首页 > 最新文献

International Journal of Computational Science and Engineering最新文献

英文 中文
Research on tracking of moving objects based on depth feature detection 基于深度特征检测的运动目标跟踪研究
Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.10059393
Xiaoli Zhang, Jing Zheng, Guocai Zuo
{"title":"Research on tracking of moving objects based on depth feature detection","authors":"Xiaoli Zhang, Jing Zheng, Guocai Zuo","doi":"10.1504/ijcse.2023.10059393","DOIUrl":"https://doi.org/10.1504/ijcse.2023.10059393","url":null,"abstract":"","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135749897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convolutional neural network optimization for discovering plant leaf diseases with particle swarm optimizer 基于粒子群优化器的植物叶片病害的卷积神经网络优化
Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.10059723
Vishakha A. Metre, S.D. Sawarkar
{"title":"Convolutional neural network optimization for discovering plant leaf diseases with particle swarm optimizer","authors":"Vishakha A. Metre, S.D. Sawarkar","doi":"10.1504/ijcse.2023.10059723","DOIUrl":"https://doi.org/10.1504/ijcse.2023.10059723","url":null,"abstract":"","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136209890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated power information operation and maintenance system based on D3QN algorithm with experience replay 基于D3QN算法和经验回放的电力信息综合运维系统
IF 2 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.10058662
Yang Yu, Heting Li, Dongsheng Jing
{"title":"Integrated power information operation and maintenance system based on D3QN algorithm with experience replay","authors":"Yang Yu, Heting Li, Dongsheng Jing","doi":"10.1504/ijcse.2023.10058662","DOIUrl":"https://doi.org/10.1504/ijcse.2023.10058662","url":null,"abstract":"","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"59 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74217862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on econometric safety model for export structure of manufacturing industry 制造业出口结构的计量经济安全模型研究
IF 2 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.10058661
Dongfang Hua, Hongbin Wang, Haoze Feng, Guan Ben, Jingyuan Tan, Dongjie Zhu
{"title":"Research on econometric safety model for export structure of manufacturing industry","authors":"Dongfang Hua, Hongbin Wang, Haoze Feng, Guan Ben, Jingyuan Tan, Dongjie Zhu","doi":"10.1504/ijcse.2023.10058661","DOIUrl":"https://doi.org/10.1504/ijcse.2023.10058661","url":null,"abstract":"","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"64 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85846069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adjustable rotation gate-based quantum evolutionary algorithm for energy optimisation in cloud computing systems 云计算系统中基于可调旋转门的能量优化量子进化算法
Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.10059058
Jyoti Chauhan, Taj Alam
{"title":"Adjustable rotation gate-based quantum evolutionary algorithm for energy optimisation in cloud computing systems","authors":"Jyoti Chauhan, Taj Alam","doi":"10.1504/ijcse.2023.10059058","DOIUrl":"https://doi.org/10.1504/ijcse.2023.10059058","url":null,"abstract":"","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135400376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel DenseNet-based architecture for liver and liver tumour segmentation 基于densenet的肝脏和肝脏肿瘤分割新架构
Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.10060448
Deepak Jayaprakash Doggalli, B. S. Sunil Kumar
{"title":"A novel DenseNet-based architecture for liver and liver tumour segmentation","authors":"Deepak Jayaprakash Doggalli, B. S. Sunil Kumar","doi":"10.1504/ijcse.2023.10060448","DOIUrl":"https://doi.org/10.1504/ijcse.2023.10060448","url":null,"abstract":"","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135705512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance assessment of multi-unit web and database servers distributed system 多单元web和数据库服务器分布式系统的性能评估
Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.10060450
Jinbiao Wu, Muhammad Salihu Isa, Ibrahim Yusuf, U.A. Ali, Tijjani W. Ali, Abubakar Sadiq Abdulkadir
{"title":"Performance assessment of multi-unit web and database servers distributed system","authors":"Jinbiao Wu, Muhammad Salihu Isa, Ibrahim Yusuf, U.A. Ali, Tijjani W. Ali, Abubakar Sadiq Abdulkadir","doi":"10.1504/ijcse.2023.10060450","DOIUrl":"https://doi.org/10.1504/ijcse.2023.10060450","url":null,"abstract":"","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135706381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A methodology for introducing an energy-efficient component within the rail infrastructure access charges in Italy 一种在意大利铁路基础设施收费中引入节能成分的方法
Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.10059381
Luca D'Acierno, Ilaria Tufano, Marilisa Botte
{"title":"A methodology for introducing an energy-efficient component within the rail infrastructure access charges in Italy","authors":"Luca D'Acierno, Ilaria Tufano, Marilisa Botte","doi":"10.1504/ijcse.2023.10059381","DOIUrl":"https://doi.org/10.1504/ijcse.2023.10059381","url":null,"abstract":"","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"103 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135749893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A big data and cloud computing model architecture for a multi-class travel demand estimation through traffic measures: a real case application in Italy 基于交通测度的多级出行需求估算的大数据和云计算模型架构:意大利的真实案例应用
Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.133672
Armando Cartenì, Ilaria Henke, Assunta Errico, Maria Ida Di Bartolomeo
The big data and cloud computing are an extraordinary opportunity to implement multipurpose smart applications for the management and the control of transport systems. The aim of the paper was to propose a big data and cloud computing model architecture for a multi-class origin-destination demand estimation based on the application of a bi-level transport algorithm using traffic counts on congested network, also for proposing sustainable policies at urban scale. The proposed methodology has been applied to a real case study in terms of travel demand estimation within the city of Naples (Italy), also aiming to verify the effectiveness of a sustainable policy in terms of reducing traffic congestion of about 20% through en-route travel information. The obtained results, although preliminary, suggest the usefulness of the proposed methodology in terms of ability in real-time/pre-fixed time periods traffic demand estimation.
大数据和云计算是实现运输系统管理和控制的多用途智能应用的绝佳机会。本文的目的是提出一种大数据和云计算模型架构,用于基于使用拥堵网络上的交通计数的双层运输算法的多类别始发目的地需求估计,也用于在城市规模上提出可持续政策。所提出的方法已应用于那不勒斯市(意大利)的旅行需求估计方面的实际案例研究,也旨在验证可持续政策在通过途中旅行信息减少约20%交通拥堵方面的有效性。所得的结果虽然是初步的,但表明所建议的方法在实时/预先固定时间段交通需求估计方面的有用性。
{"title":"A big data and cloud computing model architecture for a multi-class travel demand estimation through traffic measures: a real case application in Italy","authors":"Armando Cartenì, Ilaria Henke, Assunta Errico, Maria Ida Di Bartolomeo","doi":"10.1504/ijcse.2023.133672","DOIUrl":"https://doi.org/10.1504/ijcse.2023.133672","url":null,"abstract":"The big data and cloud computing are an extraordinary opportunity to implement multipurpose smart applications for the management and the control of transport systems. The aim of the paper was to propose a big data and cloud computing model architecture for a multi-class origin-destination demand estimation based on the application of a bi-level transport algorithm using traffic counts on congested network, also for proposing sustainable policies at urban scale. The proposed methodology has been applied to a real case study in terms of travel demand estimation within the city of Naples (Italy), also aiming to verify the effectiveness of a sustainable policy in terms of reducing traffic congestion of about 20% through en-route travel information. The obtained results, although preliminary, suggest the usefulness of the proposed methodology in terms of ability in real-time/pre-fixed time periods traffic demand estimation.","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"158 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135844463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FCAODNet: a fast freight train image detection model based on embedded FCA FCAODNet:基于嵌入式FCA的快速货运列车图像检测模型
Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-01-01 DOI: 10.1504/ijcse.2023.133692
Longxin Zhang, Peng Zhou, Miao Wang, Chengkang Weng, Xiaojun Deng
The fault detection of freight train image has some problems, such as low detection accuracy and slow detection speed. Aiming at the problem of slow detection speed in the process of train image fault detection, a lightweight object detection model fast channel attention network (FCAODNet) is proposed in this study. FCAODNet consists of four modules, including feature extraction network (FEN), lightweight multi-scale feature fusion (LMFF), prediction across scales (PAS), and decoding modules. FEN extracts image features, LMFF fuses features, PAS predicts the location of the target object, and the decoding module obtains the final prediction result. FCAODNet's FEN adopts CSPDarknet53tiny. The designed LMFF is embedded with two FCA modules to improve the detection accuracy. Experiments on train datasets and public datasets show that FCAODNet outperforms other state-of-the-art models in detection speed and has good detection accuracy and robustness.
货运列车图像的故障检测存在检测精度低、检测速度慢等问题。针对列车图像故障检测过程中检测速度慢的问题,提出了一种轻量级的目标检测模型快速通道关注网络(FCAODNet)。FCAODNet由特征提取网络(FEN)、轻量级多尺度特征融合(LMFF)、跨尺度预测(PAS)和解码四个模块组成。FEN提取图像特征,LMFF融合特征,PAS预测目标物体位置,解码模块得到最终预测结果。FCAODNet的FEN采用CSPDarknet53tiny。设计的LMFF内嵌两个FCA模块,提高了检测精度。在列车数据集和公共数据集上的实验表明,FCAODNet在检测速度上优于其他最先进的模型,具有良好的检测精度和鲁棒性。
{"title":"FCAODNet: a fast freight train image detection model based on embedded FCA","authors":"Longxin Zhang, Peng Zhou, Miao Wang, Chengkang Weng, Xiaojun Deng","doi":"10.1504/ijcse.2023.133692","DOIUrl":"https://doi.org/10.1504/ijcse.2023.133692","url":null,"abstract":"The fault detection of freight train image has some problems, such as low detection accuracy and slow detection speed. Aiming at the problem of slow detection speed in the process of train image fault detection, a lightweight object detection model fast channel attention network (FCAODNet) is proposed in this study. FCAODNet consists of four modules, including feature extraction network (FEN), lightweight multi-scale feature fusion (LMFF), prediction across scales (PAS), and decoding modules. FEN extracts image features, LMFF fuses features, PAS predicts the location of the target object, and the decoding module obtains the final prediction result. FCAODNet's FEN adopts CSPDarknet53tiny. The designed LMFF is embedded with two FCA modules to improve the detection accuracy. Experiments on train datasets and public datasets show that FCAODNet outperforms other state-of-the-art models in detection speed and has good detection accuracy and robustness.","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"286 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135844749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Computational Science and Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1