首页 > 最新文献

Political Analysis最新文献

英文 中文
Hypothesis Tests under Separation 分离下的假设检验
IF 5.4 2区 社会学 Q1 POLITICAL SCIENCE Pub Date : 2023-09-07 DOI: 10.1017/pan.2023.28
Carlisle Rainey
Separation commonly occurs in political science, usually when a binary explanatory variable perfectly predicts a binary outcome. In these situations, methodologists often recommend penalized maximum likelihood or Bayesian estimation. But researchers might struggle to identify an appropriate penalty or prior distribution. Fortunately, I show that researchers can easily test hypotheses about the model coefficients with standard frequentist tools. While the popular Wald test produces misleading (even nonsensical) p-values under separation, I show that likelihood ratio tests and score tests behave in the usual manner. Therefore, researchers can produce meaningful p-values with standard frequentist tools under separation without the use of penalties or prior information.
分离通常发生在政治学中,通常是当二元解释变量完美地预测了二元结果时。在这些情况下,方法论者经常建议惩罚最大似然或贝叶斯估计。但研究人员可能很难确定适当的惩罚或先前的分布。幸运的是,我证明了研究人员可以很容易地用标准的频率学家工具来检验关于模型系数的假设。虽然流行的Wald测试在分离条件下会产生误导性(甚至是荒谬的)p值,但我证明了似然比测试和分数测试的行为是正常的。因此,研究人员可以在不使用惩罚或先验信息的情况下,在分离的情况下使用标准频率学家工具产生有意义的p值。
{"title":"Hypothesis Tests under Separation","authors":"Carlisle Rainey","doi":"10.1017/pan.2023.28","DOIUrl":"https://doi.org/10.1017/pan.2023.28","url":null,"abstract":"\u0000 Separation commonly occurs in political science, usually when a binary explanatory variable perfectly predicts a binary outcome. In these situations, methodologists often recommend penalized maximum likelihood or Bayesian estimation. But researchers might struggle to identify an appropriate penalty or prior distribution. Fortunately, I show that researchers can easily test hypotheses about the model coefficients with standard frequentist tools. While the popular Wald test produces misleading (even nonsensical) p-values under separation, I show that likelihood ratio tests and score tests behave in the usual manner. Therefore, researchers can produce meaningful p-values with standard frequentist tools under separation without the use of penalties or prior information.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42663724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized Kernel Regularized Least Squares 广义核正则化最小二乘
2区 社会学 Q1 POLITICAL SCIENCE Pub Date : 2023-09-01 DOI: 10.1017/pan.2023.27
Qing Chang, Max Goplerud
Abstract Kernel regularized least squares (KRLS) is a popular method for flexibly estimating models that may have complex relationships between variables. However, its usefulness to many researchers is limited for two reasons. First, existing approaches are inflexible and do not allow KRLS to be combined with theoretically motivated extensions such as random effects, unregularized fixed effects, or non-Gaussian outcomes. Second, estimation is extremely computationally intensive for even modestly sized datasets. Our paper addresses both concerns by introducing generalized KRLS ( gKRLS ). We note that KRLS can be re-formulated as a hierarchical model thereby allowing easy inference and modular model construction where KRLS can be used alongside random effects, splines, and unregularized fixed effects. Computationally, we also implement random sketching to dramatically accelerate estimation while incurring a limited penalty in estimation quality. We demonstrate that gKRLS can be fit on datasets with tens of thousands of observations in under 1 min. Further, state-of-the-art techniques that require fitting the model over a dozen times (e.g., meta-learners) can be estimated quickly.
摘要核正则化最小二乘(KRLS)是一种用于灵活估计具有复杂变量关系的模型的常用方法。然而,由于两个原因,它对许多研究人员的用处是有限的。首先,现有的方法不灵活,不允许KRLS与理论驱动的扩展相结合,如随机效应、非正则化固定效应或非高斯结果。其次,即使对于中等规模的数据集,估计也是非常密集的计算。本文通过引入广义KRLS (gKRLS)来解决这两个问题。我们注意到KRLS可以重新表述为层次模型,从而允许简单的推理和模块化模型构建,其中KRLS可以与随机效应,样条和非正则化固定效应一起使用。在计算上,我们还实现了随机草图来显著加速估计,同时在估计质量上产生有限的损失。我们证明gKRLS可以在1分钟内拟合数以万计的观测数据集。此外,需要十几次拟合模型的最先进技术(例如元学习器)可以快速估计。
{"title":"Generalized Kernel Regularized Least Squares","authors":"Qing Chang, Max Goplerud","doi":"10.1017/pan.2023.27","DOIUrl":"https://doi.org/10.1017/pan.2023.27","url":null,"abstract":"Abstract Kernel regularized least squares (KRLS) is a popular method for flexibly estimating models that may have complex relationships between variables. However, its usefulness to many researchers is limited for two reasons. First, existing approaches are inflexible and do not allow KRLS to be combined with theoretically motivated extensions such as random effects, unregularized fixed effects, or non-Gaussian outcomes. Second, estimation is extremely computationally intensive for even modestly sized datasets. Our paper addresses both concerns by introducing generalized KRLS ( gKRLS ). We note that KRLS can be re-formulated as a hierarchical model thereby allowing easy inference and modular model construction where KRLS can be used alongside random effects, splines, and unregularized fixed effects. Computationally, we also implement random sketching to dramatically accelerate estimation while incurring a limited penalty in estimation quality. We demonstrate that gKRLS can be fit on datasets with tens of thousands of observations in under 1 min. Further, state-of-the-art techniques that require fitting the model over a dozen times (e.g., meta-learners) can be estimated quickly.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136354648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trading Liberties: Estimating COVID-19 Policy Preferences from Conjoint Data 贸易自由度:从联合数据估计新冠肺炎政策偏好
IF 5.4 2区 社会学 Q1 POLITICAL SCIENCE Pub Date : 2023-08-18 DOI: 10.1017/pan.2023.25
Felix Hartmann, M. Humphreys, Ferdinand Geissler, H. Klüver, Johannes Giesecke
Survey experiments are an important tool to measure policy preferences. Researchers often rely on the random assignment of policy attribute levels to estimate different types of average marginal effects. Yet, researchers are often interested in how respondents trade-off different policy dimensions. We use a conjoint experiment administered to more than 10,000 respondents in Germany, to study preferences over personal freedoms and public welfare during the COVID-19 crisis. Using a pre-registered structural model, we estimate policy ideal points and indifference curves to assess the conditions under which citizens are willing to sacrifice freedoms in the interest of public well-being. We document broad willingness to accept restrictions on rights alongside sharp heterogeneity with respect to vaccination status. The majority of citizens are vaccinated and strongly support limitations on freedoms in response to extreme conditions—especially, when they vaccinated themselves are exempted from these limitations. The unvaccinated minority prefers no restrictions on freedoms regardless of the severity of the pandemic. These policy packages also matter for reported trust in government, in opposite ways for vaccinated and unvaccinated citizens.
调查实验是衡量政策偏好的重要工具。研究人员通常依靠政策属性水平的随机分配来估计不同类型的平均边际效应。然而,研究人员往往对受访者如何权衡不同的政策层面感兴趣。我们使用一项对德国10000多名受访者进行的联合实验,研究新冠肺炎危机期间对个人自由和公共福利的偏好。使用预先注册的结构模型,我们估计了政策理想点和无差别曲线,以评估公民愿意为公共福祉牺牲自由的条件。我们记录了接受权利限制的广泛意愿,以及疫苗接种状况的严重异质性。大多数公民都接种了疫苗,并强烈支持在极端条件下限制自由——尤其是当他们自己接种疫苗时,他们就不受这些限制。无论疫情的严重程度如何,未接种疫苗的少数人都不希望对自由施加限制。据报道,这些政策包对政府的信任也很重要,对接种疫苗和未接种疫苗的公民来说则相反。
{"title":"Trading Liberties: Estimating COVID-19 Policy Preferences from Conjoint Data","authors":"Felix Hartmann, M. Humphreys, Ferdinand Geissler, H. Klüver, Johannes Giesecke","doi":"10.1017/pan.2023.25","DOIUrl":"https://doi.org/10.1017/pan.2023.25","url":null,"abstract":"\u0000 Survey experiments are an important tool to measure policy preferences. Researchers often rely on the random assignment of policy attribute levels to estimate different types of average marginal effects. Yet, researchers are often interested in how respondents trade-off different policy dimensions. We use a conjoint experiment administered to more than 10,000 respondents in Germany, to study preferences over personal freedoms and public welfare during the COVID-19 crisis. Using a pre-registered structural model, we estimate policy ideal points and indifference curves to assess the conditions under which citizens are willing to sacrifice freedoms in the interest of public well-being. We document broad willingness to accept restrictions on rights alongside sharp heterogeneity with respect to vaccination status. The majority of citizens are vaccinated and strongly support limitations on freedoms in response to extreme conditions—especially, when they vaccinated themselves are exempted from these limitations. The unvaccinated minority prefers no restrictions on freedoms regardless of the severity of the pandemic. These policy packages also matter for reported trust in government, in opposite ways for vaccinated and unvaccinated citizens.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"1 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41612451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Fox News on Health Behavior during COVID-19 福克斯新闻对COVID-19期间健康行为的影响
2区 社会学 Q1 POLITICAL SCIENCE Pub Date : 2023-07-31 DOI: 10.1017/pan.2023.21
Elliott Ash, Sergio Galletta, Dominik Hangartner, Yotam Margalit, Matteo Pinna
Abstract In the early weeks of the 2020 coronavirus (COVID-19) pandemic, the Fox News Channel advanced a skeptical narrative that downplayed the risks posed by the virus. We find that this narrative had significant consequences: in localities with higher Fox News viewership—exogenous due to random variation in channel positioning—people were less likely to adopt behaviors geared toward social distancing (e.g., staying at home) and consumed fewer goods in preparation (e.g., cleaning products, hand sanitizers, and masks). Using original survey data, we find that the effect of Fox News came not merely from its long-standing distrustful stance toward science, but also due to program-specific content that minimized the COVID-19 threat. Taken together, our results demonstrate the significant impact that misinformation in media coverage can exert on viewers’ beliefs and behavior, even in high-stakes situations.
在2020年冠状病毒(COVID-19)大流行的最初几周,福克斯新闻频道提出了一种怀疑的叙述,淡化了该病毒带来的风险。我们发现,这种说法产生了显著的后果:在福克斯新闻收视率较高的地区(由于频道定位的随机变化而产生的外生因素),人们不太可能采取与社会距离相关的行为(例如,呆在家里),并且消费较少的准备商品(例如,清洁产品,洗手液和口罩)。利用原始调查数据,我们发现福克斯新闻的影响不仅来自其长期以来对科学的不信任立场,还源于将COVID-19威胁最小化的特定节目内容。综上所述,我们的研究结果表明,即使在高风险的情况下,媒体报道中的错误信息也会对观众的信念和行为产生重大影响。
{"title":"The Effect of Fox News on Health Behavior during COVID-19","authors":"Elliott Ash, Sergio Galletta, Dominik Hangartner, Yotam Margalit, Matteo Pinna","doi":"10.1017/pan.2023.21","DOIUrl":"https://doi.org/10.1017/pan.2023.21","url":null,"abstract":"Abstract In the early weeks of the 2020 coronavirus (COVID-19) pandemic, the Fox News Channel advanced a skeptical narrative that downplayed the risks posed by the virus. We find that this narrative had significant consequences: in localities with higher Fox News viewership—exogenous due to random variation in channel positioning—people were less likely to adopt behaviors geared toward social distancing (e.g., staying at home) and consumed fewer goods in preparation (e.g., cleaning products, hand sanitizers, and masks). Using original survey data, we find that the effect of Fox News came not merely from its long-standing distrustful stance toward science, but also due to program-specific content that minimized the COVID-19 threat. Taken together, our results demonstrate the significant impact that misinformation in media coverage can exert on viewers’ beliefs and behavior, even in high-stakes situations.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135099276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Measuring Closeness in Proportional Representation Systems 比例表示系统中的贴近度测量
IF 5.4 2区 社会学 Q1 POLITICAL SCIENCE Pub Date : 2023-07-24 DOI: 10.1017/pan.2023.22
Simon Luechinger, Mark Schelker, L. Schmid
We provide closed-form solutions for measuring electoral closeness of candidates in proportional representation (PR) systems. In contrast to plurality systems, closeness in PR systems cannot be directly inferred from votes. Our measure captures electoral closeness for both open- and closed-list systems and for both main families of seat allocation mechanisms. This unified measure quantifies the vote surplus (shortfall) for elected (nonelected) candidates. It can serve as an assignment variable in regression discontinuity designs or as a measure of electoral competitiveness. For illustration, we estimate the incumbency advantage for the parliaments in Switzerland, Honduras, and Norway.
我们提供了在比例代表制(PR)中衡量候选人选举接近度的封闭式解决方案。与多人制相比,公关系统中的亲密度不能直接从选票中推断出来。我们的衡量标准反映了公开和封闭名单制度以及席位分配机制的两个主要家族的选举接近程度。这一统一措施量化了当选(非当选)候选人的选票盈余(短缺)。它可以作为回归不连续性设计中的分配变量,也可以作为选举竞争力的衡量标准。例如,我们估计了瑞士、洪都拉斯和挪威议会的在职优势。
{"title":"Measuring Closeness in Proportional Representation Systems","authors":"Simon Luechinger, Mark Schelker, L. Schmid","doi":"10.1017/pan.2023.22","DOIUrl":"https://doi.org/10.1017/pan.2023.22","url":null,"abstract":"\u0000 We provide closed-form solutions for measuring electoral closeness of candidates in proportional representation (PR) systems. In contrast to plurality systems, closeness in PR systems cannot be directly inferred from votes. Our measure captures electoral closeness for both open- and closed-list systems and for both main families of seat allocation mechanisms. This unified measure quantifies the vote surplus (shortfall) for elected (nonelected) candidates. It can serve as an assignment variable in regression discontinuity designs or as a measure of electoral competitiveness. For illustration, we estimate the incumbency advantage for the parliaments in Switzerland, Honduras, and Norway.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45491443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PAN volume 31 issue 3 Cover and Front matter PAN第31卷第3期封面和封面
IF 5.4 2区 社会学 Q1 POLITICAL SCIENCE Pub Date : 2023-06-19 DOI: 10.1017/pan.2023.17
v a a n d W . C o x, D. A, t F l c ó - G i m r d i M u ñ o z, E. N. O. A. D. A. L. B. E. R. T. F. A. L. C. Ó. -. G. I. M. E. N. o, . o b o l t a J . L ee p e r, N. T, E. M. I. L. Y. M. .. F. A. R. I. S. A. J. A. N. E. L. A. W. R. E. N. C. E. S. u m n e r, N. S, T. R. A. Y. M. O. N. D. D. U. C. H. D e n i s e L a o z e, h o m a s R o b i n s D e n i s e L a r o z e, N. N., P. A. B. L. O. B. J. A. M. E. S. T. I. L. E. y, I. P. A. B. L. O. B. E. R. A. M. E. N. D. i, A. O. L. u, D. H., H. E. R. N. Á. N. D. E. z, K. K., M. N, Jeff Gill, R. M. Alvarez, Jonathan N. Katz, L. Atkeson, D. S. Hillygus, Dan Hopkins, Nathaniel N. Beck, A. Gelman, Vera E. Troeger, Marisa A. Abrajano, Antoine Banks, Facebook Usa Pablo Barberá, F. Boehmke, John O. Brehm, Lisa Bryant, K. Cowles, Andrew C. Eggers, R. Franzese, K. Fukumoto, Elisabeth Gerber, Jay Goodliff, Michael Herron, S. Hix, Gary King, T. Koenig, Jen Larson, Jan E. Leighley, J. Lewis, Drew A. Linzer, Cherie D. Maestas, G. Marfleet, Sara Mitchell, Pablo Montagnes, S. Mut
V o lu m e 28• N u m b er • A p rl20 20 V o l u m e 2 8•Number2•April2020 V o lu m e 28• N u m b er • A p rl20 20 ARICLES Dcrete Coice Data w ith U noerved H etereneity:A CondnalBinary Q untile M odel Xiao Lu M eauring he om petienessof Eltions Gary W .Cx,Jon H .iva nd DnielM Sm ith U neected Eveduring Srvey Dign: Prom se nd PitfallsfusalInference JrdiM uñoz,rtFalcó-Gim no nd Erique H erndez M eauring Sugroup Preencesin ConjtExperim ents Thom asJ.per,Sara .H obltand am esilley
•28 V或lu m和m b帮助•p rl20 20号V或m和l 2•8 Number2••28 April2020 V或lu m和N u m b帮助•p rl20 20 ARICLES Dcrete noerved H etereneity Coice w ith日期:CondnalBinary Q untile米肖或lu m eauring he om petienessof Eltions Gary w . ex乔恩·H .增值税nd DnielM Sm ith u neected Eveduring Srvey Dign: Prom如果nd PitfallsfusalInference JrdiM uñ奥芝、rtFalcó-Gim不nd Erique H erndez m eauring Sugroup Preencesin ConjtExperim ents汤姆·asJ。谢谢你,莎拉
{"title":"PAN volume 31 issue 3 Cover and Front matter","authors":"v a a n d W . C o x, D. A, t F l c ó - G i m r d i M u ñ o z, E. N. O. A. D. A. L. B. E. R. T. F. A. L. C. Ó. -. G. I. M. E. N. o, . o b o l t a J . L ee p e r, N. T, E. M. I. L. Y. M. .. F. A. R. I. S. A. J. A. N. E. L. A. W. R. E. N. C. E. S. u m n e r, N. S, T. R. A. Y. M. O. N. D. D. U. C. H. D e n i s e L a o z e, h o m a s R o b i n s D e n i s e L a r o z e, N. N., P. A. B. L. O. B. J. A. M. E. S. T. I. L. E. y, I. P. A. B. L. O. B. E. R. A. M. E. N. D. i, A. O. L. u, D. H., H. E. R. N. Á. N. D. E. z, K. K., M. N, Jeff Gill, R. M. Alvarez, Jonathan N. Katz, L. Atkeson, D. S. Hillygus, Dan Hopkins, Nathaniel N. Beck, A. Gelman, Vera E. Troeger, Marisa A. Abrajano, Antoine Banks, Facebook Usa Pablo Barberá, F. Boehmke, John O. Brehm, Lisa Bryant, K. Cowles, Andrew C. Eggers, R. Franzese, K. Fukumoto, Elisabeth Gerber, Jay Goodliff, Michael Herron, S. Hix, Gary King, T. Koenig, Jen Larson, Jan E. Leighley, J. Lewis, Drew A. Linzer, Cherie D. Maestas, G. Marfleet, Sara Mitchell, Pablo Montagnes, S. Mut","doi":"10.1017/pan.2023.17","DOIUrl":"https://doi.org/10.1017/pan.2023.17","url":null,"abstract":"V o lu m e 28• N u m b er • A p rl20 20 V o l u m e 2 8•Number2•April2020 V o lu m e 28• N u m b er • A p rl20 20 ARICLES Dcrete Coice Data w ith U noerved H etereneity:A CondnalBinary Q untile M odel Xiao Lu M eauring he om petienessof Eltions Gary W .Cx,Jon H .iva nd DnielM Sm ith U neected Eveduring Srvey Dign: Prom se nd PitfallsfusalInference JrdiM uñoz,rtFalcó-Gim no nd Erique H erndez M eauring Sugroup Preencesin ConjtExperim ents Thom asJ.per,Sara .H obltand am esilley","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"31 1","pages":"f1 - f4"},"PeriodicalIF":5.4,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47782753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PAN volume 31 issue 3 Cover and Back matter PAN第31卷第3期封面和封底
IF 5.4 2区 社会学 Q1 POLITICAL SCIENCE Pub Date : 2023-06-19 DOI: 10.1017/pan.2023.16
{"title":"PAN volume 31 issue 3 Cover and Back matter","authors":"","doi":"10.1017/pan.2023.16","DOIUrl":"https://doi.org/10.1017/pan.2023.16","url":null,"abstract":"","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"31 1","pages":"b1 - b3"},"PeriodicalIF":5.4,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47216671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Less Annotating, More Classifying: Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT-NLI 少注释,多分类:用深度迁移学习和BERT-NLI解决监督机器学习的数据稀缺问题
IF 5.4 2区 社会学 Q1 POLITICAL SCIENCE Pub Date : 2023-06-09 DOI: 10.1017/pan.2023.20
Moritz Laurer, Wouter van Atteveldt, Andreu Casas, Kasper Welbers
{"title":"Less Annotating, More Classifying: Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT-NLI","authors":"Moritz Laurer, Wouter van Atteveldt, Andreu Casas, Kasper Welbers","doi":"10.1017/pan.2023.20","DOIUrl":"https://doi.org/10.1017/pan.2023.20","url":null,"abstract":"","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47961074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
Hierarchical Bayesian Aldrich–McKelvey Scaling 层次贝叶斯奥尔德里奇-麦凯维缩放
2区 社会学 Q1 POLITICAL SCIENCE Pub Date : 2023-06-08 DOI: 10.1017/pan.2023.18
Jørgen Bølstad
Abstract Estimating the ideological positions of political actors is an important step toward answering a number of substantive questions in political science. Survey scales provide useful data for such estimation, but also present a challenge, as respondents tend to interpret the scales differently. The Aldrich–McKelvey model addresses this challenge, but the existing implementations of the model still have notable shortcomings. Focusing on the Bayesian version of the model (BAM), the analyses in this article demonstrate that the model is prone to overfitting and yields poor results for a considerable share of respondents. The article addresses these shortcomings by developing a hierarchical Bayesian version of the model (HBAM). The new version treats self-placements as data to be included in the likelihood function while also modifying the likelihood to allow for scale flipping. The resulting model outperforms the existing Bayesian version both on real data and in a Monte Carlo study. An R package implementing the models in Stan is provided to facilitate future use.
评估政治行为者的意识形态立场是回答政治学中许多实质性问题的重要一步。调查量表为这种估计提供了有用的数据,但也提出了一个挑战,因为受访者倾向于以不同的方式解释量表。Aldrich-McKelvey模型解决了这一挑战,但该模型的现有实现仍然存在明显的缺点。本文的分析着重于模型的贝叶斯版本(BAM),表明该模型容易过度拟合,并且对相当一部分受访者产生较差的结果。本文通过开发模型的层次贝叶斯版本(HBAM)来解决这些缺点。新版本将自我放置作为包含在似然函数中的数据,同时还修改似然以允许缩放翻转。所得到的模型在实际数据和蒙特卡罗研究中都优于现有的贝叶斯模型。提供了一个在Stan中实现模型的R包,以方便将来使用。
{"title":"Hierarchical Bayesian Aldrich–McKelvey Scaling","authors":"Jørgen Bølstad","doi":"10.1017/pan.2023.18","DOIUrl":"https://doi.org/10.1017/pan.2023.18","url":null,"abstract":"Abstract Estimating the ideological positions of political actors is an important step toward answering a number of substantive questions in political science. Survey scales provide useful data for such estimation, but also present a challenge, as respondents tend to interpret the scales differently. The Aldrich–McKelvey model addresses this challenge, but the existing implementations of the model still have notable shortcomings. Focusing on the Bayesian version of the model (BAM), the analyses in this article demonstrate that the model is prone to overfitting and yields poor results for a considerable share of respondents. The article addresses these shortcomings by developing a hierarchical Bayesian version of the model (HBAM). The new version treats self-placements as data to be included in the likelihood function while also modifying the likelihood to allow for scale flipping. The resulting model outperforms the existing Bayesian version both on real data and in a Monte Carlo study. An R package implementing the models in Stan is provided to facilitate future use.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135269421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selecting More Informative Training Sets with Fewer Observations 用更少的观察值选择更多信息的训练集
2区 社会学 Q1 POLITICAL SCIENCE Pub Date : 2023-06-08 DOI: 10.1017/pan.2023.19
Aaron R. Kaufman
Abstract A standard text-as-data workflow in the social sciences involves identifying a set of documents to be labeled, selecting a random sample of them to label using research assistants, training a supervised learner to label the remaining documents, and validating that model’s performance using standard accuracy metrics. The most resource-intensive component of this is the hand-labeling: carefully reading documents, training research assistants, and paying human coders to label documents in duplicate or more. We show that hand-coding an algorithmically selected rather than a simple-random sample can improve model performance above baseline by as much as 50%, or reduce hand-coding costs by up to two-thirds, in applications predicting (1) U.S. executive-order significance and (2) financial sentiment on social media. We accompany this manuscript with open-source software to implement these tools, which we hope can make supervised learning cheaper and more accessible to researchers.
社会科学中标准的文本即数据工作流包括识别一组要标记的文档,使用研究助理选择其中的随机样本进行标记,训练有监督的学习者标记剩余的文档,并使用标准准确性指标验证该模型的性能。这其中最耗费资源的部分是手工标记:仔细阅读文档,培训研究助理,并付钱给人类编码员来标记重复或更多的文档。我们表明,在预测(1)美国行政命令重要性和(2)社交媒体上的金融情绪的应用中,手工编码算法选择的样本而不是简单随机样本可以将模型性能提高50%以上,或将手工编码成本降低三分之二。我们在这篇文章中附带了开源软件来实现这些工具,我们希望这些工具可以使监督学习更便宜,更容易被研究人员使用。
{"title":"Selecting More Informative Training Sets with Fewer Observations","authors":"Aaron R. Kaufman","doi":"10.1017/pan.2023.19","DOIUrl":"https://doi.org/10.1017/pan.2023.19","url":null,"abstract":"Abstract A standard text-as-data workflow in the social sciences involves identifying a set of documents to be labeled, selecting a random sample of them to label using research assistants, training a supervised learner to label the remaining documents, and validating that model’s performance using standard accuracy metrics. The most resource-intensive component of this is the hand-labeling: carefully reading documents, training research assistants, and paying human coders to label documents in duplicate or more. We show that hand-coding an algorithmically selected rather than a simple-random sample can improve model performance above baseline by as much as 50%, or reduce hand-coding costs by up to two-thirds, in applications predicting (1) U.S. executive-order significance and (2) financial sentiment on social media. We accompany this manuscript with open-source software to implement these tools, which we hope can make supervised learning cheaper and more accessible to researchers.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135269847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Political Analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1