Sparsity-based models and techniques have been exploited in many signal processing and imaging applications. Data-driven methods based on dictionary and sparsifying transform learning enable learning rich image features from data and can outperform analytical models. In particular, alternating optimization algorithms have been popular for learning such models. In this work, we focus on alternating minimization for a specific structured unitary sparsifying operator learning problem and provide a convergence analysis. While the algorithm converges to the critical points of the problem generally, our analysis establishes under mild assumptions, the local linear convergence of the algorithm to the underlying sparsifying model of the data. Analysis and numerical simulations show that our assumptions hold for standard probabilistic data models. In practice, the algorithm is robust to initialization.
We consider the problem of graph matchability in non-identically distributed networks. In a general class of edge-independent networks, we demonstrate that graph matchability can be lost with high probability when matching the networks directly. We further demonstrate that under mild model assumptions, matchability is almost perfectly recovered by centering the networks using universal singular value thresholding before matching. These theoretical results are then demonstrated in both real and synthetic simulation settings. We also recover analogous core-matchability results in a very general core-junk network model, wherein some vertices do not correspond between the graph pair.