首页 > 最新文献

International Journal of Computational Science and Engineering最新文献

英文 中文
Examining the role of likes in follower network evolution based on a dynamic panel data model 基于动态面板数据模型研究点赞在关注者网络演化中的作用
IF 2 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.10055525
{"title":"Examining the role of likes in follower network evolution based on a dynamic panel data model","authors":"","doi":"10.1504/ijcse.2023.10055525","DOIUrl":"https://doi.org/10.1504/ijcse.2023.10055525","url":null,"abstract":"","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91197434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel freight train image fault detection and classification models based on CNN 基于CNN的货运列车图像故障检测与分类新模型
Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.133690
Longxin Zhang, Yang Hu, Tianyu Chen, Hong Wen, Peng Zhou, Wenliang Zeng
{"title":"Novel freight train image fault detection and classification models based on CNN","authors":"Longxin Zhang, Yang Hu, Tianyu Chen, Hong Wen, Peng Zhou, Wenliang Zeng","doi":"10.1504/ijcse.2023.133690","DOIUrl":"https://doi.org/10.1504/ijcse.2023.133690","url":null,"abstract":"","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135844980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hurst exponent estimation using neural network 基于神经网络的Hurst指数估计
Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.129734
Somenath Mukherjee, Bikash Sadhukhan, Arghya Kusum Das, Abhra Chaudhuri
The Hurst exponent is used to identify the autocorrelation structure of a stochastic time series, which allows for detecting persistence in time series data. Traditional signal processing techniques work reasonably well in determining the Hurst exponent of a stochastic time series. However, a notable drawback of these methods is their speed of computation. Neural networks have repeatedly proven their ability to learn very complex input-output mappings, even in high dimensional vector spaces. Therefore, an endeavour has been undertaken to employ neural networks to determine the Hurst exponent of a stochastic time series. Unlike previous attempts to solve such problems using neural networks, the proposed architecture can be recognised as the universal estimator of Hurst exponent for short-range and long-range dependent stochastic time series. Experiments demonstrate that if sufficiently trained, neural network can predict the Hurst exponent of any stochastic data at least fifteen times faster than standard signal processing approaches.
Hurst指数用于识别随机时间序列的自相关结构,从而可以检测时间序列数据的持久性。传统的信号处理技术在确定随机时间序列的赫斯特指数方面工作得相当好。然而,这些方法的一个显著缺点是它们的计算速度。神经网络已经多次证明了它们学习非常复杂的输入-输出映射的能力,甚至在高维向量空间中也是如此。因此,我们尝试使用神经网络来确定随机时间序列的赫斯特指数。与以往使用神经网络解决此类问题的尝试不同,所提出的体系结构可以被认为是短期和长期依赖随机时间序列的Hurst指数的通用估计量。实验表明,如果经过充分的训练,神经网络预测任意随机数据的Hurst指数的速度至少是标准信号处理方法的15倍。
{"title":"Hurst exponent estimation using neural network","authors":"Somenath Mukherjee, Bikash Sadhukhan, Arghya Kusum Das, Abhra Chaudhuri","doi":"10.1504/ijcse.2023.129734","DOIUrl":"https://doi.org/10.1504/ijcse.2023.129734","url":null,"abstract":"The Hurst exponent is used to identify the autocorrelation structure of a stochastic time series, which allows for detecting persistence in time series data. Traditional signal processing techniques work reasonably well in determining the Hurst exponent of a stochastic time series. However, a notable drawback of these methods is their speed of computation. Neural networks have repeatedly proven their ability to learn very complex input-output mappings, even in high dimensional vector spaces. Therefore, an endeavour has been undertaken to employ neural networks to determine the Hurst exponent of a stochastic time series. Unlike previous attempts to solve such problems using neural networks, the proposed architecture can be recognised as the universal estimator of Hurst exponent for short-range and long-range dependent stochastic time series. Experiments demonstrate that if sufficiently trained, neural network can predict the Hurst exponent of any stochastic data at least fifteen times faster than standard signal processing approaches.","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135126754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A proxy signcryption scheme for secure sharing of industrial IoT data in fog environment 雾环境下工业物联网数据安全共享的代理签名加密方案
Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.129743
Rachana Y. Patil, Yogesh H. Patil
{"title":"A proxy signcryption scheme for secure sharing of industrial IoT data in fog environment","authors":"Rachana Y. Patil, Yogesh H. Patil","doi":"10.1504/ijcse.2023.129743","DOIUrl":"https://doi.org/10.1504/ijcse.2023.129743","url":null,"abstract":"","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135585755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fake content detection on benchmark dataset using various deep learning models 利用各种深度学习模型对基准数据集进行虚假内容检测
Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.10060449
Chetana Thaokar, Jitendra Kumar Rout, Himansu Das, Minakhi Rout
{"title":"Fake content detection on benchmark dataset using various deep learning models","authors":"Chetana Thaokar, Jitendra Kumar Rout, Himansu Das, Minakhi Rout","doi":"10.1504/ijcse.2023.10060449","DOIUrl":"https://doi.org/10.1504/ijcse.2023.10060449","url":null,"abstract":"","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135705531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conjugate gradient with Armijo line search approach to investigate imprecisely defined unconstrained optimisation problem 共轭梯度与Armijo线搜索方法研究了不精确定义的无约束优化问题
Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.10059724
Paresh Kumar Panigrahi, Sukanta Nayak
{"title":"Conjugate gradient with Armijo line search approach to investigate imprecisely defined unconstrained optimisation problem","authors":"Paresh Kumar Panigrahi, Sukanta Nayak","doi":"10.1504/ijcse.2023.10059724","DOIUrl":"https://doi.org/10.1504/ijcse.2023.10059724","url":null,"abstract":"","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136209893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A deep learning based automated phenotyping for identification of overuse of synthetic fertilisers in Amaranthus crop 基于深度学习的苋菜作物合成肥料过度使用自动表型识别
Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.10059782
A.S. Syed Shahul Hameed, Narendran Rajagopalan, J. Jyothsna, B. Surendiran, J. Dhakshayani
{"title":"A deep learning based automated phenotyping for identification of overuse of synthetic fertilisers in Amaranthus crop","authors":"A.S. Syed Shahul Hameed, Narendran Rajagopalan, J. Jyothsna, B. Surendiran, J. Dhakshayani","doi":"10.1504/ijcse.2023.10059782","DOIUrl":"https://doi.org/10.1504/ijcse.2023.10059782","url":null,"abstract":"","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136304585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and cost benefit analysis of an e-mobility service: an electric bus service in Naples, Italy 电动交通服务的设计与成本效益分析:意大利那不勒斯的一项电动巴士服务
Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.10059379
Luigi Di Francesco, Assunta Errico, Ilaria Henke
{"title":"Design and cost benefit analysis of an e-mobility service: an electric bus service in Naples, Italy","authors":"Luigi Di Francesco, Assunta Errico, Ilaria Henke","doi":"10.1504/ijcse.2023.10059379","DOIUrl":"https://doi.org/10.1504/ijcse.2023.10059379","url":null,"abstract":"","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135749896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FCAODNet: a fast freight train image detection model based on embedded FCA FCAODNet:基于嵌入式FCA的快速货运列车图像检测模型
Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.10059395
Xiaojun Deng, Chengkang Weng, Longxin Zhang, Miao Wang, Peng Zhou
{"title":"FCAODNet: a fast freight train image detection model based on embedded FCA","authors":"Xiaojun Deng, Chengkang Weng, Longxin Zhang, Miao Wang, Peng Zhou","doi":"10.1504/ijcse.2023.10059395","DOIUrl":"https://doi.org/10.1504/ijcse.2023.10059395","url":null,"abstract":"","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"87 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135750346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the capacity of a hybrid solar PV/wind turbine system using small-scale prototype application for dairy farm power demand in North Texas 小型样机应用于北德克萨斯州奶牛场电力需求的太阳能光伏/风力混合发电系统容量研究
IF 2 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.10058164
Dakota Messer, Hoe-Gil Lee
{"title":"Study on the capacity of a hybrid solar PV/wind turbine system using small-scale prototype application for dairy farm power demand in North Texas","authors":"Dakota Messer, Hoe-Gil Lee","doi":"10.1504/ijcse.2023.10058164","DOIUrl":"https://doi.org/10.1504/ijcse.2023.10058164","url":null,"abstract":"","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"377 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80594650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Computational Science and Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1