首页 > 最新文献

International Journal on Digital Libraries最新文献

英文 中文
Comparing different search methods for the open access journal recommendation tool B!SON 开放获取期刊推荐工具B!儿子
IF 1.5 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE Pub Date : 2023-07-20 DOI: 10.1007/s00799-023-00372-3
Elias Entrup, A. Eppelin, R. Ewerth, Josephine Hartwig, Marco Tullney, Michael Wohlgemuth, Anett Hoppe
{"title":"Comparing different search methods for the open access journal recommendation tool B!SON","authors":"Elias Entrup, A. Eppelin, R. Ewerth, Josephine Hartwig, Marco Tullney, Michael Wohlgemuth, Anett Hoppe","doi":"10.1007/s00799-023-00372-3","DOIUrl":"https://doi.org/10.1007/s00799-023-00372-3","url":null,"abstract":"","PeriodicalId":44974,"journal":{"name":"International Journal on Digital Libraries","volume":"65 2 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81405201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PEERRec: An AI-based approach to automatically generate recommendations and predict decisions in peer review PEERRec:一种基于人工智能的方法,在同行评审中自动生成建议和预测决策
IF 1.5 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE Pub Date : 2023-07-04 DOI: 10.1007/s00799-023-00375-0
P. Bharti, Tirthankar Ghosal, Mayank Agarwal, Asif Ekbal
{"title":"PEERRec: An AI-based approach to automatically generate recommendations and predict decisions in peer review","authors":"P. Bharti, Tirthankar Ghosal, Mayank Agarwal, Asif Ekbal","doi":"10.1007/s00799-023-00375-0","DOIUrl":"https://doi.org/10.1007/s00799-023-00375-0","url":null,"abstract":"","PeriodicalId":44974,"journal":{"name":"International Journal on Digital Libraries","volume":"6 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80162340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
AgAsk: an agent to help answer farmer’s questions from scientific documents AgAsk:帮助农民从科学文献中回答问题的代理
Q2 INFORMATION SCIENCE & LIBRARY SCIENCE Pub Date : 2023-06-19 DOI: 10.1007/s00799-023-00369-y
Bevan Koopman, Ahmed Mourad, Hang Li, Anton van der Vegt, Shengyao Zhuang, Simon Gibson, Yash Dang, David Lawrence, Guido Zuccon
Abstract Decisions in agriculture are increasingly data-driven. However, valuable agricultural knowledge is often locked away in free-text reports, manuals and journal articles. Specialised search systems are needed that can mine agricultural information to provide relevant answers to users’ questions. This paper presents AgAsk—an agent able to answer natural language agriculture questions by mining scientific documents. We carefully survey and analyse farmers’ information needs. On the basis of these needs, we release an information retrieval test collection comprising real questions, a large collection of scientific documents split in passages, and ground truth relevance assessments indicating which passages are relevant to each question. We implement and evaluate a number of information retrieval models to answer farmers questions, including two state-of-the-art neural ranking models. We show that neural rankers are highly effective at matching passages to questions in this context. Finally, we propose a deployment architecture for AgAsk that includes a client based on the Telegram messaging platform and retrieval model deployed on commodity hardware. The test collection we provide is intended to stimulate more research in methods to match natural language to answers in scientific documents. While the retrieval models were evaluated in the agriculture domain, they are generalisable and of interest to others working on similar problems. The test collection is available at: https://github.com/ielab/agvaluate .
农业决策越来越多地由数据驱动。然而,宝贵的农业知识往往被锁在自由文本报告、手册和期刊文章中。需要专门的搜索系统来挖掘农业信息,为用户的问题提供相关的答案。本文提出了一种能够通过挖掘科学文献来回答自然语言农业问题的智能体asask。我们认真调查和分析农民的信息需求。在这些需求的基础上,我们发布了一个信息检索测试集,包括真实问题,大量科学文献的片段,以及表明哪些段落与每个问题相关的基础真相相关性评估。我们实施和评估了一些信息检索模型来回答农民的问题,包括两个最先进的神经排序模型。我们表明,在这种情况下,神经排序器在匹配段落和问题方面非常有效。最后,我们提出了一个AgAsk的部署体系结构,其中包括基于Telegram消息平台的客户端和部署在商用硬件上的检索模型。我们提供的测试集旨在激发更多的研究方法,将自然语言与科学文献中的答案相匹配。虽然这些检索模型是在农业领域进行评估的,但它们是可推广的,并且对研究类似问题的其他人很感兴趣。测试集可在:https://github.com/ielab/agvaluate上获得。
{"title":"AgAsk: an agent to help answer farmer’s questions from scientific documents","authors":"Bevan Koopman, Ahmed Mourad, Hang Li, Anton van der Vegt, Shengyao Zhuang, Simon Gibson, Yash Dang, David Lawrence, Guido Zuccon","doi":"10.1007/s00799-023-00369-y","DOIUrl":"https://doi.org/10.1007/s00799-023-00369-y","url":null,"abstract":"Abstract Decisions in agriculture are increasingly data-driven. However, valuable agricultural knowledge is often locked away in free-text reports, manuals and journal articles. Specialised search systems are needed that can mine agricultural information to provide relevant answers to users’ questions. This paper presents AgAsk—an agent able to answer natural language agriculture questions by mining scientific documents. We carefully survey and analyse farmers’ information needs. On the basis of these needs, we release an information retrieval test collection comprising real questions, a large collection of scientific documents split in passages, and ground truth relevance assessments indicating which passages are relevant to each question. We implement and evaluate a number of information retrieval models to answer farmers questions, including two state-of-the-art neural ranking models. We show that neural rankers are highly effective at matching passages to questions in this context. Finally, we propose a deployment architecture for AgAsk that includes a client based on the Telegram messaging platform and retrieval model deployed on commodity hardware. The test collection we provide is intended to stimulate more research in methods to match natural language to answers in scientific documents. While the retrieval models were evaluated in the agriculture domain, they are generalisable and of interest to others working on similar problems. The test collection is available at: https://github.com/ielab/agvaluate .","PeriodicalId":44974,"journal":{"name":"International Journal on Digital Libraries","volume":"127 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135336431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ORKG-Leaderboards: a systematic workflow for mining leaderboards as a knowledge graph ORKG-Leaderboards:将排行榜作为知识图进行挖掘的系统化工作流程
Q2 INFORMATION SCIENCE & LIBRARY SCIENCE Pub Date : 2023-06-15 DOI: 10.1007/s00799-023-00366-1
Salomon Kabongo, Jennifer D’Souza, Sören Auer
Abstract The purpose of this work is to describe the orkg -Leaderboard software designed to extract leaderboards defined as task–dataset–metric tuples automatically from large collections of empirical research papers in artificial intelligence (AI). The software can support both the main workflows of scholarly publishing, viz. as LaTeX files or as PDF files. Furthermore, the system is integrated with the open research knowledge graph (ORKG) platform, which fosters the machine-actionable publishing of scholarly findings. Thus, the systemsss output, when integrated within the ORKG’s supported Semantic Web infrastructure of representing machine-actionable ‘resources’ on the Web, enables: (1) broadly, the integration of empirical results of researchers across the world, thus enabling transparency in empirical research with the potential to also being complete contingent on the underlying data source(s) of publications; and (2) specifically, enables researchers to track the progress in AI with an overview of the state-of-the-art across the most common AI tasks and their corresponding datasets via dynamic ORKG frontend views leveraging tables and visualization charts over the machine-actionable data. Our best model achieves performances above 90% F1 on the leaderboard extraction task, thus proving orkg -Leaderboards a practically viable tool for real-world usage. Going forward, in a sense, orkg -Leaderboards transforms the leaderboard extraction task to an automated digitalization task, which has been, for a long time in the community, a crowdsourced endeavor.
本文的目的是描述orkg -Leaderboard软件,该软件旨在从人工智能(AI)的大量实证研究论文中自动提取被定义为任务-数据集-度量元组的排行榜。该软件可以支持学术出版的主要工作流程,即作为LaTeX文件或PDF文件。此外,该系统与开放研究知识图谱(ORKG)平台集成,促进了学术成果的机器可操作出版。因此,当将系统输出集成到ORKG支持的表示网络上机器可操作的“资源”的语义网基础设施中时,可以:(1)广泛地集成世界各地研究人员的经验结果,从而使经验研究透明化,并有可能根据出版物的底层数据源完成;(2)具体来说,使研究人员能够通过动态ORKG前端视图利用机器可操作数据上的表格和可视化图表,跟踪人工智能的进展,概述最常见的人工智能任务及其相应数据集的最新技术。我们的最佳模型在排行榜提取任务中实现了90%以上的F1性能,从而证明了orkg -Leaderboards在现实世界中是一个切实可行的工具。从某种意义上说,orkg -Leaderboards将排行榜提取任务转变为自动数字化任务,这在社区中已经存在很长一段时间了。
{"title":"ORKG-Leaderboards: a systematic workflow for mining leaderboards as a knowledge graph","authors":"Salomon Kabongo, Jennifer D’Souza, Sören Auer","doi":"10.1007/s00799-023-00366-1","DOIUrl":"https://doi.org/10.1007/s00799-023-00366-1","url":null,"abstract":"Abstract The purpose of this work is to describe the orkg -Leaderboard software designed to extract leaderboards defined as task–dataset–metric tuples automatically from large collections of empirical research papers in artificial intelligence (AI). The software can support both the main workflows of scholarly publishing, viz. as LaTeX files or as PDF files. Furthermore, the system is integrated with the open research knowledge graph (ORKG) platform, which fosters the machine-actionable publishing of scholarly findings. Thus, the systemsss output, when integrated within the ORKG’s supported Semantic Web infrastructure of representing machine-actionable ‘resources’ on the Web, enables: (1) broadly, the integration of empirical results of researchers across the world, thus enabling transparency in empirical research with the potential to also being complete contingent on the underlying data source(s) of publications; and (2) specifically, enables researchers to track the progress in AI with an overview of the state-of-the-art across the most common AI tasks and their corresponding datasets via dynamic ORKG frontend views leveraging tables and visualization charts over the machine-actionable data. Our best model achieves performances above 90% F1 on the leaderboard extraction task, thus proving orkg -Leaderboards a practically viable tool for real-world usage. Going forward, in a sense, orkg -Leaderboards transforms the leaderboard extraction task to an automated digitalization task, which has been, for a long time in the community, a crowdsourced endeavor.","PeriodicalId":44974,"journal":{"name":"International Journal on Digital Libraries","volume":"36 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134981699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A detailed library perspective on nearly unsupervised information extraction workflows in digital libraries 数字图书馆中几乎无监督的信息提取工作流程的详细图书馆视角
IF 1.5 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE Pub Date : 2023-06-13 DOI: 10.1007/s00799-023-00368-z
H. Kroll, Jan Pirklbauer, Florian Plötzky, Wolf-Tilo Balke
{"title":"A detailed library perspective on nearly unsupervised information extraction workflows in digital libraries","authors":"H. Kroll, Jan Pirklbauer, Florian Plötzky, Wolf-Tilo Balke","doi":"10.1007/s00799-023-00368-z","DOIUrl":"https://doi.org/10.1007/s00799-023-00368-z","url":null,"abstract":"","PeriodicalId":44974,"journal":{"name":"International Journal on Digital Libraries","volume":"35 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80224094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Issue: Epigraphy and Paleography: Bringing Records from the Distant Past to the Present 特刊:铭文和古文字:从遥远的过去到现在带来的记录
IF 1.5 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE Pub Date : 2023-06-01 DOI: 10.1007/s00799-023-00371-4
Stephen M. Griffin
{"title":"Special Issue: Epigraphy and Paleography: Bringing Records from the Distant Past to the Present","authors":"Stephen M. Griffin","doi":"10.1007/s00799-023-00371-4","DOIUrl":"https://doi.org/10.1007/s00799-023-00371-4","url":null,"abstract":"","PeriodicalId":44974,"journal":{"name":"International Journal on Digital Libraries","volume":"4 1","pages":"77 - 85"},"PeriodicalIF":1.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90851631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From stone to silicon: technical advances in epigraphy 从石头到硅:金石学的技术进步
IF 1.5 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE Pub Date : 2023-06-01 DOI: 10.1007/s00799-023-00362-5
W. Seales, Christy Chapman
{"title":"From stone to silicon: technical advances in epigraphy","authors":"W. Seales, Christy Chapman","doi":"10.1007/s00799-023-00362-5","DOIUrl":"https://doi.org/10.1007/s00799-023-00362-5","url":null,"abstract":"","PeriodicalId":44974,"journal":{"name":"International Journal on Digital Libraries","volume":"24 1","pages":"129 - 138"},"PeriodicalIF":1.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85951241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coverage and similarity of bibliographic databases to find most relevant literature for systematic reviews in education 覆盖范围和相似的书目数据库,以找到最相关的文献在教育系统综述
IF 1.5 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE Pub Date : 2023-05-24 DOI: 10.1007/s00799-023-00364-3
Tamara Heck, C. Keller, Marc Rittberger
{"title":"Coverage and similarity of bibliographic databases to find most relevant literature for systematic reviews in education","authors":"Tamara Heck, C. Keller, Marc Rittberger","doi":"10.1007/s00799-023-00364-3","DOIUrl":"https://doi.org/10.1007/s00799-023-00364-3","url":null,"abstract":"","PeriodicalId":44974,"journal":{"name":"International Journal on Digital Libraries","volume":"2 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73428461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Beyond translation: engaging with foreign languages in a digital library 更正:超越翻译:在数字图书馆中接触外语
IF 1.5 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE Pub Date : 2023-05-19 DOI: 10.1007/s00799-023-00365-2
G. Crane, Alison Babeu, Lisa M. Cerrato, Amelia Parrish, Carolina Penagos, Farnoosh Shamsian, James Tauber, Jake Wegner
{"title":"Correction: Beyond translation: engaging with foreign languages in a digital library","authors":"G. Crane, Alison Babeu, Lisa M. Cerrato, Amelia Parrish, Carolina Penagos, Farnoosh Shamsian, James Tauber, Jake Wegner","doi":"10.1007/s00799-023-00365-2","DOIUrl":"https://doi.org/10.1007/s00799-023-00365-2","url":null,"abstract":"","PeriodicalId":44974,"journal":{"name":"International Journal on Digital Libraries","volume":"4 1","pages":"177 - 177"},"PeriodicalIF":1.5,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85600207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-training involving semantic-space finetuning for semi-supervised multi-label document classification 基于语义空间调优的半监督多标签文档分类自训练
IF 1.5 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE Pub Date : 2023-05-11 DOI: 10.1007/s00799-023-00355-4
Zhewei Xu, M. Iwaihara
{"title":"Self-training involving semantic-space finetuning for semi-supervised multi-label document classification","authors":"Zhewei Xu, M. Iwaihara","doi":"10.1007/s00799-023-00355-4","DOIUrl":"https://doi.org/10.1007/s00799-023-00355-4","url":null,"abstract":"","PeriodicalId":44974,"journal":{"name":"International Journal on Digital Libraries","volume":"94 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82970342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal on Digital Libraries
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1