首页 > 最新文献

Monte Carlo Methods and Applications最新文献

英文 中文
Randomized vector iterative linear solvers of high precision for large dense system 大型密集系统高精度随机向量迭代线性求解器
Q3 STATISTICS & PROBABILITY Pub Date : 2023-10-04 DOI: 10.1515/mcma-2023-2013
Karl K. Sabelfeld, Anastasiya Kireeva
Abstract In this paper we suggest randomized linear solvers with a focus on refinement issue to achieve a high precision while maintaining all the advantages of the Monte Carlo method for solving systems of large dimension with dense matrices. It is shown that each iterative refinement step reduces the error by one order of magnitude. The crucial point of the suggested method is, in contrast to the standard Monte Carlo method, that the randomized vector algorithm computes the entire solution column at once, rather than a single component. This makes it possible to efficiently construct the iterative refinement method. We apply the developed method for solving a system of elasticity equations.
在本文中,我们提出了随机线性求解器,重点是细化问题,以实现高精度,同时保持蒙特卡罗方法在求解具有密集矩阵的大维系统时的所有优点。结果表明,每个迭代细化步骤减小误差的数量级。与标准蒙特卡罗方法相比,所建议的方法的关键点是随机向量算法一次计算整个解列,而不是单个分量。这使得有效地构造迭代细化方法成为可能。我们应用所开发的方法来求解弹性方程组。
{"title":"Randomized vector iterative linear solvers of high precision for large dense system","authors":"Karl K. Sabelfeld, Anastasiya Kireeva","doi":"10.1515/mcma-2023-2013","DOIUrl":"https://doi.org/10.1515/mcma-2023-2013","url":null,"abstract":"Abstract In this paper we suggest randomized linear solvers with a focus on refinement issue to achieve a high precision while maintaining all the advantages of the Monte Carlo method for solving systems of large dimension with dense matrices. It is shown that each iterative refinement step reduces the error by one order of magnitude. The crucial point of the suggested method is, in contrast to the standard Monte Carlo method, that the randomized vector algorithm computes the entire solution column at once, rather than a single component. This makes it possible to efficiently construct the iterative refinement method. We apply the developed method for solving a system of elasticity equations.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135548383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontmatter 头版头条
Q3 STATISTICS & PROBABILITY Pub Date : 2023-09-01 DOI: 10.1515/mcma-2023-frontmatter3
{"title":"Frontmatter","authors":"","doi":"10.1515/mcma-2023-frontmatter3","DOIUrl":"https://doi.org/10.1515/mcma-2023-frontmatter3","url":null,"abstract":"","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136310148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the stationarity and existence of moments of the periodic EGARCH process 关于周期EGARCH过程的平稳性和矩的存在性
IF 0.9 Q3 STATISTICS & PROBABILITY Pub Date : 2023-08-01 DOI: 10.1515/mcma-2023-2011
Ines Lescheb, Walid Slimani
Abstract In this paper, we will consider periodic EGARCH ⁡ ( p , p ) {operatorname{EGARCH}(p,p)} (exponential generalized autoregressive conditional heteroscedastic) processes denoted by PEGARCH ⁡ ( p , p ) {operatorname{PEGARCH}(p,p)} . These processes are similar to the standard EGARCH processes, but include seasonally varying coefficients. We examine the probabilistic structure of an EGARCH-type stochastic difference equation with periodically-varying parameters. We propose necessary and sufficient conditions ensuring the existence of stationary solutions (in a periodic sense) based on a Markovian representation. The closed forms of higher moments are, under these conditions, established. Furthermore, the expressions for the Kurtosis coefficient and the autocorrelations of squared observations are derived. The general theory is illustrated by considering special cases such as the symmetric and the asymmetric cases of the second order PEGARCH model.
本文将考虑周期EGARCH (p,p) {operatorname{EGARCH}(p,p)}(指数广义自回归条件异方差)过程,表示为PEGARCH (p,p) {operatorname{PEGARCH}(p,p)}。这些过程类似于标准EGARCH过程,但包括季节变化的系数。研究了一类参数周期性变化的egarch型随机差分方程的概率结构。基于马尔可夫表示,给出了周期平稳解存在的充分必要条件。在这些条件下,高矩的封闭形式就确立了。此外,还推导了峰度系数和平方观测值的自相关表达式。通过考虑二阶PEGARCH模型的对称和非对称情况来说明一般理论。
{"title":"On the stationarity and existence of moments of the periodic EGARCH process","authors":"Ines Lescheb, Walid Slimani","doi":"10.1515/mcma-2023-2011","DOIUrl":"https://doi.org/10.1515/mcma-2023-2011","url":null,"abstract":"Abstract In this paper, we will consider periodic EGARCH ⁡ ( p , p ) {operatorname{EGARCH}(p,p)} (exponential generalized autoregressive conditional heteroscedastic) processes denoted by PEGARCH ⁡ ( p , p ) {operatorname{PEGARCH}(p,p)} . These processes are similar to the standard EGARCH processes, but include seasonally varying coefficients. We examine the probabilistic structure of an EGARCH-type stochastic difference equation with periodically-varying parameters. We propose necessary and sufficient conditions ensuring the existence of stationary solutions (in a periodic sense) based on a Markovian representation. The closed forms of higher moments are, under these conditions, established. Furthermore, the expressions for the Kurtosis coefficient and the autocorrelations of squared observations are derived. The general theory is illustrated by considering special cases such as the symmetric and the asymmetric cases of the second order PEGARCH model.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44711818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bootstrap choice of non-nested autoregressive model with non-normal innovations 具有非正态创新的非嵌套自回归模型的自举选择
IF 0.9 Q3 STATISTICS & PROBABILITY Pub Date : 2023-07-04 DOI: 10.1515/mcma-2023-2010
Sedigheh Zamani Mehreyan
Abstract It is known that the block-based version of the bootstrap method can be used for distributional parameter estimation of dependent data. One of the advantages of this method is that it improves mean square errors. The paper makes two contributions. First, we consider the moving blocking bootstrap method for estimation of parameters of the autoregressive model. For each block, the parameters are estimated based on the modified maximum likelihood method. Second, we provide a method for model selection, Vuong’s test and tracking interval, i.e. for selecting the optimal model for the innovation’s distribution. Our analysis provides analytic results on the asymptotic distribution of the bootstrap estimators and also computational results via simulations. Some properties of the moving blocking bootstrap method are investigated through Monte Carlo simulation. This simulation study shows that, sometimes, Vuong’s test based on the modified maximum likelihood method is not able to distinguish between the two models; Vuong’s test based on the moving blocking bootstrap selects one of the competing models as optimal model. We have studied real data, the S&P500 data, and select optimal model for this data based on the theoretical results.
摘要基于块的bootstrap方法可用于相关数据的分布参数估计。这种方法的优点之一是它改善了均方误差。这篇论文有两个贡献。首先,我们考虑用移动块自举法估计自回归模型的参数。对于每个块,基于改进的最大似然法估计参数。其次,我们提供了一种模型选择、Vuong检验和跟踪区间的方法,即选择创新分布的最优模型。我们的分析提供了自举估计量渐近分布的解析结果和仿真计算结果。通过蒙特卡罗仿真研究了运动块自举法的一些性质。仿真研究表明,有时,基于改进的极大似然法的Vuong检验不能区分两个模型;Vuong的基于移动阻塞自举的测试选择一个竞争模型作为最优模型。我们研究了实际数据和标准普尔500指数数据,并根据理论结果选择了最优模型。
{"title":"Bootstrap choice of non-nested autoregressive model with non-normal innovations","authors":"Sedigheh Zamani Mehreyan","doi":"10.1515/mcma-2023-2010","DOIUrl":"https://doi.org/10.1515/mcma-2023-2010","url":null,"abstract":"Abstract It is known that the block-based version of the bootstrap method can be used for distributional parameter estimation of dependent data. One of the advantages of this method is that it improves mean square errors. The paper makes two contributions. First, we consider the moving blocking bootstrap method for estimation of parameters of the autoregressive model. For each block, the parameters are estimated based on the modified maximum likelihood method. Second, we provide a method for model selection, Vuong’s test and tracking interval, i.e. for selecting the optimal model for the innovation’s distribution. Our analysis provides analytic results on the asymptotic distribution of the bootstrap estimators and also computational results via simulations. Some properties of the moving blocking bootstrap method are investigated through Monte Carlo simulation. This simulation study shows that, sometimes, Vuong’s test based on the modified maximum likelihood method is not able to distinguish between the two models; Vuong’s test based on the moving blocking bootstrap selects one of the competing models as optimal model. We have studied real data, the S&P500 data, and select optimal model for this data based on the theoretical results.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46015548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontmatter 头版头条
Q3 STATISTICS & PROBABILITY Pub Date : 2023-06-01 DOI: 10.1515/mcma-2023-frontmatter2
{"title":"Frontmatter","authors":"","doi":"10.1515/mcma-2023-frontmatter2","DOIUrl":"https://doi.org/10.1515/mcma-2023-frontmatter2","url":null,"abstract":"","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135673784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Total variation bound for Milstein scheme without iterated integrals 无迭代积分的Milstein格式的全变分界
IF 0.9 Q3 STATISTICS & PROBABILITY Pub Date : 2023-05-26 DOI: 10.2139/ssrn.4333285
Toshihiro Yamada
Abstract The paper gives new results for the Milstein scheme of stochastic differential equations. We show that (i) the Milstein scheme holds as a weak approximation in total variation sense and is given by second-order polynomials of Brownian motion without using iterated integrals under non-commutative vector fields; (ii) the accuracy of the Milstein scheme is better than that of the Euler–Maruyama scheme in an asymptotic sense. In particular, we prove d TV ⁢ ( X T ε , X ¯ T ε , Mil , ( n ) ) ≤ C ⁢ ε 2 / n d_{mathrm{TV}}(X_{T}^{varepsilon},bar{X}_{T}^{varepsilon,mathrm{Mil},(n)})leq Cvarepsilon^{2}/n and d TV ⁢ ( X T ε , X ¯ T ε , EM , ( n ) ) ≤ C ⁢ ε / n d_{mathrm{TV}}(X_{T}^{varepsilon},bar{X}_{T}^{varepsilon,mathrm{EM},(n)})leq Cvarepsilon/n , where d TV d_{mathrm{TV}} is the total variation distance, X ε X^{varepsilon} is a solution of a stochastic differential equation with a small parameter 𝜀, and X ¯ ε , Mil , ( n ) bar{X}^{varepsilon,mathrm{Mil},(n)} and X ¯ ε , EM , ( n ) bar{X}^{varepsilon,mathrm{EM},(n)} are the Milstein scheme without iterated integrals and the Euler–Maruyama scheme, respectively. In computational aspect, the scheme is useful to estimate probability distribution functions by a simple simulation without Lévy area computation. Numerical examples demonstrate the validity of the method.
摘要本文给出了随机微分方程米尔斯坦格式的新结果。我们证明(i) Milstein格式在全变分意义上是弱逼近,并且在非交换向量场下由布朗运动的二阶多项式给出,而不使用迭代积分;(ii)在渐近意义上,Milstein格式的精度优于Euler-Maruyama格式。特别地,我们证明了d TV减去(X T ε, X¯T ε, Mil,(n))≤C减去ε 2/n d_ {mathrm{TV}} ({X_T}^ {varepsilon}, bar{X} _T{^ }{varepsilon, mathrm{Mil},(n}))leq C varepsilon ^{2}/n和d TV减去(X T ε, X¯T ε, EM,(n))≤C减去ε /n d_ {mathrm{TV}} ({X_T}^ {varepsilon}, bar{X} _T{^ }{varepsilon, mathrm{EM},(n)})leq C varepsilon /n,其中d TV减去d_ {mathrm{TV}}为总变异距离,X ε X^ {varepsilon}是一个具有小参数的随机微分方程的解,X¯ε, Mil,(n) bar{X} ^ {varepsilon, mathrm{Mil},(n)}和X¯ε, EM,(n)bar{X} ^ {varepsilon, mathrm{EM},(n)}分别是无迭代积分的Milstein格式和Euler-Maruyama格式。在计算方面,该方案可以通过简单的模拟来估计概率分布函数,而无需计算lsamvy面积。数值算例验证了该方法的有效性。
{"title":"Total variation bound for Milstein scheme without iterated integrals","authors":"Toshihiro Yamada","doi":"10.2139/ssrn.4333285","DOIUrl":"https://doi.org/10.2139/ssrn.4333285","url":null,"abstract":"Abstract The paper gives new results for the Milstein scheme of stochastic differential equations. We show that (i) the Milstein scheme holds as a weak approximation in total variation sense and is given by second-order polynomials of Brownian motion without using iterated integrals under non-commutative vector fields; (ii) the accuracy of the Milstein scheme is better than that of the Euler–Maruyama scheme in an asymptotic sense. In particular, we prove d TV ⁢ ( X T ε , X ¯ T ε , Mil , ( n ) ) ≤ C ⁢ ε 2 / n d_{mathrm{TV}}(X_{T}^{varepsilon},bar{X}_{T}^{varepsilon,mathrm{Mil},(n)})leq Cvarepsilon^{2}/n and d TV ⁢ ( X T ε , X ¯ T ε , EM , ( n ) ) ≤ C ⁢ ε / n d_{mathrm{TV}}(X_{T}^{varepsilon},bar{X}_{T}^{varepsilon,mathrm{EM},(n)})leq Cvarepsilon/n , where d TV d_{mathrm{TV}} is the total variation distance, X ε X^{varepsilon} is a solution of a stochastic differential equation with a small parameter 𝜀, and X ¯ ε , Mil , ( n ) bar{X}^{varepsilon,mathrm{Mil},(n)} and X ¯ ε , EM , ( n ) bar{X}^{varepsilon,mathrm{EM},(n)} are the Milstein scheme without iterated integrals and the Euler–Maruyama scheme, respectively. In computational aspect, the scheme is useful to estimate probability distribution functions by a simple simulation without Lévy area computation. Numerical examples demonstrate the validity of the method.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47464087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Total variation bound for Milstein scheme without iterated integrals 无迭代积分的Milstein格式的总变分界
Q3 STATISTICS & PROBABILITY Pub Date : 2023-05-26 DOI: 10.1515/mcma-2023-2007
Toshihiro Yamada
Abstract The paper gives new results for the Milstein scheme of stochastic differential equations. We show that (i) the Milstein scheme holds as a weak approximation in total variation sense and is given by second-order polynomials of Brownian motion without using iterated integrals under non-commutative vector fields; (ii) the accuracy of the Milstein scheme is better than that of the Euler–Maruyama scheme in an asymptotic sense. In particular, we prove <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mrow> <m:msub> <m:mi>d</m:mi> <m:mi>TV</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:msubsup> <m:mi>X</m:mi> <m:mi>T</m:mi> <m:mi>ε</m:mi> </m:msubsup> <m:mo>,</m:mo> <m:msubsup> <m:mover accent="true"> <m:mi>X</m:mi> <m:mo>¯</m:mo> </m:mover> <m:mi>T</m:mi> <m:mrow> <m:mi>ε</m:mi> <m:mo>,</m:mo> <m:mi>Mil</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>n</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:msubsup> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:mrow> <m:mi>C</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mi>ε</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> <m:mo>/</m:mo> <m:mi>n</m:mi> </m:mrow> </m:mrow> </m:math> d_{mathrm{TV}}(X_{T}^{varepsilon},bar{X}_{T}^{varepsilon,mathrm{Mil},(n)})leq Cvarepsilon^{2}/n and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mrow> <m:msub> <m:mi>d</m:mi> <m:mi>TV</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:msubsup> <m:mi>X</m:mi> <m:mi>T</m:mi> <m:mi>ε</m:mi> </m:msubsup> <m:mo>,</m:mo> <m:msubsup> <m:mover accent="true"> <m:mi>X</m:mi> <m:mo>¯</m:mo> </m:mover> <m:mi>T</m:mi> <m:mrow> <m:mi>ε</m:mi> <m:mo>,</m:mo> <m:mi>EM</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>n</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:msubsup> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> <m:mo>≤</m:mo> <m:mrow> <m:mrow> <m:mi>C</m:mi> <m:mo>⁢</m:mo> <m:mi>ε</m:mi> </m:mrow> <m:mo>/</m:mo> <m:mi>n</m:mi> </m:mrow> </m:mrow> </m:math> d_{mathrm{TV}}(X_{T}^{varepsilon},bar{X}_{T}^{varepsilon,mathrm{EM},(n)})leq Cvarepsilon/n , where <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>d</m:mi> <m:mi>TV</m:mi> </m:msub> </m:math> d_{mathrm{TV}} is the total variation distance, <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msup> <m:mi>X</m:mi> <m:mi>ε</m:mi> </m:msup> </m:math> X^{varepsilon} is a solution of a stochastic differential equation with a small parameter 𝜀, and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msup> <m:mover accent="true"> <m:mi>X</m:mi> <m:mo>¯</m:mo> </m:mover> <m:mrow> <m:mi>ε</m:mi> <m:mo>,</m:mo> <m:mi>Mil</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>n</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:msup> </m:math> bar{X}^{varepsilon,mathrm{Mil},(n)} and <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msup> <m:mover acc
摘要本文给出了随机微分方程米尔斯坦格式的新结果。我们证明(i) Milstein格式在全变分意义上是弱逼近,并且在非交换向量场下由布朗运动的二阶多项式给出,而不使用迭代积分;(ii)在渐近意义上,Milstein格式的精度优于Euler-Maruyama格式。特别是,我们证明了d TV减去(X T ε, X¯T ε, Mil,(n))≤C减去ε 2/n d_ {mathrm{TV}} ({X_T}^ {varepsilon}, bar{X} _T{^ }{varepsilon, mathrm{Mil},(n)})leq C varepsilon ^{2}/n和d TV减去(X T ε, X¯T ε, EM,(n))≤C减去ε /n d_ {mathrm{TV}} ({X_T}^ {varepsilon}, bar{X} _T{^ }{varepsilon, mathrm{EM},(n)})leq C varepsilon /n,其中,d TV d_ {mathrm{TV}}为总变差距离,X ε X^ {varepsilon}为小参数方程的随机微分方程的解,X¯ε, Mil,(n) bar{X} ^ {varepsilon, mathrm{Mil},(n)}和X¯ε, EM,(n)bar{X} ^ {varepsilon, mathrm{EM},(n)}分别为无迭代积分的Milstein格式和Euler-Maruyama格式。在计算方面,该方案可以通过简单的模拟来估计概率分布函数,而无需计算lsamvy面积。数值算例验证了该方法的有效性。
{"title":"Total variation bound for Milstein scheme without iterated integrals","authors":"Toshihiro Yamada","doi":"10.1515/mcma-2023-2007","DOIUrl":"https://doi.org/10.1515/mcma-2023-2007","url":null,"abstract":"Abstract The paper gives new results for the Milstein scheme of stochastic differential equations. We show that (i) the Milstein scheme holds as a weak approximation in total variation sense and is given by second-order polynomials of Brownian motion without using iterated integrals under non-commutative vector fields; (ii) the accuracy of the Milstein scheme is better than that of the Euler–Maruyama scheme in an asymptotic sense. In particular, we prove &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mi&gt;d&lt;/m:mi&gt; &lt;m:mi&gt;TV&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:msubsup&gt; &lt;m:mi&gt;X&lt;/m:mi&gt; &lt;m:mi&gt;T&lt;/m:mi&gt; &lt;m:mi&gt;ε&lt;/m:mi&gt; &lt;/m:msubsup&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:msubsup&gt; &lt;m:mover accent=\"true\"&gt; &lt;m:mi&gt;X&lt;/m:mi&gt; &lt;m:mo&gt;¯&lt;/m:mo&gt; &lt;/m:mover&gt; &lt;m:mi&gt;T&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mi&gt;ε&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;Mil&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:msubsup&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;≤&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;C&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mi&gt;ε&lt;/m:mi&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;/&lt;/m:mo&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; d_{mathrm{TV}}(X_{T}^{varepsilon},bar{X}_{T}^{varepsilon,mathrm{Mil},(n)})leq Cvarepsilon^{2}/n and &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mi&gt;d&lt;/m:mi&gt; &lt;m:mi&gt;TV&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:msubsup&gt; &lt;m:mi&gt;X&lt;/m:mi&gt; &lt;m:mi&gt;T&lt;/m:mi&gt; &lt;m:mi&gt;ε&lt;/m:mi&gt; &lt;/m:msubsup&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:msubsup&gt; &lt;m:mover accent=\"true\"&gt; &lt;m:mi&gt;X&lt;/m:mi&gt; &lt;m:mo&gt;¯&lt;/m:mo&gt; &lt;/m:mover&gt; &lt;m:mi&gt;T&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mi&gt;ε&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;EM&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:msubsup&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;≤&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;C&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mi&gt;ε&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;/&lt;/m:mo&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; d_{mathrm{TV}}(X_{T}^{varepsilon},bar{X}_{T}^{varepsilon,mathrm{EM},(n)})leq Cvarepsilon/n , where &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mi&gt;d&lt;/m:mi&gt; &lt;m:mi&gt;TV&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;/m:math&gt; d_{mathrm{TV}} is the total variation distance, &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msup&gt; &lt;m:mi&gt;X&lt;/m:mi&gt; &lt;m:mi&gt;ε&lt;/m:mi&gt; &lt;/m:msup&gt; &lt;/m:math&gt; X^{varepsilon} is a solution of a stochastic differential equation with a small parameter 𝜀, and &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msup&gt; &lt;m:mover accent=\"true\"&gt; &lt;m:mi&gt;X&lt;/m:mi&gt; &lt;m:mo&gt;¯&lt;/m:mo&gt; &lt;/m:mover&gt; &lt;m:mrow&gt; &lt;m:mi&gt;ε&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;Mil&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:math&gt; bar{X}^{varepsilon,mathrm{Mil},(n)} and &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msup&gt; &lt;m:mover acc","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135996653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monte Carlo estimates of extremes of stationary/nonstationary Gaussian processes 平稳/非平稳高斯过程极值的蒙特卡罗估计
IF 0.9 Q3 STATISTICS & PROBABILITY Pub Date : 2023-05-25 DOI: 10.1515/mcma-2023-2006
M. Grigoriu
Abstract Finite-dimensional (FD) models X d ⁢ ( t ) X_{d}(t) , i.e., deterministic functions of time and finite sets of 𝑑 random variables, are constructed for stationary and nonstationary Gaussian processes X ⁢ ( t ) X(t) with continuous samples defined on a bounded time interval [ 0 , τ ] [0,tau] . The basis functions of these FD models are finite sets of eigenfunctions of the correlation functions of X ⁢ ( t ) X(t) and of trigonometric functions. Numerical illustrations are presented for a stationary Gaussian process X ⁢ ( t ) X(t) with exponential correlation function and a nonstationary version of this process obtained by time distortion. It was found that the FD models are consistent with the theoretical results in the sense that their samples approach the target samples as the stochastic dimension is increased.
摘要针对平稳和非平稳高斯过程X≠(t) X(t),在有界时间区间[0,τ] [0,tau]上定义连续样本,构造了有限维(FD)模型X d¹(t) X_{d}(t),即时间的确定性函数和𝑑随机变量的有限集。这些FD模型的基函数是X¹(t) X(t)的相关函数和三角函数的特征函数的有限集合。给出了具有指数相关函数的平稳高斯过程X¹(t) X(t)的数值实例,并给出了该过程通过时间畸变得到的非平稳版本。结果表明,随着随机维数的增加,FD模型的样本越来越接近目标样本,这与理论结果一致。
{"title":"Monte Carlo estimates of extremes of stationary/nonstationary Gaussian processes","authors":"M. Grigoriu","doi":"10.1515/mcma-2023-2006","DOIUrl":"https://doi.org/10.1515/mcma-2023-2006","url":null,"abstract":"Abstract Finite-dimensional (FD) models X d ⁢ ( t ) X_{d}(t) , i.e., deterministic functions of time and finite sets of 𝑑 random variables, are constructed for stationary and nonstationary Gaussian processes X ⁢ ( t ) X(t) with continuous samples defined on a bounded time interval [ 0 , τ ] [0,tau] . The basis functions of these FD models are finite sets of eigenfunctions of the correlation functions of X ⁢ ( t ) X(t) and of trigonometric functions. Numerical illustrations are presented for a stationary Gaussian process X ⁢ ( t ) X(t) with exponential correlation function and a nonstationary version of this process obtained by time distortion. It was found that the FD models are consistent with the theoretical results in the sense that their samples approach the target samples as the stochastic dimension is increased.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"29 1","pages":"127 - 142"},"PeriodicalIF":0.9,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44816176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two stochastic algorithms for solving elastostatics problems governed by the Lamé equation 求解Lamé方程弹性静力学问题的两种随机算法
IF 0.9 Q3 STATISTICS & PROBABILITY Pub Date : 2023-05-23 DOI: 10.1515/mcma-2023-2008
A. Kireeva, Ivan Aksyuk, K. Sabelfeld
Abstract In this paper, we construct stochastic simulation algorithms for solving an elastostatics problem governed by the Lamé equation. Two different stochastic simulation methods are suggested: (1) a method based on a random walk on spheres, which is iteratively applied to anisotropic diffusion equations that are related through the mixed second-order derivatives (this method is meshless and can be applied to boundary value problems for complicated domains); (2) a randomized algorithm for solving large systems of linear algebraic equations that is the core of this method. It needs a mesh formation, but even for very fine grids, the algorithm shows a high efficiency. Both methods are scalable and can be easily parallelized.
摘要本文构造了求解由lam方程控制的弹性静力学问题的随机模拟算法。提出了两种不同的随机模拟方法:(1)基于球上随机游走的方法,该方法迭代应用于通过混合二阶导数关联的各向异性扩散方程(该方法无网格,可应用于复杂域的边值问题);(2)求解大型线性代数方程组的随机算法,这是该方法的核心。它需要网格的形成,但即使是非常精细的网格,该算法也显示出很高的效率。这两种方法都是可伸缩的,可以很容易地并行化。
{"title":"Two stochastic algorithms for solving elastostatics problems governed by the Lamé equation","authors":"A. Kireeva, Ivan Aksyuk, K. Sabelfeld","doi":"10.1515/mcma-2023-2008","DOIUrl":"https://doi.org/10.1515/mcma-2023-2008","url":null,"abstract":"Abstract In this paper, we construct stochastic simulation algorithms for solving an elastostatics problem governed by the Lamé equation. Two different stochastic simulation methods are suggested: (1) a method based on a random walk on spheres, which is iteratively applied to anisotropic diffusion equations that are related through the mixed second-order derivatives (this method is meshless and can be applied to boundary value problems for complicated domains); (2) a randomized algorithm for solving large systems of linear algebraic equations that is the core of this method. It needs a mesh formation, but even for very fine grids, the algorithm shows a high efficiency. Both methods are scalable and can be easily parallelized.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"29 1","pages":"143 - 160"},"PeriodicalIF":0.9,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47878109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Metropolis random walk algorithm to estimate a lower bound of the star discrepancy 估计星差下界的Metropolis随机游动算法
IF 0.9 Q3 STATISTICS & PROBABILITY Pub Date : 2023-05-10 DOI: 10.1515/mcma-2023-2005
Maryam Alsolami, M. Mascagni
Abstract In this paper, we introduce a new algorithm for estimating the lower bounds for the star discrepancy of any arbitrary point sets in [ 0 , 1 ] s [0,1]^{s} . Computing the exact star discrepancy is known to be an NP-hard problem, so we have been looking for effective approximation algorithms. The star discrepancy can be thought of as the maximum of a function called the local discrepancy, and we will develop approximation algorithms to maximize this function. Our algorithm is analogous to the random walk algorithm described in one of our previous papers [M. Alsolami and M. Mascagni, A random walk algorithm to estimate a lower bound of the star discrepancy, Monte Carlo Methods Appl. 28 (2022), 4, 341–348.]. We add a statistical technique to the random walk algorithm by implementing the Metropolis algorithm in random walks on each chosen dimension to accept or reject this movement. We call this Metropolis random walk algorithm. In comparison to all previously known techniques, our new algorithm is superior, especially in high dimensions. Also, it can quickly determine the precise value of the star discrepancy in most of our data sets of various sizes and dimensions, or at least the lower bounds of the star discrepancy.
摘要在本文中,我们介绍了一种新的算法来估计[0,1]s[0,1]^{s}中任意点集的星差的下界。计算精确的星差是一个NP难题,因此我们一直在寻找有效的近似算法。恒星差异可以被认为是一个称为局部差异的函数的最大值,我们将开发近似算法来最大化这个函数。我们的算法类似于我们之前的一篇论文[M.Alsolami和M。Mascagni,估计星差下界的随机游动算法,蒙特卡罗方法应用。28(2022),44341–348.]。我们通过在每个选定维度上的随机行走中实现Metropolis算法,将统计技术添加到随机行走算法中,以接受或拒绝这种运动。我们称之为Metropolis随机行走算法。与以前所有已知的技术相比,我们的新算法是优越的,尤其是在高维方面。此外,它可以快速确定我们大多数不同大小和维度的数据集中恒星差异的精确值,或者至少确定恒星差异的下限。
{"title":"A Metropolis random walk algorithm to estimate a lower bound of the star discrepancy","authors":"Maryam Alsolami, M. Mascagni","doi":"10.1515/mcma-2023-2005","DOIUrl":"https://doi.org/10.1515/mcma-2023-2005","url":null,"abstract":"Abstract In this paper, we introduce a new algorithm for estimating the lower bounds for the star discrepancy of any arbitrary point sets in [ 0 , 1 ] s [0,1]^{s} . Computing the exact star discrepancy is known to be an NP-hard problem, so we have been looking for effective approximation algorithms. The star discrepancy can be thought of as the maximum of a function called the local discrepancy, and we will develop approximation algorithms to maximize this function. Our algorithm is analogous to the random walk algorithm described in one of our previous papers [M. Alsolami and M. Mascagni, A random walk algorithm to estimate a lower bound of the star discrepancy, Monte Carlo Methods Appl. 28 (2022), 4, 341–348.]. We add a statistical technique to the random walk algorithm by implementing the Metropolis algorithm in random walks on each chosen dimension to accept or reject this movement. We call this Metropolis random walk algorithm. In comparison to all previously known techniques, our new algorithm is superior, especially in high dimensions. Also, it can quickly determine the precise value of the star discrepancy in most of our data sets of various sizes and dimensions, or at least the lower bounds of the star discrepancy.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"29 1","pages":"161 - 171"},"PeriodicalIF":0.9,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44369916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Monte Carlo Methods and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1