Pub Date : 2024-02-29DOI: 10.1186/s44156-023-00039-4
D X Augustine, J Willis, S Sivalokanathan, C Wild, A Sharma, A Zaidi, K Pearce, G Stuart, M Papadakis, S Sharma, A Malhotra
Introduction: Athletic training can result in electrical and structural changes of the right ventricle that may mimic phenotypical features of arrhythmogenic right ventricular cardiomyopathy (ARVC), such as T-wave inversion and right heart dilatation. An erroneous interpretation may have consequences ranging from false reassurance in an athlete vulnerable to cardiac arrhythmias, to unnecessary sports restriction in a healthy individual. The primary aim of this study was to define normal RV dimension reference ranges for academy adolescent footballers of different ethnicities. Secondary aims include analysis of potential overlap between this adolescent group with ARVC criteria and comparison with normal adult ranges.
Results: Electrocardiographic (ECG) and echocardiographic data of 1087 academy male footballers aged between 13 and 18 years old (mean age 16.0 ± 0.5 years), attending mandatory cardiac screening were analysed. Ethnicity was categorised as white (n = 826), black (African/Caribbean; n = 166) and mixed-race (one parent white and one parent black; n = 95). Arrhythmogenic right ventricular cardiomyopathy major criteria for T-wave inversion was seen in 3.3% of the cohort. This was more prevalent in black footballers (12%) when compared to mixed race footballers (6.3%) or white footballers (1%), P < 0.05. Up to 59% of the cohort exceeded adult reference ranges for some of the right ventricular parameters, although values were similar to those seen in adult footballers. There were no differences in right ventricular dimensions between ethnicities. In particular, the right ventricular outflow tract diameter would fulfil major criteria for ARVC dimension in 12% of footballers. Overall, 0.2% of the cohort would fulfil diagnosis for 'definite' arrhythmogenic right ventricular cardiomyopathy and 2.2% would fulfil diagnosis for 'borderline' arrhythmogenic right ventricular cardiomyopathy for RV dimensions and ECG changes. This was seen more frequently in black footballers (9.9%) than mixed race footballers (3.9%) or white footballer (0.6%), P < 0.05. Among athletes meeting definite or borderline arrhythmogenic right ventricular cardiomyopathy criteria, no cardiomyopathy was identified after comprehensive clinical assessment, including with cardiac magnetic resonance imaging, exercise testing, ambulatory electrocardiograms and familial evaluation.
Conclusion: Right heart sizes in excess of accepted adult ranges occurred in as many as one in two adolescent footballers. Structural adaptations in conjunction with anterior T-wave inversion may raise concern for ARVC, highlighting the need for evaluation in expert settings.
{"title":"Right ventricular assessment of the adolescent footballer's heart.","authors":"D X Augustine, J Willis, S Sivalokanathan, C Wild, A Sharma, A Zaidi, K Pearce, G Stuart, M Papadakis, S Sharma, A Malhotra","doi":"10.1186/s44156-023-00039-4","DOIUrl":"10.1186/s44156-023-00039-4","url":null,"abstract":"<p><strong>Introduction: </strong>Athletic training can result in electrical and structural changes of the right ventricle that may mimic phenotypical features of arrhythmogenic right ventricular cardiomyopathy (ARVC), such as T-wave inversion and right heart dilatation. An erroneous interpretation may have consequences ranging from false reassurance in an athlete vulnerable to cardiac arrhythmias, to unnecessary sports restriction in a healthy individual. The primary aim of this study was to define normal RV dimension reference ranges for academy adolescent footballers of different ethnicities. Secondary aims include analysis of potential overlap between this adolescent group with ARVC criteria and comparison with normal adult ranges.</p><p><strong>Results: </strong>Electrocardiographic (ECG) and echocardiographic data of 1087 academy male footballers aged between 13 and 18 years old (mean age 16.0 ± 0.5 years), attending mandatory cardiac screening were analysed. Ethnicity was categorised as white (n = 826), black (African/Caribbean; n = 166) and mixed-race (one parent white and one parent black; n = 95). Arrhythmogenic right ventricular cardiomyopathy major criteria for T-wave inversion was seen in 3.3% of the cohort. This was more prevalent in black footballers (12%) when compared to mixed race footballers (6.3%) or white footballers (1%), P < 0.05. Up to 59% of the cohort exceeded adult reference ranges for some of the right ventricular parameters, although values were similar to those seen in adult footballers. There were no differences in right ventricular dimensions between ethnicities. In particular, the right ventricular outflow tract diameter would fulfil major criteria for ARVC dimension in 12% of footballers. Overall, 0.2% of the cohort would fulfil diagnosis for 'definite' arrhythmogenic right ventricular cardiomyopathy and 2.2% would fulfil diagnosis for 'borderline' arrhythmogenic right ventricular cardiomyopathy for RV dimensions and ECG changes. This was seen more frequently in black footballers (9.9%) than mixed race footballers (3.9%) or white footballer (0.6%), P < 0.05. Among athletes meeting definite or borderline arrhythmogenic right ventricular cardiomyopathy criteria, no cardiomyopathy was identified after comprehensive clinical assessment, including with cardiac magnetic resonance imaging, exercise testing, ambulatory electrocardiograms and familial evaluation.</p><p><strong>Conclusion: </strong>Right heart sizes in excess of accepted adult ranges occurred in as many as one in two adolescent footballers. Structural adaptations in conjunction with anterior T-wave inversion may raise concern for ARVC, highlighting the need for evaluation in expert settings.</p>","PeriodicalId":45749,"journal":{"name":"Echo Research and Practice","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905853/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139997818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-22DOI: 10.1186/s44156-024-00041-4
Raghav T Bhatia, Jan Forster, Melanie Ackrill, Nikhil Chatrath, Gherardo Finocchiaro, Saad Fyyaz, Hamish MacLachlan, Aneil Malhotra, Sarandeep Marwaha, Michael Papadakis, Liam Ring, Sanjay Sharma, David Oxborough, Dhrubo Rakhit
Transthoracic echocardiography is an essential and widely available diagnostic tool for assessing individuals reporting cardiovascular symptoms, monitoring those with established cardiac conditions and for preparticipation screening of athletes. While its use is well-defined in hospital and clinic settings, echocardiography is increasingly being utilised in the community, including in the rapidly expanding sub-speciality of sports cardiology. There is, however, a knowledge and practical gap in the challenging area of the assessment of coronary artery anomalies, which is an important cause of sudden cardiac death, often in asymptomatic athletic individuals. To address this, we present a step-by-step guide to facilitate the recognition and assessment of anomalous coronary arteries using transthoracic echocardiography at the bedside; whilst recognising the importance of performing dedicated cross-sectional imaging, specifically coronary computed tomography (CTCA) where clinically indicated on a case-by-case basis. This guide is intended to be useful for echocardiographers and physicians in their routine clinical practice whilst recognising that echocardiography remains a highly skill-dependent technique that relies on expertise at the bedside.
{"title":"Coronary artery anomalies and the role of echocardiography in pre-participation screening of athletes: a practical guide.","authors":"Raghav T Bhatia, Jan Forster, Melanie Ackrill, Nikhil Chatrath, Gherardo Finocchiaro, Saad Fyyaz, Hamish MacLachlan, Aneil Malhotra, Sarandeep Marwaha, Michael Papadakis, Liam Ring, Sanjay Sharma, David Oxborough, Dhrubo Rakhit","doi":"10.1186/s44156-024-00041-4","DOIUrl":"10.1186/s44156-024-00041-4","url":null,"abstract":"<p><p>Transthoracic echocardiography is an essential and widely available diagnostic tool for assessing individuals reporting cardiovascular symptoms, monitoring those with established cardiac conditions and for preparticipation screening of athletes. While its use is well-defined in hospital and clinic settings, echocardiography is increasingly being utilised in the community, including in the rapidly expanding sub-speciality of sports cardiology. There is, however, a knowledge and practical gap in the challenging area of the assessment of coronary artery anomalies, which is an important cause of sudden cardiac death, often in asymptomatic athletic individuals. To address this, we present a step-by-step guide to facilitate the recognition and assessment of anomalous coronary arteries using transthoracic echocardiography at the bedside; whilst recognising the importance of performing dedicated cross-sectional imaging, specifically coronary computed tomography (CTCA) where clinically indicated on a case-by-case basis. This guide is intended to be useful for echocardiographers and physicians in their routine clinical practice whilst recognising that echocardiography remains a highly skill-dependent technique that relies on expertise at the bedside.</p>","PeriodicalId":45749,"journal":{"name":"Echo Research and Practice","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10882860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139933434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-14DOI: 10.1186/s44156-024-00040-5
David Oxborough, Danielle McDerment, Keith P George, Christopher Johnson, Barbara Morrison, Gemma Parry-Williams, Efstathios Papatheodorou, Sanjay Sharma, Robert Cooper
Background: The athlete's heart (AH) defines the phenotypical changes that occur in response to chronic exercise training. Echocardiographic assessment of the AH is used to calculate LV mass (LVM) and determine chamber geometry. This is, however, interpreted using standard linear (ratiometric) scaling to body surface area (BSA) whereas allometric scaling is now widely recommended. This study (1) determined whether ratiometric scaling of LVM to BSA (LVMiratio) provides a size-independent index in young and veteran athletes of mixed and endurance sports (MES), and (2) calculated size-independent beta exponents for allometrically derived (LVMiallo) to BSA and (3) describes the physiological range of LVMiallo and the classifications of LV geometry.
Methods: 1373 MES athletes consisting of young (< 35 years old) (males n = 699 and females n = 127) and veteran (> 35 years old) (males n = 327 and females n = 220) were included in the study. LVMiratio was calculated as per standard scaling and sex-specific LVMiallo were derived from the population. Cut-offs were defined and geometry was classified according to the new exponents and relative wall thickness.
Results: LVMiratio did not produce a size independent index. When tested across the age range the following indexes LVMi/BSA0.7663 and LVMi/BSA0.52, for males and females respectively, were size independent (r = 0.012; P = 0.7 and r = 0.003; P = 0.920). Physiological cut-offs for LVMiallo were 135 g/(m2)0.7663 in male athletes and 121 g/(m2)0.52 in female athletes. Concentric remodelling / hypertrophy was present in 3% and 0% of young male and female athletes and 24% and 17% of veteran male and female athletes, respectively. Eccentric hypertrophy was observed in 8% and 6% of young male and female athletes and 9% and 11% of veteran male and female athletes, respectively.
Conclusion: In a large cohort of young and veteran male and female MES athletes, LVMiratio to BSA is not size independent. Sex-specific LVMiallo to BSA with LVMi/BSA0.77 and LVMi/BSA0.52 for male and female athletes respectively can be applied across the age-range. Population-based cut-offs of LVMiallo provided a physiological range demonstrating a predominance for normal geometry in all athlete groups with a greater percentage of concentric remodelling/hypertrophy occurring in veteran male and female athletes.
{"title":"Allometric scaling for left ventricular mass and geometry in male and female athletes of mixed and endurance sports.","authors":"David Oxborough, Danielle McDerment, Keith P George, Christopher Johnson, Barbara Morrison, Gemma Parry-Williams, Efstathios Papatheodorou, Sanjay Sharma, Robert Cooper","doi":"10.1186/s44156-024-00040-5","DOIUrl":"10.1186/s44156-024-00040-5","url":null,"abstract":"<p><strong>Background: </strong>The athlete's heart (AH) defines the phenotypical changes that occur in response to chronic exercise training. Echocardiographic assessment of the AH is used to calculate LV mass (LVM) and determine chamber geometry. This is, however, interpreted using standard linear (ratiometric) scaling to body surface area (BSA) whereas allometric scaling is now widely recommended. This study (1) determined whether ratiometric scaling of LVM to BSA (LVMi<sup>ratio</sup>) provides a size-independent index in young and veteran athletes of mixed and endurance sports (MES), and (2) calculated size-independent beta exponents for allometrically derived (LVMi<sup>allo</sup>) to BSA and (3) describes the physiological range of LVMi<sup>allo</sup> and the classifications of LV geometry.</p><p><strong>Methods: </strong>1373 MES athletes consisting of young (< 35 years old) (males n = 699 and females n = 127) and veteran (> 35 years old) (males n = 327 and females n = 220) were included in the study. LVMi<sup>ratio</sup> was calculated as per standard scaling and sex-specific LVMi<sup>allo</sup> were derived from the population. Cut-offs were defined and geometry was classified according to the new exponents and relative wall thickness.</p><p><strong>Results: </strong>LVMi<sup>ratio</sup> did not produce a size independent index. When tested across the age range the following indexes LVMi/BSA<sup>0.7663</sup> and LVMi/BSA<sup>0.52</sup>, for males and females respectively, were size independent (r = 0.012; P = 0.7 and r = 0.003; P = 0.920). Physiological cut-offs for LVMi<sup>allo</sup> were 135 g/(m<sup>2</sup>)<sup>0.7663</sup> in male athletes and 121 g/(m<sup>2</sup>)<sup>0.52</sup> in female athletes. Concentric remodelling / hypertrophy was present in 3% and 0% of young male and female athletes and 24% and 17% of veteran male and female athletes, respectively. Eccentric hypertrophy was observed in 8% and 6% of young male and female athletes and 9% and 11% of veteran male and female athletes, respectively.</p><p><strong>Conclusion: </strong>In a large cohort of young and veteran male and female MES athletes, LVMi<sup>ratio</sup> to BSA is not size independent. Sex-specific LVMi<sup>allo</sup> to BSA with LVMi/BSA<sup>0.77</sup> and LVMi/BSA<sup>0.52</sup> for male and female athletes respectively can be applied across the age-range. Population-based cut-offs of LVMi<sup>allo</sup> provided a physiological range demonstrating a predominance for normal geometry in all athlete groups with a greater percentage of concentric remodelling/hypertrophy occurring in veteran male and female athletes.</p>","PeriodicalId":45749,"journal":{"name":"Echo Research and Practice","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-07DOI: 10.1186/s44156-023-00038-5
Jordan B Strom, Yang Song, Wenting Jiang, Yingbo Lou, Daniel N Pfeffer, Omnya E Massad, Pierantonio Russo
Background: Ultrasound enhancing agents (UEAs) are an invaluable adjunct to stress and transthoracic echocardiography (STE) to improve left ventricular visualization. Despite multiple single center studies evaluating UEA use, investigation into the rates, sources of variation, and outcomes of UEA use on a national level in the United States (US) has been limited by lack of validation of UEA codes for claims analyses.
Methods: We conducted a retrospective cross-sectional study, 2019-2022, using linked multicenter electronic medical record (EMR) data from > 30 health systems linked to all-payor claims data representing > 90% of the US population. Individuals receiving STE in both EMR and claims data on the same day during the study window were included. UEA receipt as identified by presence of a Current Procedural Terminology (CPT) or National Drug Code (NDC) for UEA use within 1-day of the index STE event. We evaluated the performance of claims to identify UEA use, using EMR data as the gold standard, stratified by inpatient and outpatient status.
Results: Amongst 54,525 individuals receiving STE in both EMR and claims data, 12,853 (23.6%) had a UEA claim in EMR, 10,461 (19.2%) had a UEA claim in claims, and 9140 (16.8%) had a UEA claim in both within the 1-day window. The sensitivity, specificity, accuracy, positive, and negative predictive values for UEA claims were 71.1%, 96.8%, 90.8%, 87.4%. and 91.6% respectively. However, amongst inpatients, the sensitivity of UEA claims was substantially lower (6.8%) compared to outpatients (79.7%).
Conclusions: While the overall accuracy of claims to identify UEA use was high, there was substantial under-capture of UEA use by claims amongst inpatients. These results call into question published rates of UEA use amongst inpatients in studies using administrative claims, and highlight ongoing need to improve inpatient coding for UEA use.
{"title":"Validation of administrative claims to identify ultrasound enhancing agent use.","authors":"Jordan B Strom, Yang Song, Wenting Jiang, Yingbo Lou, Daniel N Pfeffer, Omnya E Massad, Pierantonio Russo","doi":"10.1186/s44156-023-00038-5","DOIUrl":"10.1186/s44156-023-00038-5","url":null,"abstract":"<p><strong>Background: </strong>Ultrasound enhancing agents (UEAs) are an invaluable adjunct to stress and transthoracic echocardiography (STE) to improve left ventricular visualization. Despite multiple single center studies evaluating UEA use, investigation into the rates, sources of variation, and outcomes of UEA use on a national level in the United States (US) has been limited by lack of validation of UEA codes for claims analyses.</p><p><strong>Methods: </strong>We conducted a retrospective cross-sectional study, 2019-2022, using linked multicenter electronic medical record (EMR) data from > 30 health systems linked to all-payor claims data representing > 90% of the US population. Individuals receiving STE in both EMR and claims data on the same day during the study window were included. UEA receipt as identified by presence of a Current Procedural Terminology (CPT) or National Drug Code (NDC) for UEA use within 1-day of the index STE event. We evaluated the performance of claims to identify UEA use, using EMR data as the gold standard, stratified by inpatient and outpatient status.</p><p><strong>Results: </strong>Amongst 54,525 individuals receiving STE in both EMR and claims data, 12,853 (23.6%) had a UEA claim in EMR, 10,461 (19.2%) had a UEA claim in claims, and 9140 (16.8%) had a UEA claim in both within the 1-day window. The sensitivity, specificity, accuracy, positive, and negative predictive values for UEA claims were 71.1%, 96.8%, 90.8%, 87.4%. and 91.6% respectively. However, amongst inpatients, the sensitivity of UEA claims was substantially lower (6.8%) compared to outpatients (79.7%).</p><p><strong>Conclusions: </strong>While the overall accuracy of claims to identify UEA use was high, there was substantial under-capture of UEA use by claims amongst inpatients. These results call into question published rates of UEA use amongst inpatients in studies using administrative claims, and highlight ongoing need to improve inpatient coding for UEA use.</p>","PeriodicalId":45749,"journal":{"name":"Echo Research and Practice","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848552/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139698560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10DOI: 10.1186/s44156-023-00037-6
Ahmed Shawky Shereef, Mohamed Gamal Abdelmajeed, Mohamad Hossam Alshair, Ibtesam Ibrahim El-Dosouky, Wael Ali Khalil, Shaimaa Wageeh, Islam Elsayed Shehata
Background: Coronary slow flow (CSF) often links to inflammation and endothelial function disturbance. While conventional ejection fraction measurements fall short in identifying myocardial dysfunction, left ventricular global longitudinal strain (LV GLS) has shown superior efficacy in this regard. Our study aimed to explore subclinical left ventricular systolic dysfunction by assessing LV GLS in patients diagnosed with coronary slow flow (CSF).
Methods: The study included sixty patients with CSF and sixty control individuals without CSF. Coronary angiography employed the Thrombolysis in Myocardial Infarction (TIMI) frame count (TFC) to identify CSF. LV GLS values were evaluated and compared between the two groups.
Results: Significantly reduced LV GLS was evident in the CSF group compared to the control group (- 16.18 ± 1.25 vs. - 19.34 ± 1.33, p < 0.001). A notable correlation (r = 0.492, p < 0.001) between LV GLS and TFC was observed in the CSF group. Multivariate logistic regression analysis highlighted reduced LV-GLS (OR 2.2, 95% CI 1.57-3.09, p < 0.001) and smoking (OR 11.55, 95% CI 3.24-41.2, p < 0.001) as significant predictors for CSF presence. The receiver operating characteristic curve established that an LV GLS value of ≥ - 17.8% accurately predicted the presence of CSF (AUC: 0.958, 95% CI: 0.924-0.991, p < 0.001) with 90% specificity and 91.7% sensitivity.
Conclusion: Our study indicates that reduced LV GLS is associated with CSF presence, offering a valuable means to early detect subclinical left ventricular systolic dysfunction in high-risk patients susceptible to heart failure.
Trial registration: ZU-IRB#7038/12-7-2021 Registered 12 July 2021, email: IRB_123@medicine.zu.edu.eg.
{"title":"Coronary slow flow and its correlation with reduced left ventricle global longitudinal strain: a case-control study.","authors":"Ahmed Shawky Shereef, Mohamed Gamal Abdelmajeed, Mohamad Hossam Alshair, Ibtesam Ibrahim El-Dosouky, Wael Ali Khalil, Shaimaa Wageeh, Islam Elsayed Shehata","doi":"10.1186/s44156-023-00037-6","DOIUrl":"10.1186/s44156-023-00037-6","url":null,"abstract":"<p><strong>Background: </strong>Coronary slow flow (CSF) often links to inflammation and endothelial function disturbance. While conventional ejection fraction measurements fall short in identifying myocardial dysfunction, left ventricular global longitudinal strain (LV GLS) has shown superior efficacy in this regard. Our study aimed to explore subclinical left ventricular systolic dysfunction by assessing LV GLS in patients diagnosed with coronary slow flow (CSF).</p><p><strong>Methods: </strong>The study included sixty patients with CSF and sixty control individuals without CSF. Coronary angiography employed the Thrombolysis in Myocardial Infarction (TIMI) frame count (TFC) to identify CSF. LV GLS values were evaluated and compared between the two groups.</p><p><strong>Results: </strong>Significantly reduced LV GLS was evident in the CSF group compared to the control group (- 16.18 ± 1.25 vs. - 19.34 ± 1.33, p < 0.001). A notable correlation (r = 0.492, p < 0.001) between LV GLS and TFC was observed in the CSF group. Multivariate logistic regression analysis highlighted reduced LV-GLS (OR 2.2, 95% CI 1.57-3.09, p < 0.001) and smoking (OR 11.55, 95% CI 3.24-41.2, p < 0.001) as significant predictors for CSF presence. The receiver operating characteristic curve established that an LV GLS value of ≥ - 17.8% accurately predicted the presence of CSF (AUC: 0.958, 95% CI: 0.924-0.991, p < 0.001) with 90% specificity and 91.7% sensitivity.</p><p><strong>Conclusion: </strong>Our study indicates that reduced LV GLS is associated with CSF presence, offering a valuable means to early detect subclinical left ventricular systolic dysfunction in high-risk patients susceptible to heart failure.</p><p><strong>Trial registration: </strong>ZU-IRB#7038/12-7-2021 Registered 12 July 2021, email: IRB_123@medicine.zu.edu.eg.</p>","PeriodicalId":45749,"journal":{"name":"Echo Research and Practice","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10777566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-03DOI: 10.1186/s44156-023-00036-7
Vasiliki Tsampasian, Kelly Victor, Sanjeev Bhattacharyya, David Oxborough, Liam Ring
Aortic regurgitation (AR) is the third most frequently encountered valve lesion and may be caused by abnormalities of the valve cusps or the aorta. Echocardiography is instrumental in the assessment of AR as it enables the delineation of valvular morphology, the mechanism of the lesion and the grading of severity. Severe AR has a major impact on the myocardium and carries a significant risk of morbidity and mortality if left untreated. Established and novel echocardiographic methods, such as global longitudinal strain and three-dimensional echocardiography, allow an estimation of this risk and provide invaluable information for patient management and prognosis. This narrative review summarises the epidemiology of AR, reviews current practices and recommendations with regards to the echocardiographic assessment of AR and outlines novel echocardiographic tools that may prove beneficial in patient assessment and management.
主动脉瓣反流(AR)是第三大最常见的瓣膜病变,可能由瓣尖或主动脉异常引起。超声心动图有助于对 AR 进行评估,因为它可以确定瓣膜形态、病变机制和严重程度分级。严重的 AR 会对心肌产生重大影响,如果不及时治疗,会有很大的发病和死亡风险。现有的和新型的超声心动图方法,如全局纵向应变和三维超声心动图,可以估算出这种风险,并为患者管理和预后提供宝贵的信息。这篇叙述性综述总结了 AR 的流行病学,回顾了有关 AR 超声心动图评估的现行做法和建议,并概述了可能有助于患者评估和管理的新型超声心动图工具。
{"title":"Echocardiographic assessment of aortic regurgitation: a narrative review.","authors":"Vasiliki Tsampasian, Kelly Victor, Sanjeev Bhattacharyya, David Oxborough, Liam Ring","doi":"10.1186/s44156-023-00036-7","DOIUrl":"10.1186/s44156-023-00036-7","url":null,"abstract":"<p><p>Aortic regurgitation (AR) is the third most frequently encountered valve lesion and may be caused by abnormalities of the valve cusps or the aorta. Echocardiography is instrumental in the assessment of AR as it enables the delineation of valvular morphology, the mechanism of the lesion and the grading of severity. Severe AR has a major impact on the myocardium and carries a significant risk of morbidity and mortality if left untreated. Established and novel echocardiographic methods, such as global longitudinal strain and three-dimensional echocardiography, allow an estimation of this risk and provide invaluable information for patient management and prognosis. This narrative review summarises the epidemiology of AR, reviews current practices and recommendations with regards to the echocardiographic assessment of AR and outlines novel echocardiographic tools that may prove beneficial in patient assessment and management.</p>","PeriodicalId":45749,"journal":{"name":"Echo Research and Practice","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10762934/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139088918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-20DOI: 10.1186/s44156-023-00035-8
Rachel N Lord, Zoe H Adams, Keith George, John Somauroo, Helen Jones, David Oxborough
Background: A reduction in right ventricular (RV) function during recovery from prolonged endurance exercise has been documented alongside RV dilatation. A relative elevation in pulmonary artery pressure and therefore RV afterload during exercise has been implicated in this post-exercise dysfunction but has not yet been demonstrated. The current study aimed to assess RV structure and function and pulmonary artery pressure before, during and after a 6-h cycling exercise bout.
Methods: Eight ultra-endurance athletes were recruited for this study. Participants were assessed prior to exercise supine and seated, during exercise at 2, 4 and 6 h whilst cycling seated at 75% maximum heart rate, and post-exercise in the supine position. Standard 2D, Doppler and speckle tracking echocardiography were used to determine indices of RV size, systolic and diastolic function.
Results: Heart rate and RV functional parameters increased from baseline during exercise, however RV structural parameters and indices of RV systolic and diastolic function were unchanged between in-exercise assessment points. Neither pulmonary artery pressures (26 ± 9 mmHg vs 17 ± 10 mmHg, P > 0.05) nor RV wall stress (7.1 ± 3.0 vs 6.2 ± 2.4, P > 0.05) were significantly elevated during exercise. Despite this, post-exercise measurements revealed RV dilation (increased RVD1 and 3), and reduced RV global strain (- 21.2 ± 3.5 vs - 23.8 ± 2.3, P = 0.0168) and diastolic tissue velocity (13.8 ± 2.5 vs 17.1 ± 3.4, P = 0.019) vs pre-exercise values.
Conclusion: A 6 h cycling exercise bout at 75% maximum heart rate did not alter RV structure, systolic or diastolic function assessments during exercise. Pulmonary artery pressures are not elevated beyond normal limits and therefore RV afterload is unchanged throughout exercise. Despite this, there is some evidence of RV dilation and altered function in post-exercise measurements.
{"title":"Exploratory assessment of right ventricular structure and function during prolonged endurance cycling exercise.","authors":"Rachel N Lord, Zoe H Adams, Keith George, John Somauroo, Helen Jones, David Oxborough","doi":"10.1186/s44156-023-00035-8","DOIUrl":"10.1186/s44156-023-00035-8","url":null,"abstract":"<p><strong>Background: </strong>A reduction in right ventricular (RV) function during recovery from prolonged endurance exercise has been documented alongside RV dilatation. A relative elevation in pulmonary artery pressure and therefore RV afterload during exercise has been implicated in this post-exercise dysfunction but has not yet been demonstrated. The current study aimed to assess RV structure and function and pulmonary artery pressure before, during and after a 6-h cycling exercise bout.</p><p><strong>Methods: </strong>Eight ultra-endurance athletes were recruited for this study. Participants were assessed prior to exercise supine and seated, during exercise at 2, 4 and 6 h whilst cycling seated at 75% maximum heart rate, and post-exercise in the supine position. Standard 2D, Doppler and speckle tracking echocardiography were used to determine indices of RV size, systolic and diastolic function.</p><p><strong>Results: </strong>Heart rate and RV functional parameters increased from baseline during exercise, however RV structural parameters and indices of RV systolic and diastolic function were unchanged between in-exercise assessment points. Neither pulmonary artery pressures (26 ± 9 mmHg vs 17 ± 10 mmHg, P > 0.05) nor RV wall stress (7.1 ± 3.0 vs 6.2 ± 2.4, P > 0.05) were significantly elevated during exercise. Despite this, post-exercise measurements revealed RV dilation (increased RVD1 and 3), and reduced RV global strain (- 21.2 ± 3.5 vs - 23.8 ± 2.3, P = 0.0168) and diastolic tissue velocity (13.8 ± 2.5 vs 17.1 ± 3.4, P = 0.019) vs pre-exercise values.</p><p><strong>Conclusion: </strong>A 6 h cycling exercise bout at 75% maximum heart rate did not alter RV structure, systolic or diastolic function assessments during exercise. Pulmonary artery pressures are not elevated beyond normal limits and therefore RV afterload is unchanged throughout exercise. Despite this, there is some evidence of RV dilation and altered function in post-exercise measurements.</p>","PeriodicalId":45749,"journal":{"name":"Echo Research and Practice","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10731767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138811849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-13DOI: 10.1186/s44156-023-00033-w
Nikhil Chatrath, Jamie O'Driscoll, Sanjay Sharma, Michael Papadakis
Background: Bicuspid aortic valve (BAV) is the most common congenital cardiac defect and prone to premature degeneration causing aortic regurgitation (AR). The assessment of AR in athletic individuals poses several challenges as the pathological left ventricle (LV) remodelling caused by AR may overlap with the physiological remodelling of intense exercise. The purpose of this study is to highlight these challenges, review the existing literature and discuss how to tackle these conundrums. As a real-world example, we compare the resting transthoracic echocardiographic (TTE) findings in a cohort of individuals with BAV and AR, sub-grouped into "highly active" or "lightly active".
Methods: Adult male subjects with an index TTE performed at a tertiary referral centre between 2019 and 2022 were included if the TTE confirmed a BAV and at least moderate AR. Further strict inclusion criteria were applied and parameters of valve disease severity was made in accordance with existing guidelines. Subjects completed a physical activity questionnaire over the telephone, and were classified into either group 1: "highly active" or group 2: "lightly active" based on their answers. Demographics and TTE parameters were compared between the two groups.
Results: 30 male subjects (mean age 44 ± 13 years) with BAV-AR were included - 17 were highly active, and 13 lightly active. There was no significant difference in age (group 1, 45 ± 12.7 years vs. group 2, 42 ± 17 years; p = 0.49), height (p = 0.45), weight (p = 0.268) or severity of AR, when quantitative assessment was possible. Group 1 had a significantly higher stroke volume (131 ± 17mls vs. 102 ± 13 mls; p = 0.027), larger LV volumes, diastolic dimensions and significantly larger bi-atrial and right ventricular size. This LV dilatation in the context of AR and athleticism poses a diagnostic and management conundrum. Despite this, none of these 17 highly active individuals demonstrated any of the traditional criteria used to consider surgery.
Conclusion: There is significant overlap between the physiological adaptations to exercise and those caused by AR. Multi-modality imaging and stress testing can aid clinicians in diagnostic and management decisions in exercising individuals when there is discordance between AR severity and symptoms.
{"title":"Aortic regurgitation in athletes: the challenges of echocardiographic interpretation.","authors":"Nikhil Chatrath, Jamie O'Driscoll, Sanjay Sharma, Michael Papadakis","doi":"10.1186/s44156-023-00033-w","DOIUrl":"https://doi.org/10.1186/s44156-023-00033-w","url":null,"abstract":"<p><strong>Background: </strong>Bicuspid aortic valve (BAV) is the most common congenital cardiac defect and prone to premature degeneration causing aortic regurgitation (AR). The assessment of AR in athletic individuals poses several challenges as the pathological left ventricle (LV) remodelling caused by AR may overlap with the physiological remodelling of intense exercise. The purpose of this study is to highlight these challenges, review the existing literature and discuss how to tackle these conundrums. As a real-world example, we compare the resting transthoracic echocardiographic (TTE) findings in a cohort of individuals with BAV and AR, sub-grouped into \"highly active\" or \"lightly active\".</p><p><strong>Methods: </strong>Adult male subjects with an index TTE performed at a tertiary referral centre between 2019 and 2022 were included if the TTE confirmed a BAV and at least moderate AR. Further strict inclusion criteria were applied and parameters of valve disease severity was made in accordance with existing guidelines. Subjects completed a physical activity questionnaire over the telephone, and were classified into either group 1: \"highly active\" or group 2: \"lightly active\" based on their answers. Demographics and TTE parameters were compared between the two groups.</p><p><strong>Results: </strong>30 male subjects (mean age 44 ± 13 years) with BAV-AR were included - 17 were highly active, and 13 lightly active. There was no significant difference in age (group 1, 45 ± 12.7 years vs. group 2, 42 ± 17 years; p = 0.49), height (p = 0.45), weight (p = 0.268) or severity of AR, when quantitative assessment was possible. Group 1 had a significantly higher stroke volume (131 ± 17mls vs. 102 ± 13 mls; p = 0.027), larger LV volumes, diastolic dimensions and significantly larger bi-atrial and right ventricular size. This LV dilatation in the context of AR and athleticism poses a diagnostic and management conundrum. Despite this, none of these 17 highly active individuals demonstrated any of the traditional criteria used to consider surgery.</p><p><strong>Conclusion: </strong>There is significant overlap between the physiological adaptations to exercise and those caused by AR. Multi-modality imaging and stress testing can aid clinicians in diagnostic and management decisions in exercising individuals when there is discordance between AR severity and symptoms.</p>","PeriodicalId":45749,"journal":{"name":"Echo Research and Practice","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138811846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-06DOI: 10.1186/s44156-023-00031-y
Florence Place, Harry Carpenter, Barbara N Morrison, Neil Chester, Robert Cooper, Ben N Stansfield, Keith P George, David Oxborough
Background: Image and performance enhancing drugs (IPEDs) are commonly used in resistance trained (RT) individuals and negatively impact left ventricular (LV) structure and function. Few studies have investigated the impact of IPEDs on atrial structure and function with no previous studies investigating bi-atrial strain. Additionally, the impact of current use vs. past use of IPEDs is unclear.
Methods: Utilising a cross-sectional design, male (n = 81) and female (n = 15) RT individuals were grouped based on IPED user status: current (n = 57), past (n = 19) and non-users (n = 20). Participants completed IPED questionnaires, anthropometrical measurements, electrocardiography, and transthoracic echocardiography with strain imaging. Structural cardiac data was allometrically scaled to body surface area (BSA) according to laws of geometric similarity.
Results: Body mass and BSA were greater in current users than past and non-users of IPEDs (p < 0.01). Absolute left atrial (LA) volume (60 ± 17 vs 46 ± 12, p = 0.001) and right atrial (RA) area (19 ± 4 vs 15 ± 3, p < 0.001) were greater in current users than non-users but this difference was lost following scaling (p > 0.05). Left atrial reservoir (p = 0.008, p < 0.001) and conduit (p < 0.001, p < 0.001) strain were lower in current users than past and non-users (conduit: current = 22 ± 6, past = 29 ± 9 and non-users = 31 ± 7 and reservoir: current = 33 ± 8, past = 39 ± 8, non-users = 42 ± 8). Right atrial reservoir (p = 0.015) and conduit (p = 0.007) strain were lower in current than non-users (conduit: current = 25 ± 8, non-users = 33 ± 10 and reservoir: current = 36 ± 10, non-users = 44 ± 13). Current users showed reduced LV diastolic function (A wave: p = 0.022, p = 0.049 and E/A ratio: p = 0.039, p < 0.001) and higher LA stiffness (p = 0.001, p < 0.001) than past and non-users (A wave: current = 0.54 ± 0.1, past = 0.46 ± 0.1, non-users = 0.47 ± 0.09 and E/A ratio: current = 1.5 ± 0.5, past = 1.8 ± 0.4, non-users = 1.9 ± 0.4, LA stiffness: current = 0.21 ± 0.7, past = 0.15 ± 0.04, non-users = 0.15 ± 0.07).
Conclusion: Resistance trained individuals using IPEDs have bi-atrial enlargement that normalises with allometric scaling, suggesting that increased size is, in part, associated with increased body size. The lower LA and RA reservoir and conduit strain and greater absolute bi-atrial structural parameters in current than non-users of IPEDs suggests pathological adaptation with IPED use, although the similarity in these parameters between past and non-users suggests reversibility of pathological changes with withdrawal.
{"title":"The impact of image and performance enhancing drugs on atrial structure and function in resistance trained individuals.","authors":"Florence Place, Harry Carpenter, Barbara N Morrison, Neil Chester, Robert Cooper, Ben N Stansfield, Keith P George, David Oxborough","doi":"10.1186/s44156-023-00031-y","DOIUrl":"10.1186/s44156-023-00031-y","url":null,"abstract":"<p><strong>Background: </strong>Image and performance enhancing drugs (IPEDs) are commonly used in resistance trained (RT) individuals and negatively impact left ventricular (LV) structure and function. Few studies have investigated the impact of IPEDs on atrial structure and function with no previous studies investigating bi-atrial strain. Additionally, the impact of current use vs. past use of IPEDs is unclear.</p><p><strong>Methods: </strong>Utilising a cross-sectional design, male (n = 81) and female (n = 15) RT individuals were grouped based on IPED user status: current (n = 57), past (n = 19) and non-users (n = 20). Participants completed IPED questionnaires, anthropometrical measurements, electrocardiography, and transthoracic echocardiography with strain imaging. Structural cardiac data was allometrically scaled to body surface area (BSA) according to laws of geometric similarity.</p><p><strong>Results: </strong>Body mass and BSA were greater in current users than past and non-users of IPEDs (p < 0.01). Absolute left atrial (LA) volume (60 ± 17 vs 46 ± 12, p = 0.001) and right atrial (RA) area (19 ± 4 vs 15 ± 3, p < 0.001) were greater in current users than non-users but this difference was lost following scaling (p > 0.05). Left atrial reservoir (p = 0.008, p < 0.001) and conduit (p < 0.001, p < 0.001) strain were lower in current users than past and non-users (conduit: current = 22 ± 6, past = 29 ± 9 and non-users = 31 ± 7 and reservoir: current = 33 ± 8, past = 39 ± 8, non-users = 42 ± 8). Right atrial reservoir (p = 0.015) and conduit (p = 0.007) strain were lower in current than non-users (conduit: current = 25 ± 8, non-users = 33 ± 10 and reservoir: current = 36 ± 10, non-users = 44 ± 13). Current users showed reduced LV diastolic function (A wave: p = 0.022, p = 0.049 and E/A ratio: p = 0.039, p < 0.001) and higher LA stiffness (p = 0.001, p < 0.001) than past and non-users (A wave: current = 0.54 ± 0.1, past = 0.46 ± 0.1, non-users = 0.47 ± 0.09 and E/A ratio: current = 1.5 ± 0.5, past = 1.8 ± 0.4, non-users = 1.9 ± 0.4, LA stiffness: current = 0.21 ± 0.7, past = 0.15 ± 0.04, non-users = 0.15 ± 0.07).</p><p><strong>Conclusion: </strong>Resistance trained individuals using IPEDs have bi-atrial enlargement that normalises with allometric scaling, suggesting that increased size is, in part, associated with increased body size. The lower LA and RA reservoir and conduit strain and greater absolute bi-atrial structural parameters in current than non-users of IPEDs suggests pathological adaptation with IPED use, although the similarity in these parameters between past and non-users suggests reversibility of pathological changes with withdrawal.</p>","PeriodicalId":45749,"journal":{"name":"Echo Research and Practice","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138488718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-15DOI: 10.1186/s44156-023-00034-9
Reinette Hampson, Roxy Senior, Liam Ring, Shaun Robinson, Daniel X Augustine, Harald Becher, Natasha Anderson, James Willis, Badrinathan Chandrasekaran, Attila Kardos, Anjana Siva, Paul Leeson, Bushra S Rana, Navtej Chahal, David Oxborough
Ultrasound contrast agents (UCAs) have a well-established role in clinical cardiology. Contrast echocardiography has evolved into a routine technique through the establishment of contrast protocols, an excellent safety profile, and clinical guidelines which highlight the incremental prognostic utility of contrast enhanced echocardiography. This document aims to provide practical guidance on the safe and effective use of contrast; reviews the role of individual staff groups; and training requirements to facilitate its routine use in the echocardiography laboratory.
{"title":"Contrast echocardiography: a practical guideline from the British Society of Echocardiography.","authors":"Reinette Hampson, Roxy Senior, Liam Ring, Shaun Robinson, Daniel X Augustine, Harald Becher, Natasha Anderson, James Willis, Badrinathan Chandrasekaran, Attila Kardos, Anjana Siva, Paul Leeson, Bushra S Rana, Navtej Chahal, David Oxborough","doi":"10.1186/s44156-023-00034-9","DOIUrl":"10.1186/s44156-023-00034-9","url":null,"abstract":"<p><p>Ultrasound contrast agents (UCAs) have a well-established role in clinical cardiology. Contrast echocardiography has evolved into a routine technique through the establishment of contrast protocols, an excellent safety profile, and clinical guidelines which highlight the incremental prognostic utility of contrast enhanced echocardiography. This document aims to provide practical guidance on the safe and effective use of contrast; reviews the role of individual staff groups; and training requirements to facilitate its routine use in the echocardiography laboratory.</p>","PeriodicalId":45749,"journal":{"name":"Echo Research and Practice","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"107592475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}