首页 > 最新文献

International Journal of Data Science and Analytics最新文献

英文 中文
Regression model and method settings for air pollution status analysis based on air quality data in Beijing (2017–2021) 基于北京市2017-2021年空气质量数据的大气污染状况回归模型及方法设置
IF 2.4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-07-03 DOI: 10.1007/s41060-023-00415-7
Shiyun Wa, Xinai Lu, Minjuan Wang
{"title":"Regression model and method settings for air pollution status analysis based on air quality data in Beijing (2017–2021)","authors":"Shiyun Wa, Xinai Lu, Minjuan Wang","doi":"10.1007/s41060-023-00415-7","DOIUrl":"https://doi.org/10.1007/s41060-023-00415-7","url":null,"abstract":"","PeriodicalId":45667,"journal":{"name":"International Journal of Data Science and Analytics","volume":"4 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78818765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Granger causality-based cluster sequence mining for spatio-temporal causal relation mining 基于Granger因果关系的聚类序列挖掘用于时空因果关系挖掘
IF 2.4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-07-03 DOI: 10.1007/s41060-023-00411-x
Nat Pavasant, Takashi Morita, M. Numao, Ken-ichi Fukui
{"title":"Granger causality-based cluster sequence mining for spatio-temporal causal relation mining","authors":"Nat Pavasant, Takashi Morita, M. Numao, Ken-ichi Fukui","doi":"10.1007/s41060-023-00411-x","DOIUrl":"https://doi.org/10.1007/s41060-023-00411-x","url":null,"abstract":"","PeriodicalId":45667,"journal":{"name":"International Journal of Data Science and Analytics","volume":"40 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88899936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cluster weighted model based on TSNE algorithm for high-dimensional data 基于TSNE算法的高维数据聚类加权模型
Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-07-01 DOI: 10.1007/s41060-023-00422-8
Kehinde Olobatuyi, Matthew R. P. Parker, Oludare Ariyo
Cluster-weighted models (CWMs) are an important class of machine learning models that are commonly used for modelling complex datasets. However, they are known to suffer from reduced computing efficiency and estimator accuracy when dealing with high-dimensional data. Previous work has proposed a parsimonious technique that can improve CWMs’ performance in the high-dimensional data paradigm. However, this method has a setback for very high-dimensional data, where the dimensionality is greater than 100. In this paper, we propose a new hybridised method that incorporates a dimensionality reduction technique called T-distributed stochastic neighbour embedding (TSNE) to enhance the parsimonious CWMs in high-dimensional space. Additionally, we introduce a novel heuristic for detecting the hidden components of the underlying mixture model, which can be used with the popular R package FlexCWM. We evaluated the performance of the proposed method using two real datasets and found that it improves clustering power when compared to both the parsimony methods and the TSNE methods combined with CWMs in the high-dimensional data setting. Our results suggest that the proposed method can improve the efficiency and accuracy of CWMs in dealing with high-dimensional data, making it a valuable tool for data scientists and statisticians.
聚类加权模型(CWMs)是一类重要的机器学习模型,通常用于复杂数据集的建模。然而,已知它们在处理高维数据时存在计算效率和估计器精度降低的问题。以前的工作已经提出了一种简化的技术,可以提高cwm在高维数据范式中的性能。但是,对于维数大于100的高维数据,这种方法有缺点。在本文中,我们提出了一种新的混合方法,结合降维技术,称为t分布随机邻居嵌入(TSNE),以增强高维空间中的简约cwm。此外,我们还引入了一种新的启发式方法来检测底层混合模型的隐藏组件,该方法可以与流行的R软件包FlexCWM一起使用。我们使用两个真实数据集评估了所提出方法的性能,发现在高维数据集上,与简约方法和结合cwm的TSNE方法相比,它提高了聚类能力。结果表明,该方法可以提高CWMs处理高维数据的效率和准确性,为数据科学家和统计学家提供了一个有价值的工具。
{"title":"Cluster weighted model based on TSNE algorithm for high-dimensional data","authors":"Kehinde Olobatuyi, Matthew R. P. Parker, Oludare Ariyo","doi":"10.1007/s41060-023-00422-8","DOIUrl":"https://doi.org/10.1007/s41060-023-00422-8","url":null,"abstract":"Cluster-weighted models (CWMs) are an important class of machine learning models that are commonly used for modelling complex datasets. However, they are known to suffer from reduced computing efficiency and estimator accuracy when dealing with high-dimensional data. Previous work has proposed a parsimonious technique that can improve CWMs’ performance in the high-dimensional data paradigm. However, this method has a setback for very high-dimensional data, where the dimensionality is greater than 100. In this paper, we propose a new hybridised method that incorporates a dimensionality reduction technique called T-distributed stochastic neighbour embedding (TSNE) to enhance the parsimonious CWMs in high-dimensional space. Additionally, we introduce a novel heuristic for detecting the hidden components of the underlying mixture model, which can be used with the popular R package FlexCWM. We evaluated the performance of the proposed method using two real datasets and found that it improves clustering power when compared to both the parsimony methods and the TSNE methods combined with CWMs in the high-dimensional data setting. Our results suggest that the proposed method can improve the efficiency and accuracy of CWMs in dealing with high-dimensional data, making it a valuable tool for data scientists and statisticians.","PeriodicalId":45667,"journal":{"name":"International Journal of Data Science and Analytics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136185133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bayesian learning models to measure the relative impact of ESG factors on credit ratings 贝叶斯学习模型衡量ESG因素对信用评级的相对影响
IF 2.4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-07-01 DOI: 10.1007/s41060-023-00405-9
Arianna Agosto, P. Cerchiello, Paolo Giudici
{"title":"Bayesian learning models to measure the relative impact of ESG factors on credit ratings","authors":"Arianna Agosto, P. Cerchiello, Paolo Giudici","doi":"10.1007/s41060-023-00405-9","DOIUrl":"https://doi.org/10.1007/s41060-023-00405-9","url":null,"abstract":"","PeriodicalId":45667,"journal":{"name":"International Journal of Data Science and Analytics","volume":"89 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90583311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Efficient graph-based spectral techniques for data with few labeled samples 具有少量标记样本的数据的高效基于图的光谱技术
IF 2.4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-07-01 DOI: 10.1007/s41060-023-00403-x
E. Merkurjev
{"title":"Efficient graph-based spectral techniques for data with few labeled samples","authors":"E. Merkurjev","doi":"10.1007/s41060-023-00403-x","DOIUrl":"https://doi.org/10.1007/s41060-023-00403-x","url":null,"abstract":"","PeriodicalId":45667,"journal":{"name":"International Journal of Data Science and Analytics","volume":"65 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81380059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph-based comparative analysis of learning to rank datasets 基于图的比较分析学习排序数据集
IF 2.4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-06-30 DOI: 10.1007/s41060-023-00406-8
A. Keyhanipour
{"title":"Graph-based comparative analysis of learning to rank datasets","authors":"A. Keyhanipour","doi":"10.1007/s41060-023-00406-8","DOIUrl":"https://doi.org/10.1007/s41060-023-00406-8","url":null,"abstract":"","PeriodicalId":45667,"journal":{"name":"International Journal of Data Science and Analytics","volume":"14 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80443400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Empirical assessment of transformer-based neural network architecture in forecasting pollution trends 基于变压器的神经网络结构在污染趋势预测中的实证评价
IF 2.4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-06-30 DOI: 10.1007/s41060-023-00421-9
Pritthijit Nath, Asif Iqbal Middya, Sarbani Roy
{"title":"Empirical assessment of transformer-based neural network architecture in forecasting pollution trends","authors":"Pritthijit Nath, Asif Iqbal Middya, Sarbani Roy","doi":"10.1007/s41060-023-00421-9","DOIUrl":"https://doi.org/10.1007/s41060-023-00421-9","url":null,"abstract":"","PeriodicalId":45667,"journal":{"name":"International Journal of Data Science and Analytics","volume":"33 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87622077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data science for next-generation recommender systems 下一代推荐系统的数据科学
IF 2.4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-06-29 DOI: 10.1007/s41060-023-00404-w
Shoujin Wang, Yan Wang, F. Sivrikaya, S. Albayrak, V. W. Anelli
{"title":"Data science for next-generation recommender systems","authors":"Shoujin Wang, Yan Wang, F. Sivrikaya, S. Albayrak, V. W. Anelli","doi":"10.1007/s41060-023-00404-w","DOIUrl":"https://doi.org/10.1007/s41060-023-00404-w","url":null,"abstract":"","PeriodicalId":45667,"journal":{"name":"International Journal of Data Science and Analytics","volume":"98 1","pages":"135 - 145"},"PeriodicalIF":2.4,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85834333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Power analysis for causal discovery 因果发现的功效分析
IF 2.4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-06-27 DOI: 10.1007/s41060-023-00399-4
Erich Kummerfeld, Leland Williams, Sisi Ma
{"title":"Power analysis for causal discovery","authors":"Erich Kummerfeld, Leland Williams, Sisi Ma","doi":"10.1007/s41060-023-00399-4","DOIUrl":"https://doi.org/10.1007/s41060-023-00399-4","url":null,"abstract":"","PeriodicalId":45667,"journal":{"name":"International Journal of Data Science and Analytics","volume":"196 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72898649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Improving trust and confidence in medical skin lesion diagnosis through explainable deep learning 通过可解释的深度学习提高对医学皮肤病变诊断的信任和信心
IF 2.4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-06-21 DOI: 10.1007/s41060-023-00401-z
C. Metta, Andrea Beretta, Riccardo Guidotti, Yuan Yin, P. Gallinari, S. Rinzivillo, F. Giannotti
{"title":"Improving trust and confidence in medical skin lesion diagnosis through explainable deep learning","authors":"C. Metta, Andrea Beretta, Riccardo Guidotti, Yuan Yin, P. Gallinari, S. Rinzivillo, F. Giannotti","doi":"10.1007/s41060-023-00401-z","DOIUrl":"https://doi.org/10.1007/s41060-023-00401-z","url":null,"abstract":"","PeriodicalId":45667,"journal":{"name":"International Journal of Data Science and Analytics","volume":"25 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74379265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Data Science and Analytics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1