首页 > 最新文献

Journal of Statistical Theory and Practice最新文献

英文 中文
Wildlife Population Assessment: Changing Priorities Driven by Technological Advances 野生动物种群评估:技术进步推动的优先事项变化
IF 0.6 Q4 STATISTICS & PROBABILITY Pub Date : 2023-02-02 DOI: 10.1007/s42519-023-00319-6
S. Buckland, D. Borchers, T. Marques, R. Fewster
{"title":"Wildlife Population Assessment: Changing Priorities Driven by Technological Advances","authors":"S. Buckland, D. Borchers, T. Marques, R. Fewster","doi":"10.1007/s42519-023-00319-6","DOIUrl":"https://doi.org/10.1007/s42519-023-00319-6","url":null,"abstract":"","PeriodicalId":45853,"journal":{"name":"Journal of Statistical Theory and Practice","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41970979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Analysis of Spatial Patterns and Associated Factors of Stillbirth in Pakistan, PDHS (2017–18): A Spatial and Multilevel Analysis 巴基斯坦死产的空间格局及其相关因素分析,PDHS(2017-18):空间和多层次分析
IF 0.6 Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-12 DOI: 10.1007/s42519-022-00308-1
Abeera Shakeel, Asif Kamal, G. Tesema, M. Siddiqa
{"title":"Analysis of Spatial Patterns and Associated Factors of Stillbirth in Pakistan, PDHS (2017–18): A Spatial and Multilevel Analysis","authors":"Abeera Shakeel, Asif Kamal, G. Tesema, M. Siddiqa","doi":"10.1007/s42519-022-00308-1","DOIUrl":"https://doi.org/10.1007/s42519-022-00308-1","url":null,"abstract":"","PeriodicalId":45853,"journal":{"name":"Journal of Statistical Theory and Practice","volume":"17 1","pages":"1-26"},"PeriodicalIF":0.6,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49328984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimality of Some Row–Column Designs 一些行列设计的最优性
IF 0.6 Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-10 DOI: 10.1007/s42519-022-00315-2
J. Morgan, S. Bagchi
{"title":"Optimality of Some Row–Column Designs","authors":"J. Morgan, S. Bagchi","doi":"10.1007/s42519-022-00315-2","DOIUrl":"https://doi.org/10.1007/s42519-022-00315-2","url":null,"abstract":"","PeriodicalId":45853,"journal":{"name":"Journal of Statistical Theory and Practice","volume":"17 1","pages":"1-25"},"PeriodicalIF":0.6,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45777105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semi-Lévy-Driven CARMA Process: Estimation and Prediction 半lsamv驱动的CARMA过程:估计与预测
IF 0.6 Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-06 DOI: 10.1007/s42519-022-00317-0
N. Modarresi, S. Rezakhah, M. Mohammadi
{"title":"Semi-Lévy-Driven CARMA Process: Estimation and Prediction","authors":"N. Modarresi, S. Rezakhah, M. Mohammadi","doi":"10.1007/s42519-022-00317-0","DOIUrl":"https://doi.org/10.1007/s42519-022-00317-0","url":null,"abstract":"","PeriodicalId":45853,"journal":{"name":"Journal of Statistical Theory and Practice","volume":"17 1","pages":"1-23"},"PeriodicalIF":0.6,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47754058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Algorithm of Nonparametric Quantile Regression. 一种非参数分位数回归算法。
IF 0.6 Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1007/s42519-023-00325-8
Mei Ling Huang, Yansan Han, William Marshall

Extreme events, such as earthquakes, tsunamis, and market crashes, can have substantial impact on social and ecological systems. Quantile regression can be used for predicting these extreme events, making it an important problem that has applications in many fields. Estimating high conditional quantiles is a difficult problem. Regular linear quantile regression uses an L 1 loss function [Koenker in Quantile regression, Cambridge University Press, Cambridge, 2005], and the optimal solution of linear programming for estimating coefficients of regression. A problem with linear quantile regression is that the estimated curves for different quantiles can cross, a result that is logically inconsistent. To overcome the curves crossing problem, and to improve high quantile estimation in the nonlinear case, this paper proposes a nonparametric quantile regression method to estimate high conditional quantiles. A three-step computational algorithm is given, and the asymptotic properties of the proposed estimator are derived. Monte Carlo simulations show that the proposed method is more efficient than linear quantile regression method. Furthermore, this paper investigates COVID-19 and blood pressure real-world examples of extreme events by using the proposed method.

极端事件,如地震、海啸和市场崩溃,可以对社会和生态系统产生重大影响。分位数回归可以用于预测这些极端事件,使其成为一个在许多领域都有应用的重要问题。估计高条件分位数是一个难题。正则线性分位数回归使用1损失函数[Koenker in quantile regression, Cambridge University Press, Cambridge, 2005],并使用线性规划的最优解来估计回归系数。线性分位数回归的一个问题是,不同分位数的估计曲线可能交叉,结果在逻辑上是不一致的。为了克服曲线交叉问题,改进非线性情况下的高分位数估计,本文提出了一种非参数分位数回归方法来估计高条件分位数。给出了一个三步计算算法,并给出了该估计量的渐近性质。蒙特卡罗仿真结果表明,该方法比线性分位数回归方法更有效。此外,本文还利用该方法研究了COVID-19和血压极端事件的现实例子。
{"title":"An Algorithm of Nonparametric Quantile Regression.","authors":"Mei Ling Huang,&nbsp;Yansan Han,&nbsp;William Marshall","doi":"10.1007/s42519-023-00325-8","DOIUrl":"https://doi.org/10.1007/s42519-023-00325-8","url":null,"abstract":"<p><p>Extreme events, such as earthquakes, tsunamis, and market crashes, can have substantial impact on social and ecological systems. Quantile regression can be used for predicting these extreme events, making it an important problem that has applications in many fields. Estimating high conditional quantiles is a difficult problem. Regular linear quantile regression uses an <i>L</i> <sub>1</sub> loss function [Koenker in Quantile regression, Cambridge University Press, Cambridge, 2005], and the optimal solution of linear programming for estimating coefficients of regression. A problem with linear quantile regression is that the estimated curves for different quantiles can cross, a result that is logically inconsistent. To overcome the curves crossing problem, and to improve high quantile estimation in the nonlinear case, this paper proposes a nonparametric quantile regression method to estimate high conditional quantiles. A three-step computational algorithm is given, and the asymptotic properties of the proposed estimator are derived. Monte Carlo simulations show that the proposed method is more efficient than linear quantile regression method. Furthermore, this paper investigates COVID-19 and blood pressure real-world examples of extreme events by using the proposed method.</p>","PeriodicalId":45853,"journal":{"name":"Journal of Statistical Theory and Practice","volume":"17 2","pages":"32"},"PeriodicalIF":0.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9794184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The New Sub-regression Type Estimator in Ranked Set Sampling. 排序集抽样中新的子回归类型估计。
IF 0.6 Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1007/s42519-023-00324-9
Eda Gizem Koçyiğit, Khalid Ul Islam Rather

In this study, a new sub-regression type estimator for ranked set sampling (RSS) is proposed based on the idea of a sub-ratio estimator given in Koçyiğit and Kadılar (Commun Stat Theory Methods 1-23, 2022). The proposed unbiased estimator's mean square error is obtained and compared theoretically with other estimators. The theoretical results have been supported by the different simulations and real-life data sets studies and have shown that the proposed estimator is more effective than the estimators in the literature. It is also seen that the number of repetitions in the RSS affected the effectiveness of the sub-estimators.

在本研究中,基于Koçyiğit和Kadılar (common Stat Theory Methods 1- 23,2022)中给出的子比率估计器的思想,提出了一种新的排序集抽样(RSS)的子回归型估计器。得到了无偏估计量的均方误差,并与其他估计量进行了理论比较。理论结果得到了不同模拟和实际数据集研究的支持,并表明所提出的估计器比文献中的估计器更有效。还可以看出,RSS中的重复次数影响了子估计器的有效性。
{"title":"The New Sub-regression Type Estimator in Ranked Set Sampling.","authors":"Eda Gizem Koçyiğit,&nbsp;Khalid Ul Islam Rather","doi":"10.1007/s42519-023-00324-9","DOIUrl":"https://doi.org/10.1007/s42519-023-00324-9","url":null,"abstract":"<p><p>In this study, a new sub-regression type estimator for ranked set sampling (RSS) is proposed based on the idea of a sub-ratio estimator given in Koçyiğit and Kadılar (Commun Stat Theory Methods 1-23, 2022). The proposed unbiased estimator's mean square error is obtained and compared theoretically with other estimators. The theoretical results have been supported by the different simulations and real-life data sets studies and have shown that the proposed estimator is more effective than the estimators in the literature. It is also seen that the number of repetitions in the RSS affected the effectiveness of the sub-estimators.</p>","PeriodicalId":45853,"journal":{"name":"Journal of Statistical Theory and Practice","volume":"17 2","pages":"27"},"PeriodicalIF":0.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9442109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Bayesian Analysis of First-Order Markov Models for Autocorrelated Binary Responses. 自相关二元响应一阶马尔可夫模型的贝叶斯分析。
IF 0.6 Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1007/s42519-022-00305-4
Dasom Lee, Sujit Ghosh

In many clinical trials, patient outcomes are often binary-valued which are measured asynchronously over time across various dose levels. To account for autocorrelation among such longitudinally observed outcomes, a first-order Markov model for binary data is developed. Moreover, to account for the asynchronously observed time points, nonhomogeneous models for the transition probabilities are proposed. The transition probabilities are modeled using B-spline basis functions after suitable transformations. Additionally, if the underlying dose-response curve is assumed to be non-decreasing, our model allows for the estimation of any underlying non-decreasing curve based on suitably constructed prior distributions. We also extended our model to the mixed effect model to incorporate individual-specific random effects. Numerical comparisons with traditional models are provided based on simulated data sets, and also practical applications are illustrated using real data sets.

在许多临床试验中,患者的结果通常是二值的,这是在不同剂量水平上随时间异步测量的。为了解释这种纵向观测结果之间的自相关性,开发了二元数据的一阶马尔可夫模型。此外,为了考虑观测时间点的异步性,提出了过渡概率的非齐次模型。通过适当的变换,利用b样条基函数对过渡概率进行建模。此外,如果假定潜在的剂量-反应曲线是非递减的,我们的模型允许基于适当构造的先验分布估计任何潜在的非递减曲线。我们还将我们的模型扩展到混合效应模型,以纳入个体特异性随机效应。基于模拟数据集与传统模型进行了数值比较,并利用实际数据集说明了其实际应用。
{"title":"Bayesian Analysis of First-Order Markov Models for Autocorrelated Binary Responses.","authors":"Dasom Lee,&nbsp;Sujit Ghosh","doi":"10.1007/s42519-022-00305-4","DOIUrl":"https://doi.org/10.1007/s42519-022-00305-4","url":null,"abstract":"<p><p>In many clinical trials, patient outcomes are often binary-valued which are measured asynchronously over time across various dose levels. To account for autocorrelation among such longitudinally observed outcomes, a first-order Markov model for binary data is developed. Moreover, to account for the asynchronously observed time points, nonhomogeneous models for the transition probabilities are proposed. The transition probabilities are modeled using B-spline basis functions after suitable transformations. Additionally, if the underlying dose-response curve is assumed to be non-decreasing, our model allows for the estimation of any underlying non-decreasing curve based on suitably constructed prior distributions. We also extended our model to the mixed effect model to incorporate individual-specific random effects. Numerical comparisons with traditional models are provided based on simulated data sets, and also practical applications are illustrated using real data sets.</p>","PeriodicalId":45853,"journal":{"name":"Journal of Statistical Theory and Practice","volume":"17 1","pages":"9"},"PeriodicalIF":0.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9797254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10480610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Fixed Accuracy Confidence Interval in Multivariate Normal Distribution with Order 1 Autoregressive Covariance Structure. 一阶自回归协方差结构多元正态分布的固定精度置信区间。
IF 0.6 Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-01 DOI: 10.1007/s42519-022-00310-7
Pritam Sarkar, Uttam Bandyopadhyay, Rahul Bhattacharya

In this paper, stein-type two-stage sampling procedure is carried out for fixed accuracy confidence interval estimation of the common variance ( σ 2 ) parameter corresponding to multivariate normal distribution with autoregressive covariance structure of order 1. Related asymptotics are obtained and simulation results are presented.

本文对具有1阶自回归协方差结构的多元正态分布所对应的共方差(σ 2)参数的定精度置信区间估计,采用了stein型两阶段抽样方法。得到了相关的渐近性,并给出了仿真结果。
{"title":"On Fixed Accuracy Confidence Interval in Multivariate Normal Distribution with Order 1 Autoregressive Covariance Structure.","authors":"Pritam Sarkar,&nbsp;Uttam Bandyopadhyay,&nbsp;Rahul Bhattacharya","doi":"10.1007/s42519-022-00310-7","DOIUrl":"https://doi.org/10.1007/s42519-022-00310-7","url":null,"abstract":"<p><p>In this paper, stein-type two-stage sampling procedure is carried out for fixed accuracy confidence interval estimation of the common variance ( <math><msup><mi>σ</mi> <mn>2</mn></msup> </math> ) parameter corresponding to multivariate normal distribution with autoregressive covariance structure of order 1. Related asymptotics are obtained and simulation results are presented.</p>","PeriodicalId":45853,"journal":{"name":"Journal of Statistical Theory and Practice","volume":"17 1","pages":"13"},"PeriodicalIF":0.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735063/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10401552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preface to a Special Issue in Memory of Professor Theophilos Cacoullos 纪念西奥菲洛斯·卡库洛斯教授特刊前言
IF 0.6 Q4 STATISTICS & PROBABILITY Pub Date : 2022-12-20 DOI: 10.1007/s42519-022-00314-3
N. Balakrishnan, C. Charalambides, T. Christofides, M. Koutras, S. Meintanis
{"title":"Preface to a Special Issue in Memory of Professor Theophilos Cacoullos","authors":"N. Balakrishnan, C. Charalambides, T. Christofides, M. Koutras, S. Meintanis","doi":"10.1007/s42519-022-00314-3","DOIUrl":"https://doi.org/10.1007/s42519-022-00314-3","url":null,"abstract":"","PeriodicalId":45853,"journal":{"name":"Journal of Statistical Theory and Practice","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45072875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cure Rate-Based Step-Stress Model 基于固化率的阶跃应力模型
IF 0.6 Q4 STATISTICS & PROBABILITY Pub Date : 2022-12-16 DOI: 10.1007/s42519-022-00313-4
Ayan Pal, D. Samanta, D. Kundu
{"title":"Cure Rate-Based Step-Stress Model","authors":"Ayan Pal, D. Samanta, D. Kundu","doi":"10.1007/s42519-022-00313-4","DOIUrl":"https://doi.org/10.1007/s42519-022-00313-4","url":null,"abstract":"","PeriodicalId":45853,"journal":{"name":"Journal of Statistical Theory and Practice","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47320296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Statistical Theory and Practice
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1