561/116.00000053","url":null,"abstract":"","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67081078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Missing Data Completion of Multi-channel Signals Using Autoencoder for Acoustic Scene Classification 基于自动编码器的多通道信号缺失数据补全声学场景分类
IF 3.2 Q1 Computer Science Pub Date : 2023-01-01 DOI: 10.1561/116.00000074
Yuki Shiroma, Yuma Kinoshita, Keisuke Imoto, Sayaka Shiota, Nobutaka Ono, H. Kiya
{"title":"Missing Data Completion of Multi-channel Signals Using Autoencoder for Acoustic Scene Classification","authors":"Yuki Shiroma, Yuma Kinoshita, Keisuke Imoto, Sayaka Shiota, Nobutaka Ono, H. Kiya","doi":"10.1561/116.00000074","DOIUrl":"https://doi.org/10.1561/116.00000074","url":null,"abstract":"","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67081183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lightweight Quality Evaluation of Generated Samples and Generative Models 生成样本和生成模型的轻量级质量评估
IF 3.2 Q1 Computer Science Pub Date : 2023-01-01 DOI: 10.1561/116.00000076
Ganning Zhao, Vasileios Magoulianitis, Suya You, C. J. Kuo
Although there are metrics to evaluate the performance of generative models, little research is conducted on the quality evaluation of individual generated samples. A lightweight generated sample quality evaluation (LGSQE) method is proposed in this work. LGSQE trains a binary classifier to differentiate real and synthetic images from a generative model and, then, uses it to assign a soft label between zero and one to a generated sample as its quality index. LGSQE can reject poor generations and serve as a post-processing module for quality control. Furthermore, by aggregating quality indices of a large number of generated samples, LGSQE offers four metrics (i.e., classification accuracy (Acc), the area under the curve (AUC), precision, and recall) to evaluate the performance of a generative model as a byproduct. LGSQE demands a significantly smaller memory size and faster evaluation time while preserving the same rank order predicted by the Fréchet Inception Distance (FID). Extensive experiments are conducted to demonstrate the effectiveness and efficiency of LGSQE.
虽然有指标来评估生成模型的性能,但很少有研究对单个生成样本的质量评估。本文提出了一种轻量级的生成样本质量评价方法。LGSQE训练一个二值分类器从生成模型中区分真实图像和合成图像,然后使用它为生成的样本分配0到1之间的软标签作为其质量指标。LGSQE可以拒绝较差的代,并作为质量控制的后处理模块。此外,通过汇总大量生成样本的质量指标,LGSQE提供了四个指标(即分类精度(Acc),曲线下面积(AUC),精度和召回率)来评估生成模型作为副产品的性能。LGSQE需要更小的内存大小和更快的评估时间,同时保持与fr起始距离(FID)预测的相同的秩顺序。大量的实验证明了LGSQE的有效性和效率。
{"title":"Lightweight Quality Evaluation of Generated Samples and Generative Models","authors":"Ganning Zhao, Vasileios Magoulianitis, Suya You, C. J. Kuo","doi":"10.1561/116.00000076","DOIUrl":"https://doi.org/10.1561/116.00000076","url":null,"abstract":"Although there are metrics to evaluate the performance of generative models, little research is conducted on the quality evaluation of individual generated samples. A lightweight generated sample quality evaluation (LGSQE) method is proposed in this work. LGSQE trains a binary classifier to differentiate real and synthetic images from a generative model and, then, uses it to assign a soft label between zero and one to a generated sample as its quality index. LGSQE can reject poor generations and serve as a post-processing module for quality control. Furthermore, by aggregating quality indices of a large number of generated samples, LGSQE offers four metrics (i.e., classification accuracy (Acc), the area under the curve (AUC), precision, and recall) to evaluate the performance of a generative model as a byproduct. LGSQE demands a significantly smaller memory size and faster evaluation time while preserving the same rank order predicted by the Fréchet Inception Distance (FID). Extensive experiments are conducted to demonstrate the effectiveness and efficiency of LGSQE.","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67081197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Real-Time DDoS Attack Detection and Classification System Using Hierarchical Temporal Memory 基于分层时间存储器的实时DDoS攻击检测与分类系统
IF 3.2 Q1 Computer Science Pub Date : 2023-01-01 DOI: 10.1561/116.00000147
Yu-Kuen Lai, M. Nguyen
{"title":"A Real-Time DDoS Attack Detection and Classification System Using Hierarchical Temporal Memory","authors":"Yu-Kuen Lai, M. Nguyen","doi":"10.1561/116.00000147","DOIUrl":"https://doi.org/10.1561/116.00000147","url":null,"abstract":"","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67081614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Tiny Machine Learning Model for Point Cloud Object Classification 一种用于点云对象分类的微型机器学习模型
Q1 Computer Science Pub Date : 2023-01-01 DOI: 10.1561/116.00000114
Min Zhang, Jintang Xue, Pranav Kadam, Hardik Prajapati, Shan Liu, C.-C. Jay Kuo
{"title":"A Tiny Machine Learning Model for Point Cloud Object Classification","authors":"Min Zhang, Jintang Xue, Pranav Kadam, Hardik Prajapati, Shan Liu, C.-C. Jay Kuo","doi":"10.1561/116.00000114","DOIUrl":"https://doi.org/10.1561/116.00000114","url":null,"abstract":"","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136137115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ExAD-GNN: Explainable Graph Neural Network for Alzheimer’s Disease State Prediction from Single-cell Data ExAD-GNN:基于单细胞数据的阿尔茨海默病状态预测的可解释图神经网络
Q1 Computer Science Pub Date : 2023-01-01 DOI: 10.1561/116.00000239
Ziheng Duan, Cheyu Lee, Jing Zhang
{"title":"ExAD-GNN: Explainable Graph Neural Network for Alzheimer’s Disease State Prediction from Single-cell Data","authors":"Ziheng Duan, Cheyu Lee, Jing Zhang","doi":"10.1561/116.00000239","DOIUrl":"https://doi.org/10.1561/116.00000239","url":null,"abstract":"","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135594886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Steganalyzer: A Green Learning Approach to Image Steganalysis 绿色隐写分析器:图像隐写分析的绿色学习方法
Q1 Computer Science Pub Date : 2023-01-01 DOI: 10.1561/116.00000136
Yao Zhu, Xinyu Wang, Hong-Shuo Chen, Ronald Salloum, C.-C. Jay Kuo
{"title":"Green Steganalyzer: A Green Learning Approach to Image Steganalysis","authors":"Yao Zhu, Xinyu Wang, Hong-Shuo Chen, Ronald Salloum, C.-C. Jay Kuo","doi":"10.1561/116.00000136","DOIUrl":"https://doi.org/10.1561/116.00000136","url":null,"abstract":"","PeriodicalId":44812,"journal":{"name":"APSIPA Transactions on Signal and Information Processing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135846624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
APSIPA Transactions on Signal and Information Processing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1