Pub Date : 2024-12-24Epub Date: 2024-12-10DOI: 10.1021/acs.jctc.4c01410
Vladimír Špirko
The prospect of constructing global electric quadrupole moment functions (EQMFs) of diatomic molecules by morphing their theoretical approximants within the framework of the reduced radial curve (RRC) approach is explored by performing model calculations for the ground electronic states of H2 and HF. The reduced quadrupole moment curves probed, constructed for a set of differently accurate theoretical EQMFs, coincide with their best many-parameter analytic counterparts so closely that they can be used as their accurate few-parameter representations. No other such functional representation is available in the literature.
{"title":"Reduced Radial Electric Quadrupole Moment Function for Diatomic Molecules.","authors":"Vladimír Špirko","doi":"10.1021/acs.jctc.4c01410","DOIUrl":"10.1021/acs.jctc.4c01410","url":null,"abstract":"<p><p>The prospect of constructing global electric quadrupole moment functions (EQMFs) of diatomic molecules by morphing their theoretical approximants within the framework of the reduced radial curve (RRC) approach is explored by performing model calculations for the ground electronic states of H<sub>2</sub> and HF. The reduced quadrupole moment curves probed, constructed for a set of differently accurate theoretical EQMFs, coincide with their best many-parameter analytic counterparts so closely that they can be used as their accurate few-parameter representations. No other such functional representation is available in the literature.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"11005-11012"},"PeriodicalIF":5.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24Epub Date: 2024-12-12DOI: 10.1021/acs.jctc.4c01008
Tomáš Jíra, Jiří Janoš, Petr Slavíček
The techniques of computational photodynamics are increasingly employed to unravel reaction mechanisms and interpret experiments. However, misinterpretations in nonadiabatic dynamics caused by inaccurate underlying potentials are often difficult to foresee. This work focuses on revealing the systematic errors in the nonadiabatic simulations due to the underlying potentials and suggests a thrifty approach to evaluate the sensitivity of the simulations to the potential. This issue is exemplified in the photochemistry of cis-stilbene, where similar experimental outcomes have been differently interpreted based on the electronic structure methods supporting nonadiabatic dynamics. We examine the predictions of cis-stilbene photochemistry using trajectory surface hopping methods coupled with various electronic structure methods (OM3-MRCISD, SA2-CASSCF, XMS-SA2-CASPT2, and XMS-SA3-CASPT2) and assess their ability to interpret experimental observations. While the excited-state lifetimes and calculated photoelectron spectra show consistency with experiments, the reaction quantum yields vary significantly: either completely suppressing cyclization or isomerization. Intriguingly, analyzing stationary points on the potential energy surface does not hint at any major discrepancy, making the electronic structure methods seemingly reliable when treated separately. We show that performing an ensemble of simulations with different potentials provides an estimate of the electronic structure sensitivity. However, this ensemble approach is costly. Thus, we propose running nonadiabatic simulations with an external bias at a resource-efficient underlying potential (semiempirical or machine-learned) for the sensitivity analysis. We demonstrate this approach using a semiempirical OM3-MRCISD method with a harmonic bias toward cyclization.
{"title":"Sensitivity Analysis in Photodynamics: How Does the Electronic Structure Control <i>cis</i>-Stilbene Photodynamics?","authors":"Tomáš Jíra, Jiří Janoš, Petr Slavíček","doi":"10.1021/acs.jctc.4c01008","DOIUrl":"10.1021/acs.jctc.4c01008","url":null,"abstract":"<p><p>The techniques of computational photodynamics are increasingly employed to unravel reaction mechanisms and interpret experiments. However, misinterpretations in nonadiabatic dynamics caused by inaccurate underlying potentials are often difficult to foresee. This work focuses on revealing the systematic errors in the nonadiabatic simulations due to the underlying potentials and suggests a thrifty approach to evaluate the sensitivity of the simulations to the potential. This issue is exemplified in the photochemistry of <i>cis</i>-stilbene, where similar experimental outcomes have been differently interpreted based on the electronic structure methods supporting nonadiabatic dynamics. We examine the predictions of <i>cis</i>-stilbene photochemistry using trajectory surface hopping methods coupled with various electronic structure methods (OM3-MRCISD, SA2-CASSCF, XMS-SA2-CASPT2, and XMS-SA3-CASPT2) and assess their ability to interpret experimental observations. While the excited-state lifetimes and calculated photoelectron spectra show consistency with experiments, the reaction quantum yields vary significantly: either completely suppressing cyclization or isomerization. Intriguingly, analyzing stationary points on the potential energy surface does not hint at any major discrepancy, making the electronic structure methods seemingly reliable when treated separately. We show that performing an ensemble of simulations with different potentials provides an estimate of the electronic structure sensitivity. However, this ensemble approach is costly. Thus, we propose running nonadiabatic simulations with an external bias at a resource-efficient underlying potential (semiempirical or machine-learned) for the sensitivity analysis. We demonstrate this approach using a semiempirical OM3-MRCISD method with a harmonic bias toward cyclization.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10972-10985"},"PeriodicalIF":5.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672677/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24Epub Date: 2024-12-04DOI: 10.1021/acs.jctc.4c01101
Lorenzo Tenti, Stefan Peeters, Emmanuel Giner, Celestino Angeli
The use of the mutual information (MI) as a measure of the entanglement in quantum systems has gained a consensus in recent years, even if there is an ongoing effort to distinguish the classical and quantum contributions contained therein. This quantity has been first introduced in condensed matter physics, in particular, in studies based on the density matrix renormalization group method. This method has been successfully adapted to quantum chemistry problems, opening the way to compute MI also in molecular systems. A key aspect of this quantity is its dependence on the one-electron (orbital) basis set, even for wave functions that are invariant under unitary transformation of the orbitals. In this work, we investigate the role of the orbital basis set (delocalized or localized, following different strategies) for wave functions expressed as linear combinations of Slater determinants and we give the analytic expression for the MI for a few special cases. This study aims to improve the knowledge of the relationship between the characteristics of the chemical bond (considering a few paradigmatic molecules, H2, F2, N2, and short linear polyenes) and the properties of interest in the field of quantum information theory.
{"title":"Entanglement and Mutual Information in Molecules: Comparing Localized and Delocalized Orbitals.","authors":"Lorenzo Tenti, Stefan Peeters, Emmanuel Giner, Celestino Angeli","doi":"10.1021/acs.jctc.4c01101","DOIUrl":"10.1021/acs.jctc.4c01101","url":null,"abstract":"<p><p>The use of the mutual information (MI) as a measure of the entanglement in quantum systems has gained a consensus in recent years, even if there is an ongoing effort to distinguish the classical and quantum contributions contained therein. This quantity has been first introduced in condensed matter physics, in particular, in studies based on the density matrix renormalization group method. This method has been successfully adapted to quantum chemistry problems, opening the way to compute MI also in molecular systems. A key aspect of this quantity is its dependence on the one-electron (orbital) basis set, even for wave functions that are invariant under unitary transformation of the orbitals. In this work, we investigate the role of the orbital basis set (delocalized or localized, following different strategies) for wave functions expressed as linear combinations of Slater determinants and we give the analytic expression for the MI for a few special cases. This study aims to improve the knowledge of the relationship between the characteristics of the chemical bond (considering a few paradigmatic molecules, H<sub>2</sub>, F<sub>2</sub>, N<sub>2</sub>, and short linear polyenes) and the properties of interest in the field of quantum information theory.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10861-10874"},"PeriodicalIF":5.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24Epub Date: 2024-12-12DOI: 10.1021/acs.jctc.4c01157
Philipp Pracht, Yuthika Pillai, Venkat Kapil, Gábor Csányi, Nils Gönnheimer, Martin Vondrák, Johannes T Margraf, David J Wales
Vibrational spectroscopy is a cornerstone technique for molecular characterization and offers an ideal target for the computational investigation of molecular materials. Building on previous comprehensive assessments of efficient methods for infrared (IR) spectroscopy, this study investigates the predictive accuracy and computational efficiency of gas-phase IR spectra calculations, accessible through a combination of modern semiempirical quantum mechanical and transferable machine learning potentials. A composite approach for IR spectra prediction based on the double-harmonic approximation, utilizing harmonic vibrational frequencies in combination squared derivatives of the molecular dipole moment, is employed. This approach allows for methodical flexibility in the calculation of IR intensities from molecular dipoles and the corresponding vibrational modes. Various methods are systematically tested to suggest a suitable protocol with an emphasis on computational efficiency. Among these methods, semiempirical extended tight-binding (xTB) models, classical charge equilibrium models, and machine learning potentials trained for dipole moment prediction are assessed across a diverse data set of organic molecules. We particularly focus on the recently reported foundational machine learning potential MACE-OFF23 to address the accuracy limitations of conventional low-cost quantum mechanical and force-field methods. This study aims to establish a standard for the efficient computational prediction of IR spectra, facilitating the rapid and reliable identification of unknown compounds and advancing automated high-throughput analytical workflows in chemistry.
{"title":"Efficient Composite Infrared Spectroscopy: Combining the Double-Harmonic Approximation with Machine Learning Potentials.","authors":"Philipp Pracht, Yuthika Pillai, Venkat Kapil, Gábor Csányi, Nils Gönnheimer, Martin Vondrák, Johannes T Margraf, David J Wales","doi":"10.1021/acs.jctc.4c01157","DOIUrl":"10.1021/acs.jctc.4c01157","url":null,"abstract":"<p><p>Vibrational spectroscopy is a cornerstone technique for molecular characterization and offers an ideal target for the computational investigation of molecular materials. Building on previous comprehensive assessments of efficient methods for infrared (IR) spectroscopy, this study investigates the predictive accuracy and computational efficiency of gas-phase IR spectra calculations, accessible through a combination of modern semiempirical quantum mechanical and transferable machine learning potentials. A composite approach for IR spectra prediction based on the double-harmonic approximation, utilizing harmonic vibrational frequencies in combination squared derivatives of the molecular dipole moment, is employed. This approach allows for methodical flexibility in the calculation of IR intensities from molecular dipoles and the corresponding vibrational modes. Various methods are systematically tested to suggest a suitable protocol with an emphasis on computational efficiency. Among these methods, semiempirical extended tight-binding (xTB) models, classical charge equilibrium models, and machine learning potentials trained for dipole moment prediction are assessed across a diverse data set of organic molecules. We particularly focus on the recently reported foundational machine learning potential MACE-OFF23 to address the accuracy limitations of conventional low-cost quantum mechanical and force-field methods. This study aims to establish a standard for the efficient computational prediction of IR spectra, facilitating the rapid and reliable identification of unknown compounds and advancing automated high-throughput analytical workflows in chemistry.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10986-11004"},"PeriodicalIF":5.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672665/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24Epub Date: 2024-12-12DOI: 10.1021/acs.jctc.4c01054
Antoniel A S Gomes, Mauricio G S Costa, Maxime Louet, Nicolas Floquet, Paulo M Bisch, David Perahia
Proteins are dynamic entities that adopt diverse conformations, which play a pivotal role in their function. Understanding these conformations is essential, and protein collective motions, particularly those captured by normal mode (NM) and their linear combinations, provide a robust means for conformational sampling. This work introduces a novel approach to obtaining a uniformly oriented set of a given number of lowest frequency NM combined vectors and generating harmonically equidistant restrained structures along them. They are all thus uniformly located on concentric hyperspheres, systematically covering the defined NM space fully. The generated structures are further relaxed with standard molecular dynamics (MD) simulations to explore the conformational space. The efficiency of the approach we termed "distributed points Molecular Dynamics using Normal Modes" (dpMDNM) was assessed by applying it to hen egg-white lysozyme and human cytochrome P450 3A4 (CYP3A4). To this purpose, we compared our new approach with other methods and analyzed the sampling of existing experimental structures. Our results demonstrate the efficacy of dpMDNM in extensive conformational sampling, particularly as more NMs are considered. Ensembles generated by dpMDNM exhibited a broad coverage of the experimental structures, providing valuable insights into the functional aspects of lysozyme and CYP3A4. Furthermore, dpMDNM also covered lysozyme structures with relatively elevated energies corresponding to transient states not easily obtained by standard MD simulations, in conformity with nuclear magnetic resonance structural indications. This method offers an efficient and rational framework for comprehensive protein conformational sampling, contributing significantly to our understanding of protein dynamics and function.
{"title":"Extended Sampling of Macromolecular Conformations from Uniformly Distributed Points on Multidimensional Normal Mode Hyperspheres.","authors":"Antoniel A S Gomes, Mauricio G S Costa, Maxime Louet, Nicolas Floquet, Paulo M Bisch, David Perahia","doi":"10.1021/acs.jctc.4c01054","DOIUrl":"10.1021/acs.jctc.4c01054","url":null,"abstract":"<p><p>Proteins are dynamic entities that adopt diverse conformations, which play a pivotal role in their function. Understanding these conformations is essential, and protein collective motions, particularly those captured by normal mode (NM) and their linear combinations, provide a robust means for conformational sampling. This work introduces a novel approach to obtaining a uniformly oriented set of a given number of lowest frequency NM combined vectors and generating harmonically equidistant restrained structures along them. They are all thus uniformly located on concentric hyperspheres, systematically covering the defined NM space fully. The generated structures are further relaxed with standard molecular dynamics (MD) simulations to explore the conformational space. The efficiency of the approach we termed \"distributed points Molecular Dynamics using Normal Modes\" (dpMDNM) was assessed by applying it to hen egg-white lysozyme and human cytochrome P450 3A4 (CYP3A4). To this purpose, we compared our new approach with other methods and analyzed the sampling of existing experimental structures. Our results demonstrate the efficacy of dpMDNM in extensive conformational sampling, particularly as more NMs are considered. Ensembles generated by dpMDNM exhibited a broad coverage of the experimental structures, providing valuable insights into the functional aspects of lysozyme and CYP3A4. Furthermore, dpMDNM also covered lysozyme structures with relatively elevated energies corresponding to transient states not easily obtained by standard MD simulations, in conformity with nuclear magnetic resonance structural indications. This method offers an efficient and rational framework for comprehensive protein conformational sampling, contributing significantly to our understanding of protein dynamics and function.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10770-10786"},"PeriodicalIF":5.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24Epub Date: 2024-12-02DOI: 10.1021/acs.jctc.4c00813
Chandrima Chakravarty, Maximilian A C Saller, Hüseyin Aksu, Barry D Dunietz
A density functional theory framework is developed to study electronic excited states affected by an anisotropic dielectric environment. In particular, an anisotropic dielectric screened range-separated hybrid (SRSH[r]) functional is defined and combined with an anisotropic polarizable continuum model (PCM) implemented through a generalized Poisson equation solver. We develop the SRSH-PCM(r) approach and use it to quantify the effect of anisotropy on an excited charge transfer (CT) state energy. In particular, the dielectric interface effect on the CT state within a donor-acceptor molecular complex of antrancene and tetracyanoquinodimethane is studied. The donor-acceptor complex and the dielectric interface are used to represent the interface between thin films consisting of these materials. We report the effect of such a dielectric interface on the energy of a CT and follow its dependence on the donor-acceptor distance. We also benchmark the anisotropy-affected energy by comparing to homogeneous dielectric calculated energies. Due to the planar interface, the anisotropic energies are expected to to match with those obtained based on isotropic calculations of the larger dielectric constant at large enough distances. The approach is applicable, in general, to more complicated dielectric constant distributions as expected to be found in actual interfaces of such thin films or in other systems, for example, for CT processes within photosystems.
{"title":"Anisotropic Dielectric Screened Range-Separated Hybrid Density Functional Theory Calculations of Charge Transfer States across an Anthracene-TCNQ Donor-Acceptor Interface.","authors":"Chandrima Chakravarty, Maximilian A C Saller, Hüseyin Aksu, Barry D Dunietz","doi":"10.1021/acs.jctc.4c00813","DOIUrl":"10.1021/acs.jctc.4c00813","url":null,"abstract":"<p><p>A density functional theory framework is developed to study electronic excited states affected by an anisotropic dielectric environment. In particular, an anisotropic dielectric screened range-separated hybrid (SRSH[r]) functional is defined and combined with an anisotropic polarizable continuum model (PCM) implemented through a generalized Poisson equation solver. We develop the SRSH-PCM(r) approach and use it to quantify the effect of anisotropy on an excited charge transfer (CT) state energy. In particular, the dielectric interface effect on the CT state within a donor-acceptor molecular complex of antrancene and tetracyanoquinodimethane is studied. The donor-acceptor complex and the dielectric interface are used to represent the interface between thin films consisting of these materials. We report the effect of such a dielectric interface on the energy of a CT and follow its dependence on the donor-acceptor distance. We also benchmark the anisotropy-affected energy by comparing to homogeneous dielectric calculated energies. Due to the planar interface, the anisotropic energies are expected to to match with those obtained based on isotropic calculations of the larger dielectric constant at large enough distances. The approach is applicable, in general, to more complicated dielectric constant distributions as expected to be found in actual interfaces of such thin films or in other systems, for example, for CT processes within photosystems.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10751-10758"},"PeriodicalIF":5.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present a quantum-classical hybrid algorithm for calculating the ground state and its energy of the quantum many-body Hamiltonian by proposing an adaptive construction of a quantum state for the quantum-selected configuration interaction (QSCI) method. QSCI allows us to select important electronic configurations in the system to perform configuration interaction (CI) calculation (subspace diagonalization of the Hamiltonian) by sampling measurement for a proper input quantum state on a quantum computer, but how we prepare a desirable input state remains a challenge. We propose an adaptive construction of the input state for QSCI in which we run QSCI repeatedly to grow the input state iteratively. We numerically illustrate that our method, dubbed ADAPT-QSCI, can yield accurate ground-state energies for small molecules, including a noisy situation for eight qubits where error rates of two-qubit gates and the measurement are both as large as 1%. ADAPT-QSCI serves as a promising method to take advantage of current noisy quantum devices and pushes forward its application to quantum chemistry.
{"title":"ADAPT-QSCI: Adaptive Construction of an Input State for Quantum-Selected Configuration Interaction.","authors":"Yuya O Nakagawa, Masahiko Kamoshita, Wataru Mizukami, Shotaro Sudo, Yu-Ya Ohnishi","doi":"10.1021/acs.jctc.4c00846","DOIUrl":"10.1021/acs.jctc.4c00846","url":null,"abstract":"<p><p>We present a quantum-classical hybrid algorithm for calculating the ground state and its energy of the quantum many-body Hamiltonian by proposing an adaptive construction of a quantum state for the quantum-selected configuration interaction (QSCI) method. QSCI allows us to select important electronic configurations in the system to perform configuration interaction (CI) calculation (subspace diagonalization of the Hamiltonian) by sampling measurement for a proper input quantum state on a quantum computer, but how we prepare a desirable input state remains a challenge. We propose an adaptive construction of the input state for QSCI in which we run QSCI repeatedly to grow the input state iteratively. We numerically illustrate that our method, dubbed <i>ADAPT-QSCI</i>, can yield accurate ground-state energies for small molecules, including a noisy situation for eight qubits where error rates of two-qubit gates and the measurement are both as large as 1%. ADAPT-QSCI serves as a promising method to take advantage of current noisy quantum devices and pushes forward its application to quantum chemistry.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10817-10825"},"PeriodicalIF":5.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24Epub Date: 2024-12-07DOI: 10.1021/acs.jctc.4c01209
Diship Srivastava, Niladri Patra
The number of solvent molecules present in the system during molecular dynamics is the balancing act between the need to remove the boundary effects present in the system and the computational cost. Application of the telescopic-solvation box scheme during the estimation of the potential of mean force (PMF) can be advantageous in situations where the contribution of solvent far from the site of interest toward the whole PMF is negligible, as previously demonstrated in the case of adaptive steered molecular dynamics and umbrella sampling. This work explores the application of the telescopic-solvation box scheme during enhanced sampling by the stratified adaptive biasing force (ABF) family of methods, including ABF, extended ABF, well-tempered-metadynamics extended ABF, and multiwalker extended ABF. During this scheme, the number of water molecules differed in each stratified window, whose number depended on the value of the collective variable being sampled in that window. Two systems were used to verify the viability of the telescopic scheme: unfolding (Ala)10 peptide in water and insertion of α-tocopherol in a bilayer membrane. In the first system, the 1D and 2D PMFs obtained by the telescopic-solvation scheme matched well with the benchmark PMFs estimated with a standard solvation box. The minimal energy path connecting the α-helical and extended conformational states revealed that the unfolding process of (Ala)10 in water involved multiple closely spaced metastable states. As for the second system, the PMF, equilibrium location of α-tocopherol, and the free energy associated with the desorption and flipping of α-tocopherol obtained within the scope of the telescopic-solvation box scheme agreed with their standard solvation box values. Enhanced sampling with ABF and its variants in conjunction with the telescopic-solvation scheme results in a similar quality of the estimated PMF compared to sampling with a standard solvation box, albeit with reduced computational cost.
{"title":"Improving the Computational Efficiency of the Adaptive Biasing Force Sampling by Leveraging the Telescopic-Solvation Scheme.","authors":"Diship Srivastava, Niladri Patra","doi":"10.1021/acs.jctc.4c01209","DOIUrl":"10.1021/acs.jctc.4c01209","url":null,"abstract":"<p><p>The number of solvent molecules present in the system during molecular dynamics is the balancing act between the need to remove the boundary effects present in the system and the computational cost. Application of the telescopic-solvation box scheme during the estimation of the potential of mean force (PMF) can be advantageous in situations where the contribution of solvent far from the site of interest toward the whole PMF is negligible, as previously demonstrated in the case of adaptive steered molecular dynamics and umbrella sampling. This work explores the application of the telescopic-solvation box scheme during enhanced sampling by the stratified adaptive biasing force (ABF) family of methods, including ABF, extended ABF, well-tempered-metadynamics extended ABF, and multiwalker extended ABF. During this scheme, the number of water molecules differed in each stratified window, whose number depended on the value of the collective variable being sampled in that window. Two systems were used to verify the viability of the telescopic scheme: unfolding (Ala)<sub>10</sub> peptide in water and insertion of α-tocopherol in a bilayer membrane. In the first system, the 1D and 2D PMFs obtained by the telescopic-solvation scheme matched well with the benchmark PMFs estimated with a standard solvation box. The minimal energy path connecting the α-helical and extended conformational states revealed that the unfolding process of (Ala)<sub>10</sub> in water involved multiple closely spaced metastable states. As for the second system, the PMF, equilibrium location of α-tocopherol, and the free energy associated with the desorption and flipping of α-tocopherol obtained within the scope of the telescopic-solvation box scheme agreed with their standard solvation box values. Enhanced sampling with ABF and its variants in conjunction with the telescopic-solvation scheme results in a similar quality of the estimated PMF compared to sampling with a standard solvation box, albeit with reduced computational cost.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10952-10960"},"PeriodicalIF":5.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24Epub Date: 2024-12-11DOI: 10.1021/acs.jctc.4c01351
Gabriel César Pereira, Rogério Custodio
A composite method, named ANN-G3S, is introduced, adapting from G3S theory and employing distinct sets of multiplicative scale factors. An artificial neural network (ANN)-based classification model is utilized to select optimal sets of four scale factors for electronic correlation and basis set expansion terms in electronic systems. The correlation and basis set terms are scaled by four parameters, two for atoms and the other two for molecules. The ANN model is trained on the G3/05 test set to identify the best parameter set for each electronic system. To validate the method, 10% of the structures from the test set are randomly excluded from training and optimization, forming a separate validation set. The method demonstrates a mean deviation of 1.11 kcal mol-1 for the G3/05 set and 0.89 kcal mol-1 for the validation set, close to the value presented by the G4 method and surpassing the accuracy of the G3 method of 1.19 kcal mol-1 with significantly reduced computational cost. This method shows advantages by eliminating the need for purely empirical corrections, thereby enhancing both efficiency and accuracy in predicting heats of formation.
{"title":"A Preliminary Neural Network-Based Composite Method for Accurate Prediction of Enthalpies of Formation.","authors":"Gabriel César Pereira, Rogério Custodio","doi":"10.1021/acs.jctc.4c01351","DOIUrl":"10.1021/acs.jctc.4c01351","url":null,"abstract":"<p><p>A composite method, named ANN-G3S, is introduced, adapting from G3S theory and employing distinct sets of multiplicative scale factors. An artificial neural network (ANN)-based classification model is utilized to select optimal sets of four scale factors for electronic correlation and basis set expansion terms in electronic systems. The correlation and basis set terms are scaled by four parameters, two for atoms and the other two for molecules. The ANN model is trained on the G3/05 test set to identify the best parameter set for each electronic system. To validate the method, 10% of the structures from the test set are randomly excluded from training and optimization, forming a separate validation set. The method demonstrates a mean deviation of 1.11 kcal mol<sup>-1</sup> for the G3/05 set and 0.89 kcal mol<sup>-1</sup> for the validation set, close to the value presented by the G4 method and surpassing the accuracy of the G3 method of 1.19 kcal mol<sup>-1</sup> with significantly reduced computational cost. This method shows advantages by eliminating the need for purely empirical corrections, thereby enhancing both efficiency and accuracy in predicting heats of formation.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10922-10930"},"PeriodicalIF":5.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24Epub Date: 2024-12-11DOI: 10.1021/acs.jctc.4c00698
Pavel S Rukin, Mariagrazia Fortino, Deborah Prezzi, Carlo Andrea Rozzi
We analyze the internal conversion dynamics within the Qy and Qx excited states of both bare and functionalized porphyrins, which are known to exhibit significantly different time constants experimentally. Through the integration of two complementary approaches, static calculation of per-mode reorganization energies and nonadiabatic molecular dynamics, we achieve a comprehensive understanding of the factors determining the different behavior of the two molecules. We identify the key normal and essential modes responsible for the population transfer between excited states and discuss the efficacy of different statistical and nonstatistical analyses in providing a full physics-based description of the phenomenon.
{"title":"Complementing Adiabatic and Nonadiabatic Methods To Understand Internal Conversion Dynamics in Porphyrin Derivatives.","authors":"Pavel S Rukin, Mariagrazia Fortino, Deborah Prezzi, Carlo Andrea Rozzi","doi":"10.1021/acs.jctc.4c00698","DOIUrl":"10.1021/acs.jctc.4c00698","url":null,"abstract":"<p><p>We analyze the internal conversion dynamics within the <i>Q</i><sub><i>y</i></sub> and <i>Q</i><sub><i>x</i></sub> excited states of both bare and functionalized porphyrins, which are known to exhibit significantly different time constants experimentally. Through the integration of two complementary approaches, static calculation of per-mode reorganization energies and nonadiabatic molecular dynamics, we achieve a comprehensive understanding of the factors determining the different behavior of the two molecules. We identify the key normal and essential modes responsible for the population transfer between excited states and discuss the efficacy of different statistical and nonstatistical analyses in providing a full physics-based description of the phenomenon.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10759-10769"},"PeriodicalIF":5.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673133/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}