We reported previously that the pellagragenic property of corn protein is not only low l-tryptophan concentration but also the lower conversion percentage of l-tryptophan to nicotinamide; the amino acid composition greatly affected the conversion percentage. The amino acid value of wheat protein is lower than that of rice protein. In the present study, we compare the conversion percentages of l-tryptophan to nicotinamide between wheat protein and rice protein diets in growing rats. The body weight gain for 28 days in rats fed with a 10% amino acid mixture diet with wheat protein was lower than that of rats fed with a 10% amino acid diet with rice protein (68.1 ± 1.6 g vs 108.4 ± 1.9 g; P < 0.05). The conversion percentage of l-tryptophan to nicotinamide was also lower for the wheat protein diet compared with the rice protein diet (1.44 ± 0.036% vs 2.84 ± 0.19%; P < 0.05). The addition of limiting amino acids (l-isoleucine, l-lysine, l-tryptophan, l-methionine, l-threonine) to the wheat protein diet improved growth and the conversion percentage. In conclusion, our result supports the thinking that the composition of amino acids affects the conversion ratio of l-tryptophan to nicotinamide.
{"title":"Conversion Percentage of Tryptophan to Nicotinamide is Higher in Rice Protein Diet than in Wheat Protein Diet in Rats.","authors":"Katsumi Shibata, Tsutomu Fukuwatari, Tomoyo Kawamura","doi":"10.4137/IJTR.S22444","DOIUrl":"10.4137/IJTR.S22444","url":null,"abstract":"<p><p>We reported previously that the pellagragenic property of corn protein is not only low l-tryptophan concentration but also the lower conversion percentage of l-tryptophan to nicotinamide; the amino acid composition greatly affected the conversion percentage. The amino acid value of wheat protein is lower than that of rice protein. In the present study, we compare the conversion percentages of l-tryptophan to nicotinamide between wheat protein and rice protein diets in growing rats. The body weight gain for 28 days in rats fed with a 10% amino acid mixture diet with wheat protein was lower than that of rats fed with a 10% amino acid diet with rice protein (68.1 ± 1.6 g vs 108.4 ± 1.9 g; P < 0.05). The conversion percentage of l-tryptophan to nicotinamide was also lower for the wheat protein diet compared with the rice protein diet (1.44 ± 0.036% vs 2.84 ± 0.19%; P < 0.05). The addition of limiting amino acids (l-isoleucine, l-lysine, l-tryptophan, l-methionine, l-threonine) to the wheat protein diet improved growth and the conversion percentage. In conclusion, our result supports the thinking that the composition of amino acids affects the conversion ratio of l-tryptophan to nicotinamide. </p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"8 ","pages":"19-25"},"PeriodicalIF":4.4,"publicationDate":"2015-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33145211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-02-10eCollection Date: 2015-01-01DOI: 10.4137/IJTR.S19985
Rowland Noakes
The aryl hydrocarbon receptor (AHR) is a cytosolic receptor for low molecular weight molecules, of which the most widely recognized ligand is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and the most widely recognized effect, chloracne. Adverse effects of manipulation were most recently and graphically demonstrated by the poisoning of Viktor Yushchenko during the Ukrainian presidential elections of 2004. However, recent research has revealed a receptor with wide-ranging, and at times, paradoxical actions. It was arguably among the first biological receptors to be utilized by dermatologists, dating from the time of topical tar preparations as a therapeutic agent. I provide a review outlining the role AHR plays in the development, cellular oxidation/antioxidation, responses to ultraviolet light, melanogenesis, epidermal barrier function, and immune regulation and its relationship to tryptophan metabolism. Finally, I will review the role of AHR in diseases of the integument.
{"title":"The aryl hydrocarbon receptor: a review of its role in the physiology and pathology of the integument and its relationship to the tryptophan metabolism.","authors":"Rowland Noakes","doi":"10.4137/IJTR.S19985","DOIUrl":"https://doi.org/10.4137/IJTR.S19985","url":null,"abstract":"<p><p>The aryl hydrocarbon receptor (AHR) is a cytosolic receptor for low molecular weight molecules, of which the most widely recognized ligand is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and the most widely recognized effect, chloracne. Adverse effects of manipulation were most recently and graphically demonstrated by the poisoning of Viktor Yushchenko during the Ukrainian presidential elections of 2004. However, recent research has revealed a receptor with wide-ranging, and at times, paradoxical actions. It was arguably among the first biological receptors to be utilized by dermatologists, dating from the time of topical tar preparations as a therapeutic agent. I provide a review outlining the role AHR plays in the development, cellular oxidation/antioxidation, responses to ultraviolet light, melanogenesis, epidermal barrier function, and immune regulation and its relationship to tryptophan metabolism. Finally, I will review the role of AHR in diseases of the integument. </p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"8 ","pages":"7-18"},"PeriodicalIF":4.4,"publicationDate":"2015-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/IJTR.S19985","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33427569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-01-07eCollection Date: 2015-01-01DOI: 10.4137/IJTR.S20381
Takeshi Fukushima, Anna Sugiura, Ippei Furuta, Sumiko Iwasa, Hideaki Iizuka, Hideaki Ichiba, Mayu Onozato, Hidemasa Hikawa, Yuusaku Yokoyama
6-Chlorotryptophan possesses unique bioactivity and can be used as a precursor for several bioactive compounds in medicinal chemistry. It was enantioselectively synthesized by condensing 6-chloroindole with racemic N-acetylserine, followed by enzymatic hydrolysis with l-aminoacylase (EC 3.5.1.14). The optical purity was examined by conducting high-performance liquid chromatography with a Cinchona alkaloid-based zwitterionic chiral stationary phase (CSP) [CHIRALPAK(®) ZWIX(+)], which bears a chiral trans-2-aminocyclohexanesulfonic acid moiety tagged at C-9 of the Cinchona alka-loid. The zwitterionic CSP enabled efficient enantiomeric separations of monosubstituted tryptophan derivatives 1-methyltryptophan, 5-methyltryptophan, 6-methyltryptophan, 5-methoxytryptophan, and 6-chlorotryptophan with a methanol/H2O (98/2) mobile phase containing formic acid (FA) and diethylamine (DEA) additives. The mobile phase contains 25-75 mM FA and 20-50 mM DEA, enabling good separation of the enantiomers of each tryptophan derivative (α > 1.25). Thus, the optical purity of the synthesized 6-chloro-l-tryptophan was easily determined (greater than 99.0%) using HPLC with the zwitterionic CSP.
6-氯色氨酸具有独特的生物活性,可作为药物化学中几种生物活性化合物的前体。以6-氯吲哚与外消旋n -乙酰丝氨酸缩合为原料,经l-氨基酰化酶(EC 3.5.1.14)酶解,对映选择性地合成了该化合物。利用金鸡纳生物碱基两性离子手性固定相(CSP) [CHIRALPAK(®)ZWIX(+)]进行高效液相色谱检测光学纯度,该固定相具有手性反式-2-氨基环己磺酸片段,标记在金鸡纳生物碱的C-9上。两性离子CSP在含有甲酸(FA)和二乙胺(DEA)添加剂的甲醇/水(98/2)流动相下,实现了单取代色氨酸衍生物1-甲基色氨酸、5-甲基色氨酸、6-甲基色氨酸、5-甲氧基色氨酸和6-氯色氨酸的高效对映体分离。流动相为25-75 mM FA和20-50 mM DEA,对色氨酸衍生物的对映体有较好的分离效果(α > 1.25)。因此,用两性离子CSP高效液相色谱法测定合成的6-氯-l-色氨酸的光学纯度可达99.0%以上。
{"title":"Enantiomeric Separation of Monosubstituted Tryptophan Derivatives and Metabolites by HPLC with a Cinchona Alkaloid-Based Zwitterionic Chiral Stationary Phase and Its Application to the Evaluation of the Optical Purity of Synthesized 6-Chloro-l-Tryptophan.","authors":"Takeshi Fukushima, Anna Sugiura, Ippei Furuta, Sumiko Iwasa, Hideaki Iizuka, Hideaki Ichiba, Mayu Onozato, Hidemasa Hikawa, Yuusaku Yokoyama","doi":"10.4137/IJTR.S20381","DOIUrl":"https://doi.org/10.4137/IJTR.S20381","url":null,"abstract":"<p><p>6-Chlorotryptophan possesses unique bioactivity and can be used as a precursor for several bioactive compounds in medicinal chemistry. It was enantioselectively synthesized by condensing 6-chloroindole with racemic N-acetylserine, followed by enzymatic hydrolysis with l-aminoacylase (EC 3.5.1.14). The optical purity was examined by conducting high-performance liquid chromatography with a Cinchona alkaloid-based zwitterionic chiral stationary phase (CSP) [CHIRALPAK(®) ZWIX(+)], which bears a chiral trans-2-aminocyclohexanesulfonic acid moiety tagged at C-9 of the Cinchona alka-loid. The zwitterionic CSP enabled efficient enantiomeric separations of monosubstituted tryptophan derivatives 1-methyltryptophan, 5-methyltryptophan, 6-methyltryptophan, 5-methoxytryptophan, and 6-chlorotryptophan with a methanol/H2O (98/2) mobile phase containing formic acid (FA) and diethylamine (DEA) additives. The mobile phase contains 25-75 mM FA and 20-50 mM DEA, enabling good separation of the enantiomers of each tryptophan derivative (α > 1.25). Thus, the optical purity of the synthesized 6-chloro-l-tryptophan was easily determined (greater than 99.0%) using HPLC with the zwitterionic CSP. </p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"8 ","pages":"1-5"},"PeriodicalIF":4.4,"publicationDate":"2015-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/IJTR.S20381","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33006560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-12-04eCollection Date: 2014-01-01DOI: 10.4137/IJTR.S18231
Abdulla A-B Badawy, Sarah L Lake, Donald M Dougherty
The pellagragenic effect of leucine (Leu) has been proposed to involve modulation of L-tryptophan (Trp) metabolism along the hepatic kynurenine pathway. Here, we discuss some of the mechanisms suggested and report the effects in healthy volunteers of single doses of Leu (4.05-6.75 g) administered in a 16-amino acid mixture on concentrations of plasma Trp and its kynurenine metabolites. Flux of Trp through Trp 2,3-dioxygenase (TDO) is dose-dependently enhanced most probably by Leu and can be attributed to TDO activation. Trp oxidation is better expressed using plasma total kynure-nines, rather than kynurenine, and free, rather than total, Trp. Increased hepatic Trp oxidation may be an additional mechanism of action of branched-chain amino acids in the acute Trp depletion test. Inhibition of intestinal absorption or hepatic uptake of Trp by Leu can be excluded. Potential mechanisms of the aggravation of pellagra symptoms by Leu are discussed.
{"title":"Mechanisms of the pellagragenic effect of leucine: stimulation of hepatic tryptophan oxidation by administration of branched-chain amino acids to healthy human volunteers and the role of plasma free tryptophan and total kynurenines.","authors":"Abdulla A-B Badawy, Sarah L Lake, Donald M Dougherty","doi":"10.4137/IJTR.S18231","DOIUrl":"10.4137/IJTR.S18231","url":null,"abstract":"<p><p>The pellagragenic effect of leucine (Leu) has been proposed to involve modulation of L-tryptophan (Trp) metabolism along the hepatic kynurenine pathway. Here, we discuss some of the mechanisms suggested and report the effects in healthy volunteers of single doses of Leu (4.05-6.75 g) administered in a 16-amino acid mixture on concentrations of plasma Trp and its kynurenine metabolites. Flux of Trp through Trp 2,3-dioxygenase (TDO) is dose-dependently enhanced most probably by Leu and can be attributed to TDO activation. Trp oxidation is better expressed using plasma total kynure-nines, rather than kynurenine, and free, rather than total, Trp. Increased hepatic Trp oxidation may be an additional mechanism of action of branched-chain amino acids in the acute Trp depletion test. Inhibition of intestinal absorption or hepatic uptake of Trp by Leu can be excluded. Potential mechanisms of the aggravation of pellagra symptoms by Leu are discussed. </p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"7 ","pages":"23-32"},"PeriodicalIF":4.4,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259507/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32916426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-09-16eCollection Date: 2014-01-01DOI: 10.4137/IJTR.S16800
Magdalena E Kegel, Maria Bhat, Elisabeth Skogh, Martin Samuelsson, Kristina Lundberg, Marja-Liisa Dahl, Carl Sellgren, Lilly Schwieler, Göran Engberg, Ina Schuppe-Koistinen, Sophie Erhardt
Several studies suggest a role for kynurenic acid (KYNA) in the pathophysiology of schizophrenia. It has been proposed that increased brain KYNA levels in schizophrenia result from a pathological shift in the kynurenine pathway toward enhanced KYNA formation, away from the other branch of the pathway leading to quinolinic acid (QUIN). Here we investigate the levels of QUIN in cerebrospinal fluid (CSF) of patients with schizophrenia and healthy controls, and relate those to CSF levels of KYNA and other kynurenine metabolites from the same individuals. CSF QUIN levels from stable outpatients treated with olanzapine (n = 22) and those of controls (n = 26) were analyzed using liquid chromatography-mass spectrometry. No difference in CSF QUIN levels between patients and controls was observed (20.6 ± 1.5 nM vs. 18.2 ± 1.1 nM, P = 0.36). CSF QUIN was positively correlated to CSF kynurenine and CSF KYNA in patients but not in controls. The CSF QUIN/KYNA ratio was lower in patients than in controls (P = 0.027). In summary, the present study offers support for an over-activated and imbalanced kynurenine pathway, favoring the production of KYNA over QUIN in patients with schizophrenia.
几项研究表明,犬尿酸(KYNA)在精神分裂症的病理生理中起作用。有人提出,精神分裂症患者脑KYNA水平的增加是由于犬尿氨酸途径的病理转变,使KYNA的形成增强,远离了导致喹啉酸(QUIN)的途径的另一个分支。在这里,我们研究了精神分裂症患者和健康对照者脑脊液(CSF)中QUIN的水平,并将其与同一个体脑脊液中KYNA和其他犬尿氨酸代谢物的水平联系起来。采用液相色谱-质谱联用技术对接受奥氮平治疗的稳定门诊患者(n = 22)和对照组(n = 26)的脑脊液QUIN水平进行分析。患者与对照组脑脊液QUIN水平无差异(20.6±1.5 nM vs. 18.2±1.1 nM, P = 0.36)。患者脑脊液QUIN与脑脊液犬尿氨酸和脑脊液KYNA呈正相关,而对照组无相关。患者脑脊液QUIN/KYNA比值低于对照组(P = 0.027)。总之,目前的研究支持过度激活和不平衡的犬尿氨酸途径,有利于精神分裂症患者产生KYNA而不是QUIN。
{"title":"Imbalanced kynurenine pathway in schizophrenia.","authors":"Magdalena E Kegel, Maria Bhat, Elisabeth Skogh, Martin Samuelsson, Kristina Lundberg, Marja-Liisa Dahl, Carl Sellgren, Lilly Schwieler, Göran Engberg, Ina Schuppe-Koistinen, Sophie Erhardt","doi":"10.4137/IJTR.S16800","DOIUrl":"https://doi.org/10.4137/IJTR.S16800","url":null,"abstract":"<p><p>Several studies suggest a role for kynurenic acid (KYNA) in the pathophysiology of schizophrenia. It has been proposed that increased brain KYNA levels in schizophrenia result from a pathological shift in the kynurenine pathway toward enhanced KYNA formation, away from the other branch of the pathway leading to quinolinic acid (QUIN). Here we investigate the levels of QUIN in cerebrospinal fluid (CSF) of patients with schizophrenia and healthy controls, and relate those to CSF levels of KYNA and other kynurenine metabolites from the same individuals. CSF QUIN levels from stable outpatients treated with olanzapine (n = 22) and those of controls (n = 26) were analyzed using liquid chromatography-mass spectrometry. No difference in CSF QUIN levels between patients and controls was observed (20.6 ± 1.5 nM vs. 18.2 ± 1.1 nM, P = 0.36). CSF QUIN was positively correlated to CSF kynurenine and CSF KYNA in patients but not in controls. The CSF QUIN/KYNA ratio was lower in patients than in controls (P = 0.027). In summary, the present study offers support for an over-activated and imbalanced kynurenine pathway, favoring the production of KYNA over QUIN in patients with schizophrenia. </p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"7 ","pages":"15-22"},"PeriodicalIF":4.4,"publicationDate":"2014-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/IJTR.S16800","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32724838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-05-14eCollection Date: 2014-01-01DOI: 10.4137/IJTR.S14084
Masatoshi Yamashita, Takanobu Yamamoto
Tryptophan (TRP) and its neuroactive metabolite, kynurenic acid (KYNA), are thought to play key roles in central fatigue, but the specifics are still unknown. To clarify their roles in the brain, we developed a rat model of central fatigue induced by chronic sleep disorder (CFSD) by disturbing the sleep-wake cycle. Results showed that while 5-hydroxytryptamine (5-HT) concentration did not differ between control and CFSD groups, levels of TRP and KYNA in the CFSD group were about 2 and 5 times higher in the hypothalamus, and 2 and 3.5 times higher in the hippocampus, respectively. Moreover, CFSD-induced fatigue led to abnormal running performance (via treadmill test) and social interaction (via social-interaction test). These results support a TRP-KYNA hypothesis in central fatigue in which increased TRP concentration in the brain and subsequently synthesized KYNA may produce an amplified effect on central fatigue, with enhanced concentrations being a possible mechanism by which social-interaction deficits are generated.
{"title":"Tryptophan and kynurenic Acid may produce an amplified effect in central fatigue induced by chronic sleep disorder.","authors":"Masatoshi Yamashita, Takanobu Yamamoto","doi":"10.4137/IJTR.S14084","DOIUrl":"10.4137/IJTR.S14084","url":null,"abstract":"<p><p>Tryptophan (TRP) and its neuroactive metabolite, kynurenic acid (KYNA), are thought to play key roles in central fatigue, but the specifics are still unknown. To clarify their roles in the brain, we developed a rat model of central fatigue induced by chronic sleep disorder (CFSD) by disturbing the sleep-wake cycle. Results showed that while 5-hydroxytryptamine (5-HT) concentration did not differ between control and CFSD groups, levels of TRP and KYNA in the CFSD group were about 2 and 5 times higher in the hypothalamus, and 2 and 3.5 times higher in the hippocampus, respectively. Moreover, CFSD-induced fatigue led to abnormal running performance (via treadmill test) and social interaction (via social-interaction test). These results support a TRP-KYNA hypothesis in central fatigue in which increased TRP concentration in the brain and subsequently synthesized KYNA may produce an amplified effect on central fatigue, with enhanced concentrations being a possible mechanism by which social-interaction deficits are generated. </p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"7 ","pages":"9-14"},"PeriodicalIF":4.4,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32400697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-04-28eCollection Date: 2014-01-01DOI: 10.4137/IJTR.S13958
Malin Wennström, Henrietta M Nielsen, Funda Orhan, Elisabet Londos, Lennart Minthon, Sophie Erhardt
Kynurenic acid (KYNA) is implicated in cognitive functions. Altered concentrations of the compound are found in serum and cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD). Further studies to determine whether KYNA serves as a biomarker for cognitive decline and dementia progression are required. In this study, we measured CSF KYNA levels in AD patients (n = 19), patients with dementia with Lewy bodies (DLB) (n = 18), and healthy age-matched controls (Ctrls)) (n = 20) to further explore possible correlations between KYNA levels, cognitive decline, and well-established AD and inflammatory markers. Neither DLB patients nor AD patients showed significantly altered CSF KYNA levels compared to Ctrls. However, female AD patients displayed significantly higher KYNA levels compared to male AD patients, a gender difference not seen in the Ctrl or DLB group. Levels of KYNA significantly correlated with the AD-biomarker P-tau and the inflammation marker soluble intercellular adhesion molecule-1 (sICAM-1) in the AD patient group. No associations between KYNA and cognitive functions were found. Our study shows that, although KYNA was not associated with cognitive decline in AD or DLB patients, it may be implicated in AD-related hyperphosphorylation of tau and inflammation. Further studies on larger patient cohorts are required to understand the potential role of KYNA in AD and DLB.
{"title":"Kynurenic Acid levels in cerebrospinal fluid from patients with Alzheimer's disease or dementia with lewy bodies.","authors":"Malin Wennström, Henrietta M Nielsen, Funda Orhan, Elisabet Londos, Lennart Minthon, Sophie Erhardt","doi":"10.4137/IJTR.S13958","DOIUrl":"https://doi.org/10.4137/IJTR.S13958","url":null,"abstract":"<p><p>Kynurenic acid (KYNA) is implicated in cognitive functions. Altered concentrations of the compound are found in serum and cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD). Further studies to determine whether KYNA serves as a biomarker for cognitive decline and dementia progression are required. In this study, we measured CSF KYNA levels in AD patients (n = 19), patients with dementia with Lewy bodies (DLB) (n = 18), and healthy age-matched controls (Ctrls)) (n = 20) to further explore possible correlations between KYNA levels, cognitive decline, and well-established AD and inflammatory markers. Neither DLB patients nor AD patients showed significantly altered CSF KYNA levels compared to Ctrls. However, female AD patients displayed significantly higher KYNA levels compared to male AD patients, a gender difference not seen in the Ctrl or DLB group. Levels of KYNA significantly correlated with the AD-biomarker P-tau and the inflammation marker soluble intercellular adhesion molecule-1 (sICAM-1) in the AD patient group. No associations between KYNA and cognitive functions were found. Our study shows that, although KYNA was not associated with cognitive decline in AD or DLB patients, it may be implicated in AD-related hyperphosphorylation of tau and inflammation. Further studies on larger patient cohorts are required to understand the potential role of KYNA in AD and DLB. </p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"7 ","pages":"1-7"},"PeriodicalIF":4.4,"publicationDate":"2014-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/IJTR.S13958","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32364750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-12-23eCollection Date: 2013-01-01DOI: 10.4137/IJTR.S13371
Rowland Noakes, Nick Mellick
Cutaneous sclerosis, resembling that seen in subcutaneous morphea, is a feature of eosinophilic fasciitis and eosinophilia-myalgia syndrome, two conditions in which the kynurenine pathway is known to be activated. To investigate the possibility of activation of the kynurenine pathway in morphea, skin biopsies were taken from involved and non-involved sites in a series of three patients with morphea. Immunohistochemical stains for quinolinic acid and indoleamine 2,3-dioxygenase (IDO) were performed.
{"title":"Immunohistochemical studies of the kynurenine pathway in morphea.","authors":"Rowland Noakes, Nick Mellick","doi":"10.4137/IJTR.S13371","DOIUrl":"https://doi.org/10.4137/IJTR.S13371","url":null,"abstract":"<p><p>Cutaneous sclerosis, resembling that seen in subcutaneous morphea, is a feature of eosinophilic fasciitis and eosinophilia-myalgia syndrome, two conditions in which the kynurenine pathway is known to be activated. To investigate the possibility of activation of the kynurenine pathway in morphea, skin biopsies were taken from involved and non-involved sites in a series of three patients with morphea. Immunohistochemical stains for quinolinic acid and indoleamine 2,3-dioxygenase (IDO) were performed. </p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"6 ","pages":"97-102"},"PeriodicalIF":4.4,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/IJTR.S13371","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31997534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-11-25eCollection Date: 2013-01-01DOI: 10.4137/IJTR.S13256
Ann Atlas, Elisabeth Franzen-Röhl, Johan Söderlund, Erik G Jönsson, Martin Samuelsson, Lilly Schwieler, Birgit Sköldenberg, Göran Engberg
Herpes simplex virus (HSV) type 1 encephalitis (HSE) is a viral infectious disease with commonly occurring neurodegeneration and neurological/cognitive long-term sequelae. Kynurenic acid (KYNA) is a neuroactive tryptophan metabolite, which is elevated in the cerebrospinal fluid (CSF) during viral infection as a result of immune activation. The aim of the study was to investigate the role of endogenous brain KYNA for the long-term outcome of the disease. CSF KYNA concentration was analyzed in 25 HSE patients along the course of the disease and compared with that of 25 age-matched healthy volunteers. Within 3 weeks of admission CSF KYNA of HSE patients was markedly elevated (median 33.6 nM) compared to healthy volunteers (median 1.45 nM). Following a decline observed after 1-2 months, levels of CSF KYNA were elevated more than 1 year after admission (median 3.4 nM range: 1-9 years). A negative correlation was found between initial CSF KYNA concentrations and severity of the long-term sequelae. This study show a marked elevation in CSF KYNA from patients with HSE, most pronounced during the acute phase of the disease and slowly declining along the recovery. We propose that brain KYNA might potentially protect against neurodegeneration while causing a long-lasting loss in cognitive function associated with the disease.
{"title":"Sustained elevation of kynurenic Acid in the cerebrospinal fluid of patients with herpes simplex virus type 1 encephalitis.","authors":"Ann Atlas, Elisabeth Franzen-Röhl, Johan Söderlund, Erik G Jönsson, Martin Samuelsson, Lilly Schwieler, Birgit Sköldenberg, Göran Engberg","doi":"10.4137/IJTR.S13256","DOIUrl":"https://doi.org/10.4137/IJTR.S13256","url":null,"abstract":"<p><p>Herpes simplex virus (HSV) type 1 encephalitis (HSE) is a viral infectious disease with commonly occurring neurodegeneration and neurological/cognitive long-term sequelae. Kynurenic acid (KYNA) is a neuroactive tryptophan metabolite, which is elevated in the cerebrospinal fluid (CSF) during viral infection as a result of immune activation. The aim of the study was to investigate the role of endogenous brain KYNA for the long-term outcome of the disease. CSF KYNA concentration was analyzed in 25 HSE patients along the course of the disease and compared with that of 25 age-matched healthy volunteers. Within 3 weeks of admission CSF KYNA of HSE patients was markedly elevated (median 33.6 nM) compared to healthy volunteers (median 1.45 nM). Following a decline observed after 1-2 months, levels of CSF KYNA were elevated more than 1 year after admission (median 3.4 nM range: 1-9 years). A negative correlation was found between initial CSF KYNA concentrations and severity of the long-term sequelae. This study show a marked elevation in CSF KYNA from patients with HSE, most pronounced during the acute phase of the disease and slowly declining along the recovery. We propose that brain KYNA might potentially protect against neurodegeneration while causing a long-lasting loss in cognitive function associated with the disease. </p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"6 ","pages":"89-96"},"PeriodicalIF":4.4,"publicationDate":"2013-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/IJTR.S13256","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31943749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-10-15eCollection Date: 2013-01-01DOI: 10.4137/IJTR.S12838
Adrian C Williams, Robin I M Dunbar
Meat-eating was a game changer for human evolution. We suggest that the limiting factors for expanding brains earlier were scarcities of nicotinamide and tryptophan. In humans and some other omnivores, lack of meat causes these deficiencies. Nicotinamide adenine dinucleotide (NADH) is necessary to synthesize adenosine triphosphate (ATP) via either glycolysis or via the mitochondrial respiratory chain. NAD consumption is also necessary for developmental and repair circuits. Inadequate supplies result in "de-evolutionary" brain atrophy, as seen with pellagra. If trophic nicotinamide/tryptophan was a "prime mover" in building bigger brains, back-up mechanisms should have evolved. One strategy may be to recruit extra gut symbionts that produce NADH precursors or export nicotinamide (though this may cause diarrhea). We propose a novel supplier TB that co-evolved early, which did not originally and does not now inevitably cause disease. TB has highly paradoxical immunology for a pathogen, and secretes and is inhibited by nicotinamide and its analogue, isoniazid. Sharp declines in TB and diarrhea correlated with increased meat intake in the past, suggesting that dietary vitamin B3 and tryptophan deficiencies (also associated with poor cognition and decreased lifespans) are still common where meat is unaffordable.
{"title":"Big brains, meat, tuberculosis, and the nicotinamide switches: co-evolutionary relationships with modern repercussions?","authors":"Adrian C Williams, Robin I M Dunbar","doi":"10.4137/IJTR.S12838","DOIUrl":"https://doi.org/10.4137/IJTR.S12838","url":null,"abstract":"<p><p>Meat-eating was a game changer for human evolution. We suggest that the limiting factors for expanding brains earlier were scarcities of nicotinamide and tryptophan. In humans and some other omnivores, lack of meat causes these deficiencies. Nicotinamide adenine dinucleotide (NADH) is necessary to synthesize adenosine triphosphate (ATP) via either glycolysis or via the mitochondrial respiratory chain. NAD consumption is also necessary for developmental and repair circuits. Inadequate supplies result in \"de-evolutionary\" brain atrophy, as seen with pellagra. If trophic nicotinamide/tryptophan was a \"prime mover\" in building bigger brains, back-up mechanisms should have evolved. One strategy may be to recruit extra gut symbionts that produce NADH precursors or export nicotinamide (though this may cause diarrhea). We propose a novel supplier TB that co-evolved early, which did not originally and does not now inevitably cause disease. TB has highly paradoxical immunology for a pathogen, and secretes and is inhibited by nicotinamide and its analogue, isoniazid. Sharp declines in TB and diarrhea correlated with increased meat intake in the past, suggesting that dietary vitamin B3 and tryptophan deficiencies (also associated with poor cognition and decreased lifespans) are still common where meat is unaffordable. </p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"6 ","pages":"73-88"},"PeriodicalIF":4.4,"publicationDate":"2013-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/IJTR.S12838","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31880134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}