首页 > 最新文献

Monte Carlo Methods and Applications最新文献

英文 中文
Bootstrap choice of non-nested autoregressive model with non-normal innovations 具有非正态创新的非嵌套自回归模型的自举选择
IF 0.9 Q4 Mathematics Pub Date : 2023-07-04 DOI: 10.1515/mcma-2023-2010
Sedigheh Zamani Mehreyan
Abstract It is known that the block-based version of the bootstrap method can be used for distributional parameter estimation of dependent data. One of the advantages of this method is that it improves mean square errors. The paper makes two contributions. First, we consider the moving blocking bootstrap method for estimation of parameters of the autoregressive model. For each block, the parameters are estimated based on the modified maximum likelihood method. Second, we provide a method for model selection, Vuong’s test and tracking interval, i.e. for selecting the optimal model for the innovation’s distribution. Our analysis provides analytic results on the asymptotic distribution of the bootstrap estimators and also computational results via simulations. Some properties of the moving blocking bootstrap method are investigated through Monte Carlo simulation. This simulation study shows that, sometimes, Vuong’s test based on the modified maximum likelihood method is not able to distinguish between the two models; Vuong’s test based on the moving blocking bootstrap selects one of the competing models as optimal model. We have studied real data, the S&P500 data, and select optimal model for this data based on the theoretical results.
摘要基于块的bootstrap方法可用于相关数据的分布参数估计。这种方法的优点之一是它改善了均方误差。这篇论文有两个贡献。首先,我们考虑用移动块自举法估计自回归模型的参数。对于每个块,基于改进的最大似然法估计参数。其次,我们提供了一种模型选择、Vuong检验和跟踪区间的方法,即选择创新分布的最优模型。我们的分析提供了自举估计量渐近分布的解析结果和仿真计算结果。通过蒙特卡罗仿真研究了运动块自举法的一些性质。仿真研究表明,有时,基于改进的极大似然法的Vuong检验不能区分两个模型;Vuong的基于移动阻塞自举的测试选择一个竞争模型作为最优模型。我们研究了实际数据和标准普尔500指数数据,并根据理论结果选择了最优模型。
{"title":"Bootstrap choice of non-nested autoregressive model with non-normal innovations","authors":"Sedigheh Zamani Mehreyan","doi":"10.1515/mcma-2023-2010","DOIUrl":"https://doi.org/10.1515/mcma-2023-2010","url":null,"abstract":"Abstract It is known that the block-based version of the bootstrap method can be used for distributional parameter estimation of dependent data. One of the advantages of this method is that it improves mean square errors. The paper makes two contributions. First, we consider the moving blocking bootstrap method for estimation of parameters of the autoregressive model. For each block, the parameters are estimated based on the modified maximum likelihood method. Second, we provide a method for model selection, Vuong’s test and tracking interval, i.e. for selecting the optimal model for the innovation’s distribution. Our analysis provides analytic results on the asymptotic distribution of the bootstrap estimators and also computational results via simulations. Some properties of the moving blocking bootstrap method are investigated through Monte Carlo simulation. This simulation study shows that, sometimes, Vuong’s test based on the modified maximum likelihood method is not able to distinguish between the two models; Vuong’s test based on the moving blocking bootstrap selects one of the competing models as optimal model. We have studied real data, the S&P500 data, and select optimal model for this data based on the theoretical results.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46015548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontmatter 头版头条
Q4 Mathematics Pub Date : 2023-06-01 DOI: 10.1515/mcma-2023-frontmatter2
{"title":"Frontmatter","authors":"","doi":"10.1515/mcma-2023-frontmatter2","DOIUrl":"https://doi.org/10.1515/mcma-2023-frontmatter2","url":null,"abstract":"","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135673784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Total variation bound for Milstein scheme without iterated integrals 无迭代积分的Milstein格式的全变分界
IF 0.9 Q4 Mathematics Pub Date : 2023-05-26 DOI: 10.2139/ssrn.4333285
Toshihiro Yamada
Abstract The paper gives new results for the Milstein scheme of stochastic differential equations. We show that (i) the Milstein scheme holds as a weak approximation in total variation sense and is given by second-order polynomials of Brownian motion without using iterated integrals under non-commutative vector fields; (ii) the accuracy of the Milstein scheme is better than that of the Euler–Maruyama scheme in an asymptotic sense. In particular, we prove d TV ⁢ ( X T ε , X ¯ T ε , Mil , ( n ) ) ≤ C ⁢ ε 2 / n d_{mathrm{TV}}(X_{T}^{varepsilon},bar{X}_{T}^{varepsilon,mathrm{Mil},(n)})leq Cvarepsilon^{2}/n and d TV ⁢ ( X T ε , X ¯ T ε , EM , ( n ) ) ≤ C ⁢ ε / n d_{mathrm{TV}}(X_{T}^{varepsilon},bar{X}_{T}^{varepsilon,mathrm{EM},(n)})leq Cvarepsilon/n , where d TV d_{mathrm{TV}} is the total variation distance, X ε X^{varepsilon} is a solution of a stochastic differential equation with a small parameter 𝜀, and X ¯ ε , Mil , ( n ) bar{X}^{varepsilon,mathrm{Mil},(n)} and X ¯ ε , EM , ( n ) bar{X}^{varepsilon,mathrm{EM},(n)} are the Milstein scheme without iterated integrals and the Euler–Maruyama scheme, respectively. In computational aspect, the scheme is useful to estimate probability distribution functions by a simple simulation without Lévy area computation. Numerical examples demonstrate the validity of the method.
摘要本文给出了随机微分方程米尔斯坦格式的新结果。我们证明(i) Milstein格式在全变分意义上是弱逼近,并且在非交换向量场下由布朗运动的二阶多项式给出,而不使用迭代积分;(ii)在渐近意义上,Milstein格式的精度优于Euler-Maruyama格式。特别地,我们证明了d TV减去(X T ε, X¯T ε, Mil,(n))≤C减去ε 2/n d_ {mathrm{TV}} ({X_T}^ {varepsilon}, bar{X} _T{^ }{varepsilon, mathrm{Mil},(n}))leq C varepsilon ^{2}/n和d TV减去(X T ε, X¯T ε, EM,(n))≤C减去ε /n d_ {mathrm{TV}} ({X_T}^ {varepsilon}, bar{X} _T{^ }{varepsilon, mathrm{EM},(n)})leq C varepsilon /n,其中d TV减去d_ {mathrm{TV}}为总变异距离,X ε X^ {varepsilon}是一个具有小参数的随机微分方程的解,X¯ε, Mil,(n) bar{X} ^ {varepsilon, mathrm{Mil},(n)}和X¯ε, EM,(n)bar{X} ^ {varepsilon, mathrm{EM},(n)}分别是无迭代积分的Milstein格式和Euler-Maruyama格式。在计算方面,该方案可以通过简单的模拟来估计概率分布函数,而无需计算lsamvy面积。数值算例验证了该方法的有效性。
{"title":"Total variation bound for Milstein scheme without iterated integrals","authors":"Toshihiro Yamada","doi":"10.2139/ssrn.4333285","DOIUrl":"https://doi.org/10.2139/ssrn.4333285","url":null,"abstract":"Abstract The paper gives new results for the Milstein scheme of stochastic differential equations. We show that (i) the Milstein scheme holds as a weak approximation in total variation sense and is given by second-order polynomials of Brownian motion without using iterated integrals under non-commutative vector fields; (ii) the accuracy of the Milstein scheme is better than that of the Euler–Maruyama scheme in an asymptotic sense. In particular, we prove d TV ⁢ ( X T ε , X ¯ T ε , Mil , ( n ) ) ≤ C ⁢ ε 2 / n d_{mathrm{TV}}(X_{T}^{varepsilon},bar{X}_{T}^{varepsilon,mathrm{Mil},(n)})leq Cvarepsilon^{2}/n and d TV ⁢ ( X T ε , X ¯ T ε , EM , ( n ) ) ≤ C ⁢ ε / n d_{mathrm{TV}}(X_{T}^{varepsilon},bar{X}_{T}^{varepsilon,mathrm{EM},(n)})leq Cvarepsilon/n , where d TV d_{mathrm{TV}} is the total variation distance, X ε X^{varepsilon} is a solution of a stochastic differential equation with a small parameter 𝜀, and X ¯ ε , Mil , ( n ) bar{X}^{varepsilon,mathrm{Mil},(n)} and X ¯ ε , EM , ( n ) bar{X}^{varepsilon,mathrm{EM},(n)} are the Milstein scheme without iterated integrals and the Euler–Maruyama scheme, respectively. In computational aspect, the scheme is useful to estimate probability distribution functions by a simple simulation without Lévy area computation. Numerical examples demonstrate the validity of the method.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47464087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Total variation bound for Milstein scheme without iterated integrals 无迭代积分的Milstein格式的总变分界
Q4 Mathematics Pub Date : 2023-05-26 DOI: 10.1515/mcma-2023-2007
Toshihiro Yamada
Abstract The paper gives new results for the Milstein scheme of stochastic differential equations. We show that (i) the Milstein scheme holds as a weak approximation in total variation sense and is given by second-order polynomials of Brownian motion without using iterated integrals under non-commutative vector fields; (ii) the accuracy of the Milstein scheme is better than that of the Euler–Maruyama scheme in an asymptotic sense. In particular, we prove d TV ( X T ε , X ¯ T ε , Mil , ( n ) ) C ε 2 / n d_{mathrm{TV}}(X_{T}^{varepsilon},bar{X}_{T}^{varepsilon,mathrm{Mil},(n)})leq Cvarepsilon^{2}/n and d TV ( X T ε , X ¯ T ε , EM , ( n ) ) C ε / n d_{mathrm{TV}}(X_{T}^{varepsilon},bar{X}_{T}^{varepsilon,mathrm{EM},(n)})leq Cvarepsilon/n , where d TV d_{mathrm{TV}} is the total variation distance, X ε X^{varepsilon} is a solution of a stochastic differential equation with a small parameter 𝜀, and X ¯ ε , Mil , ( n ) bar{X}^{varepsilon,mathrm{Mil},(n)} and
摘要本文给出了随机微分方程米尔斯坦格式的新结果。我们证明(i) Milstein格式在全变分意义上是弱逼近,并且在非交换向量场下由布朗运动的二阶多项式给出,而不使用迭代积分;(ii)在渐近意义上,Milstein格式的精度优于Euler-Maruyama格式。特别是,我们证明了d TV减去(X T ε, X¯T ε, Mil,(n))≤C减去ε 2/n d_ {mathrm{TV}} ({X_T}^ {varepsilon}, bar{X} _T{^ }{varepsilon, mathrm{Mil},(n)})leq C varepsilon ^{2}/n和d TV减去(X T ε, X¯T ε, EM,(n))≤C减去ε /n d_ {mathrm{TV}} ({X_T}^ {varepsilon}, bar{X} _T{^ }{varepsilon, mathrm{EM},(n)})leq C varepsilon /n,其中,d TV d_ {mathrm{TV}}为总变差距离,X ε X^ {varepsilon}为小参数方程的随机微分方程的解,X¯ε, Mil,(n) bar{X} ^ {varepsilon, mathrm{Mil},(n)}和X¯ε, EM,(n)bar{X} ^ {varepsilon, mathrm{EM},(n)}分别为无迭代积分的Milstein格式和Euler-Maruyama格式。在计算方面,该方案可以通过简单的模拟来估计概率分布函数,而无需计算lsamvy面积。数值算例验证了该方法的有效性。
{"title":"Total variation bound for Milstein scheme without iterated integrals","authors":"Toshihiro Yamada","doi":"10.1515/mcma-2023-2007","DOIUrl":"https://doi.org/10.1515/mcma-2023-2007","url":null,"abstract":"Abstract The paper gives new results for the Milstein scheme of stochastic differential equations. We show that (i) the Milstein scheme holds as a weak approximation in total variation sense and is given by second-order polynomials of Brownian motion without using iterated integrals under non-commutative vector fields; (ii) the accuracy of the Milstein scheme is better than that of the Euler–Maruyama scheme in an asymptotic sense. In particular, we prove <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>d</m:mi> <m:mi>TV</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msubsup> <m:mi>X</m:mi> <m:mi>T</m:mi> <m:mi>ε</m:mi> </m:msubsup> <m:mo>,</m:mo> <m:msubsup> <m:mover accent=\"true\"> <m:mi>X</m:mi> <m:mo>¯</m:mo> </m:mover> <m:mi>T</m:mi> <m:mrow> <m:mi>ε</m:mi> <m:mo>,</m:mo> <m:mi>Mil</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msubsup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:mrow> <m:mi>C</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mi>ε</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> <m:mo>/</m:mo> <m:mi>n</m:mi> </m:mrow> </m:mrow> </m:math> d_{mathrm{TV}}(X_{T}^{varepsilon},bar{X}_{T}^{varepsilon,mathrm{Mil},(n)})leq Cvarepsilon^{2}/n and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msub> <m:mi>d</m:mi> <m:mi>TV</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msubsup> <m:mi>X</m:mi> <m:mi>T</m:mi> <m:mi>ε</m:mi> </m:msubsup> <m:mo>,</m:mo> <m:msubsup> <m:mover accent=\"true\"> <m:mi>X</m:mi> <m:mo>¯</m:mo> </m:mover> <m:mi>T</m:mi> <m:mrow> <m:mi>ε</m:mi> <m:mo>,</m:mo> <m:mi>EM</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msubsup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:mrow> <m:mi>C</m:mi> <m:mo>⁢</m:mo> <m:mi>ε</m:mi> </m:mrow> <m:mo>/</m:mo> <m:mi>n</m:mi> </m:mrow> </m:mrow> </m:math> d_{mathrm{TV}}(X_{T}^{varepsilon},bar{X}_{T}^{varepsilon,mathrm{EM},(n)})leq Cvarepsilon/n , where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>d</m:mi> <m:mi>TV</m:mi> </m:msub> </m:math> d_{mathrm{TV}} is the total variation distance, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>X</m:mi> <m:mi>ε</m:mi> </m:msup> </m:math> X^{varepsilon} is a solution of a stochastic differential equation with a small parameter 𝜀, and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mover accent=\"true\"> <m:mi>X</m:mi> <m:mo>¯</m:mo> </m:mover> <m:mrow> <m:mi>ε</m:mi> <m:mo>,</m:mo> <m:mi>Mil</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msup> </m:math> bar{X}^{varepsilon,mathrm{Mil},(n)} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mover acc","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135996653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monte Carlo estimates of extremes of stationary/nonstationary Gaussian processes 平稳/非平稳高斯过程极值的蒙特卡罗估计
IF 0.9 Q4 Mathematics Pub Date : 2023-05-25 DOI: 10.1515/mcma-2023-2006
M. Grigoriu
Abstract Finite-dimensional (FD) models X d ⁢ ( t ) X_{d}(t) , i.e., deterministic functions of time and finite sets of 𝑑 random variables, are constructed for stationary and nonstationary Gaussian processes X ⁢ ( t ) X(t) with continuous samples defined on a bounded time interval [ 0 , τ ] [0,tau] . The basis functions of these FD models are finite sets of eigenfunctions of the correlation functions of X ⁢ ( t ) X(t) and of trigonometric functions. Numerical illustrations are presented for a stationary Gaussian process X ⁢ ( t ) X(t) with exponential correlation function and a nonstationary version of this process obtained by time distortion. It was found that the FD models are consistent with the theoretical results in the sense that their samples approach the target samples as the stochastic dimension is increased.
摘要针对平稳和非平稳高斯过程X≠(t) X(t),在有界时间区间[0,τ] [0,tau]上定义连续样本,构造了有限维(FD)模型X d¹(t) X_{d}(t),即时间的确定性函数和𝑑随机变量的有限集。这些FD模型的基函数是X¹(t) X(t)的相关函数和三角函数的特征函数的有限集合。给出了具有指数相关函数的平稳高斯过程X¹(t) X(t)的数值实例,并给出了该过程通过时间畸变得到的非平稳版本。结果表明,随着随机维数的增加,FD模型的样本越来越接近目标样本,这与理论结果一致。
{"title":"Monte Carlo estimates of extremes of stationary/nonstationary Gaussian processes","authors":"M. Grigoriu","doi":"10.1515/mcma-2023-2006","DOIUrl":"https://doi.org/10.1515/mcma-2023-2006","url":null,"abstract":"Abstract Finite-dimensional (FD) models X d ⁢ ( t ) X_{d}(t) , i.e., deterministic functions of time and finite sets of 𝑑 random variables, are constructed for stationary and nonstationary Gaussian processes X ⁢ ( t ) X(t) with continuous samples defined on a bounded time interval [ 0 , τ ] [0,tau] . The basis functions of these FD models are finite sets of eigenfunctions of the correlation functions of X ⁢ ( t ) X(t) and of trigonometric functions. Numerical illustrations are presented for a stationary Gaussian process X ⁢ ( t ) X(t) with exponential correlation function and a nonstationary version of this process obtained by time distortion. It was found that the FD models are consistent with the theoretical results in the sense that their samples approach the target samples as the stochastic dimension is increased.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44816176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two stochastic algorithms for solving elastostatics problems governed by the Lamé equation 求解Lamé方程弹性静力学问题的两种随机算法
IF 0.9 Q4 Mathematics Pub Date : 2023-05-23 DOI: 10.1515/mcma-2023-2008
A. Kireeva, Ivan Aksyuk, K. Sabelfeld
Abstract In this paper, we construct stochastic simulation algorithms for solving an elastostatics problem governed by the Lamé equation. Two different stochastic simulation methods are suggested: (1) a method based on a random walk on spheres, which is iteratively applied to anisotropic diffusion equations that are related through the mixed second-order derivatives (this method is meshless and can be applied to boundary value problems for complicated domains); (2) a randomized algorithm for solving large systems of linear algebraic equations that is the core of this method. It needs a mesh formation, but even for very fine grids, the algorithm shows a high efficiency. Both methods are scalable and can be easily parallelized.
摘要本文构造了求解由lam方程控制的弹性静力学问题的随机模拟算法。提出了两种不同的随机模拟方法:(1)基于球上随机游走的方法,该方法迭代应用于通过混合二阶导数关联的各向异性扩散方程(该方法无网格,可应用于复杂域的边值问题);(2)求解大型线性代数方程组的随机算法,这是该方法的核心。它需要网格的形成,但即使是非常精细的网格,该算法也显示出很高的效率。这两种方法都是可伸缩的,可以很容易地并行化。
{"title":"Two stochastic algorithms for solving elastostatics problems governed by the Lamé equation","authors":"A. Kireeva, Ivan Aksyuk, K. Sabelfeld","doi":"10.1515/mcma-2023-2008","DOIUrl":"https://doi.org/10.1515/mcma-2023-2008","url":null,"abstract":"Abstract In this paper, we construct stochastic simulation algorithms for solving an elastostatics problem governed by the Lamé equation. Two different stochastic simulation methods are suggested: (1) a method based on a random walk on spheres, which is iteratively applied to anisotropic diffusion equations that are related through the mixed second-order derivatives (this method is meshless and can be applied to boundary value problems for complicated domains); (2) a randomized algorithm for solving large systems of linear algebraic equations that is the core of this method. It needs a mesh formation, but even for very fine grids, the algorithm shows a high efficiency. Both methods are scalable and can be easily parallelized.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47878109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Metropolis random walk algorithm to estimate a lower bound of the star discrepancy 估计星差下界的Metropolis随机游动算法
IF 0.9 Q4 Mathematics Pub Date : 2023-05-10 DOI: 10.1515/mcma-2023-2005
Maryam Alsolami, M. Mascagni
Abstract In this paper, we introduce a new algorithm for estimating the lower bounds for the star discrepancy of any arbitrary point sets in [ 0 , 1 ] s [0,1]^{s} . Computing the exact star discrepancy is known to be an NP-hard problem, so we have been looking for effective approximation algorithms. The star discrepancy can be thought of as the maximum of a function called the local discrepancy, and we will develop approximation algorithms to maximize this function. Our algorithm is analogous to the random walk algorithm described in one of our previous papers [M. Alsolami and M. Mascagni, A random walk algorithm to estimate a lower bound of the star discrepancy, Monte Carlo Methods Appl. 28 (2022), 4, 341–348.]. We add a statistical technique to the random walk algorithm by implementing the Metropolis algorithm in random walks on each chosen dimension to accept or reject this movement. We call this Metropolis random walk algorithm. In comparison to all previously known techniques, our new algorithm is superior, especially in high dimensions. Also, it can quickly determine the precise value of the star discrepancy in most of our data sets of various sizes and dimensions, or at least the lower bounds of the star discrepancy.
摘要在本文中,我们介绍了一种新的算法来估计[0,1]s[0,1]^{s}中任意点集的星差的下界。计算精确的星差是一个NP难题,因此我们一直在寻找有效的近似算法。恒星差异可以被认为是一个称为局部差异的函数的最大值,我们将开发近似算法来最大化这个函数。我们的算法类似于我们之前的一篇论文[M.Alsolami和M。Mascagni,估计星差下界的随机游动算法,蒙特卡罗方法应用。28(2022),44341–348.]。我们通过在每个选定维度上的随机行走中实现Metropolis算法,将统计技术添加到随机行走算法中,以接受或拒绝这种运动。我们称之为Metropolis随机行走算法。与以前所有已知的技术相比,我们的新算法是优越的,尤其是在高维方面。此外,它可以快速确定我们大多数不同大小和维度的数据集中恒星差异的精确值,或者至少确定恒星差异的下限。
{"title":"A Metropolis random walk algorithm to estimate a lower bound of the star discrepancy","authors":"Maryam Alsolami, M. Mascagni","doi":"10.1515/mcma-2023-2005","DOIUrl":"https://doi.org/10.1515/mcma-2023-2005","url":null,"abstract":"Abstract In this paper, we introduce a new algorithm for estimating the lower bounds for the star discrepancy of any arbitrary point sets in [ 0 , 1 ] s [0,1]^{s} . Computing the exact star discrepancy is known to be an NP-hard problem, so we have been looking for effective approximation algorithms. The star discrepancy can be thought of as the maximum of a function called the local discrepancy, and we will develop approximation algorithms to maximize this function. Our algorithm is analogous to the random walk algorithm described in one of our previous papers [M. Alsolami and M. Mascagni, A random walk algorithm to estimate a lower bound of the star discrepancy, Monte Carlo Methods Appl. 28 (2022), 4, 341–348.]. We add a statistical technique to the random walk algorithm by implementing the Metropolis algorithm in random walks on each chosen dimension to accept or reject this movement. We call this Metropolis random walk algorithm. In comparison to all previously known techniques, our new algorithm is superior, especially in high dimensions. Also, it can quickly determine the precise value of the star discrepancy in most of our data sets of various sizes and dimensions, or at least the lower bounds of the star discrepancy.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44369916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical analysis of the estimates of some stationary performances of the unreliable M/M/1/N queue with Bernoulli feedback 具有伯努利反馈的不可靠M/M/1/N队列某些平稳性能估计的统计分析
IF 0.9 Q4 Mathematics Pub Date : 2023-05-03 DOI: 10.1515/mcma-2023-2004
Hadjer Nita, Fairouz Afroun, M. Cherfaoui, D. Aïssani
Abstract In this work, we considered the parametric estimation of the characteristics of the M / M / 1 / N {M/M/1/N} waiting model with Bernoulli feedback. Through a Monte-Carlo simulation study, we have illustrated the effect of the estimation of the starting parameters of the considered waiting system on the statistical properties of its performance measures estimates, when these latter are obtained using the plug-in method. In addition, several types of convergence (bias, variance, MSE, in law) of these performance measure estimators have also been showed by simulation.
摘要在这项工作中,我们考虑了具有伯努利反馈的M/M/1/N{M/M/1/N}等待模型的特征的参数估计。通过蒙特卡洛模拟研究,我们已经说明了所考虑的等待系统的启动参数的估计对其性能指标估计的统计特性的影响,当使用插件方法获得这些估计时。此外,模拟还表明了这些性能测度估计量的几种收敛类型(偏差、方差、MSE、律)。
{"title":"Statistical analysis of the estimates of some stationary performances of the unreliable M/M/1/N queue with Bernoulli feedback","authors":"Hadjer Nita, Fairouz Afroun, M. Cherfaoui, D. Aïssani","doi":"10.1515/mcma-2023-2004","DOIUrl":"https://doi.org/10.1515/mcma-2023-2004","url":null,"abstract":"Abstract In this work, we considered the parametric estimation of the characteristics of the M / M / 1 / N {M/M/1/N} waiting model with Bernoulli feedback. Through a Monte-Carlo simulation study, we have illustrated the effect of the estimation of the starting parameters of the considered waiting system on the statistical properties of its performance measures estimates, when these latter are obtained using the plug-in method. In addition, several types of convergence (bias, variance, MSE, in law) of these performance measure estimators have also been showed by simulation.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41551785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computation of the steady-state probability of Markov chain evolving on a mixed state space 混合状态空间上马尔可夫链演化的稳态概率计算
IF 0.9 Q4 Mathematics Pub Date : 2023-03-30 DOI: 10.1515/mcma-2023-2003
Az-eddine Zakrad, A. Nasroallah
Abstract The partitioning algorithm is an iterative procedure that computes explicitly the steady-state probability of a finite Markov chain 𝑋. In this paper, we propose to adapt this algorithm to the case where the state space E := C ∪ D E:=Ccup D is composed of a continuous part 𝐶 and a finite part 𝐷 such that C ∩ D = ∅ Ccap D=emptyset . In this case, the steady-state probability 𝜋 of 𝑋 is a convex combination of two steady-state probabilities π C pi_{C} and π D pi_{D} of two Markov chains on 𝐶 and 𝐷 respectively. The obtained algorithm allows to compute explicitly π D pi_{D} . If π C pi_{C} cannot be computed explicitly, our algorithm approximates it by numerical resolution of successive integral equations. Some numerical examples are studied to show the usefulness and proper functioning of our proposal.
分划算法是显式计算有限马尔可夫链稳态概率的迭代过程𝑋。在本文中,我们提出将该算法应用于状态空间E:=C∪D E:=C cup D由连续部分和有限部分𝐷组成,使得C∩D=∅C cap D= emptyset。在这种情况下,稳态概率𝑋分别是两条马尔可夫链的两个稳态概率π C pi _C{和π }D pi _D{的凸组合。得到的算法允许显式计算π D }pi _D{。如果π C }pi _C{不能显式计算,我们的算法通过连续积分方程的数值解析近似它。通过数值算例分析,说明了该方法的有效性和良好的功能。}
{"title":"Computation of the steady-state probability of Markov chain evolving on a mixed state space","authors":"Az-eddine Zakrad, A. Nasroallah","doi":"10.1515/mcma-2023-2003","DOIUrl":"https://doi.org/10.1515/mcma-2023-2003","url":null,"abstract":"Abstract The partitioning algorithm is an iterative procedure that computes explicitly the steady-state probability of a finite Markov chain 𝑋. In this paper, we propose to adapt this algorithm to the case where the state space E := C ∪ D E:=Ccup D is composed of a continuous part 𝐶 and a finite part 𝐷 such that C ∩ D = ∅ Ccap D=emptyset . In this case, the steady-state probability 𝜋 of 𝑋 is a convex combination of two steady-state probabilities π C pi_{C} and π D pi_{D} of two Markov chains on 𝐶 and 𝐷 respectively. The obtained algorithm allows to compute explicitly π D pi_{D} . If π C pi_{C} cannot be computed explicitly, our algorithm approximates it by numerical resolution of successive integral equations. Some numerical examples are studied to show the usefulness and proper functioning of our proposal.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43124785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A time-step-robust algorithm to compute particle trajectories in 3-D unstructured meshes for Lagrangian stochastic methods 拉格朗日随机方法计算三维非结构化网格中粒子轨迹的时间步长鲁棒算法
IF 0.9 Q4 Mathematics Pub Date : 2023-03-15 DOI: 10.1515/mcma-2023-2002
Guilhem Balvet, J. Minier, C. Henry, Y. Roustan, M. Ferrand
Abstract The purpose of this paper is to propose a time-step-robust cell-to-cell integration of particle trajectories in 3-D unstructured meshes in particle/mesh Lagrangian stochastic methods. The main idea is to dynamically update the mean fields used in the time integration by splitting, for each particle, the time step into sub-steps such that each of these sub-steps corresponds to particle cell residence times. This reduces the spatial discretization error. Given the stochastic nature of the models, a key aspect is to derive estimations of the residence times that do not anticipate the future of the Wiener process. To that effect, the new algorithm relies on a virtual particle, attached to each stochastic one, whose mean conditional behavior provides free-of-statistical-bias predictions of residence times. After consistency checks, this new algorithm is validated on two representative test cases: particle dispersion in a statistically uniform flow and particle dynamics in a non-uniform flow.
摘要:本文的目的是在粒子/网格拉格朗日随机方法中提出一种时间步长鲁棒的三维非结构化网格中粒子轨迹的胞间积分方法。其主要思想是动态更新时间积分中使用的平均场,方法是将每个粒子的时间步分成子步,这样每个子步对应于粒子单元的停留时间。这减少了空间离散误差。考虑到模型的随机性质,一个关键方面是推导出不预测维纳过程未来的停留时间的估计。为了达到这个效果,新的算法依赖于一个虚拟粒子,附着在每个随机粒子上,它的平均条件行为提供了无统计偏差的停留时间预测。通过一致性检验,在统计均匀流中的粒子弥散和非均匀流中的粒子动力学两个典型测试案例上对该算法进行了验证。
{"title":"A time-step-robust algorithm to compute particle trajectories in 3-D unstructured meshes for Lagrangian stochastic methods","authors":"Guilhem Balvet, J. Minier, C. Henry, Y. Roustan, M. Ferrand","doi":"10.1515/mcma-2023-2002","DOIUrl":"https://doi.org/10.1515/mcma-2023-2002","url":null,"abstract":"Abstract The purpose of this paper is to propose a time-step-robust cell-to-cell integration of particle trajectories in 3-D unstructured meshes in particle/mesh Lagrangian stochastic methods. The main idea is to dynamically update the mean fields used in the time integration by splitting, for each particle, the time step into sub-steps such that each of these sub-steps corresponds to particle cell residence times. This reduces the spatial discretization error. Given the stochastic nature of the models, a key aspect is to derive estimations of the residence times that do not anticipate the future of the Wiener process. To that effect, the new algorithm relies on a virtual particle, attached to each stochastic one, whose mean conditional behavior provides free-of-statistical-bias predictions of residence times. After consistency checks, this new algorithm is validated on two representative test cases: particle dispersion in a statistically uniform flow and particle dynamics in a non-uniform flow.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48076657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Monte Carlo Methods and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1