As glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the regulators of carbonyl stress, a pathogenic mechanism for diabetic complications like acute coronary syndrome (ACS), the study aimed to investigate the relationship between GAPDH gene polymorphism, GAPDH activity in red blood cell (RBC), methylglyoxal (MG) levels in plasma and ACS risk in South Indians with type 2 diabetes mellitus (T2DM). This study comprised 150 T2DM with ACS as cases and 150 T2DM without ACS as controls. The GAPDH rs1136666, rs1060620 and rs1060619 gene polymorphisms were identified by TaqMan probe assays. The RBC GAPDH activity and plasma MG levels were estimated. Cases had significantly higher plasma MG levels and lower RBC GAPDH activity than controls (P < 0.001). The distribution of rs1060620 or rs1060619 alleles and genotypes significantly differed between groups. The rs1060620 AG (OR 0.55; 95% CI 0.33-0.92; P = 0.022) or rs1060619 CT (OR 0.51; 95% CI 0.31-0.83; P = 0.007) genotype was associated with reduced ACS risk, confirmed in the over-dominant genetic model. Haplotype analyses revealed that the GAT and CGC haplotypes were associated with increased (OR 28.37; 95% CI 3.82-210.49; P = 8.51 × 10-7) and decreased (OR 0.45; 95% CI 0.24-0.86; P = 0.014) ACS risk in T2DM patients, respectively. Lower GAPDH activity was observed in the TT and CT genotypes compared to the CC genotype of rs1060619 (P < 0.001). This work established that the GAPDH rs1060620 or rs1060619 gene polymorphisms are associated with ACS risk in South Indians with T2DM.
{"title":"The Relationship Between GAPDH Gene Polymorphism and Risk of Acute Coronary Syndrome in South Indians with Type 2 Diabetes Mellitus.","authors":"Sushmita Bora, Prashant Shankarrao Adole, Kolar Vishwanath Vinod, Ajith Ananthakrishna Pillai, Shaheer Ahmed","doi":"10.1007/s10528-024-10881-8","DOIUrl":"https://doi.org/10.1007/s10528-024-10881-8","url":null,"abstract":"<p><p>As glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the regulators of carbonyl stress, a pathogenic mechanism for diabetic complications like acute coronary syndrome (ACS), the study aimed to investigate the relationship between GAPDH gene polymorphism, GAPDH activity in red blood cell (RBC), methylglyoxal (MG) levels in plasma and ACS risk in South Indians with type 2 diabetes mellitus (T2DM). This study comprised 150 T2DM with ACS as cases and 150 T2DM without ACS as controls. The GAPDH rs1136666, rs1060620 and rs1060619 gene polymorphisms were identified by TaqMan probe assays. The RBC GAPDH activity and plasma MG levels were estimated. Cases had significantly higher plasma MG levels and lower RBC GAPDH activity than controls (P < 0.001). The distribution of rs1060620 or rs1060619 alleles and genotypes significantly differed between groups. The rs1060620 AG (OR 0.55; 95% CI 0.33-0.92; P = 0.022) or rs1060619 CT (OR 0.51; 95% CI 0.31-0.83; P = 0.007) genotype was associated with reduced ACS risk, confirmed in the over-dominant genetic model. Haplotype analyses revealed that the GAT and CGC haplotypes were associated with increased (OR 28.37; 95% CI 3.82-210.49; P = 8.51 × 10<sup>-7</sup>) and decreased (OR 0.45; 95% CI 0.24-0.86; P = 0.014) ACS risk in T2DM patients, respectively. Lower GAPDH activity was observed in the TT and CT genotypes compared to the CC genotype of rs1060619 (P < 0.001). This work established that the GAPDH rs1060620 or rs1060619 gene polymorphisms are associated with ACS risk in South Indians with T2DM.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1007/s10528-024-10879-2
Xiaowen Zhu, Xuan Li, MeiJia Zhang, Jian Ni
Laryngeal cancer is a common malignancy of the larynx with a generally poor prognosis. This study systematically assessed the functional role of lncRNA BBOX1-AS1 in laryngeal carcinoma progression and associated molecular regulatory mechanisms. The proliferation, migration, and invasion of laryngeal carcinoma cells were detected by Cell Counting Kit-8, wound healing, clonal formation, and transwell assays. In addition, the interaction between BBOX1-AS1, Serine/Arginine Splicing Factor 1 (SRSF1), and Ephrin-B2 (EFNB2) mRNA was examined employing RNA immunoprecipitation and RNA pull-down experiments. Furthermore, western blotting, and RT-qPCR assays were adopted to detect the expression levels of BBOX1-AS1, SRSF1, and EFNB2. The impact of BBOX1-AS1 and SRSF1 on EFNB2 mRNA stability was examined using the RNA stability assay. BBOX1-AS1 was highly expressed in human laryngeal carcinoma tissues and cell lines. BBOX1-AS1 knockdown suppressed the growth, proliferation, migration, and invasion of laryngeal carcinoma cells. BBOX1-AS1 maintained the stability of EFNB2 mRNA in laryngeal carcinoma cells by recruiting SRSF1. EFNB2 knockdown inhibited the growth and metastatic function of laryngeal carcinoma cells in vitro. EFNB2 overexpression reversed the influence of BBOX1-AS1 knockdown on laryngeal cancer tumorigenesis. BBOX1-AS1 maintained EFNB2 mRNA stability by recruiting SRSF1, thereby aggravating laryngeal carcinoma malignant phenotypes. BBOX1-AS1 might be a new theoretical target for the treatment of laryngeal carcinoma.
{"title":"LncRNA BBOX1-AS1 Contributes to Laryngeal Carcinoma Progression by Recruiting SRSF1 to Maintain EFNB2 mRNA Stability.","authors":"Xiaowen Zhu, Xuan Li, MeiJia Zhang, Jian Ni","doi":"10.1007/s10528-024-10879-2","DOIUrl":"https://doi.org/10.1007/s10528-024-10879-2","url":null,"abstract":"<p><p>Laryngeal cancer is a common malignancy of the larynx with a generally poor prognosis. This study systematically assessed the functional role of lncRNA BBOX1-AS1 in laryngeal carcinoma progression and associated molecular regulatory mechanisms. The proliferation, migration, and invasion of laryngeal carcinoma cells were detected by Cell Counting Kit-8, wound healing, clonal formation, and transwell assays. In addition, the interaction between BBOX1-AS1, Serine/Arginine Splicing Factor 1 (SRSF1), and Ephrin-B2 (EFNB2) mRNA was examined employing RNA immunoprecipitation and RNA pull-down experiments. Furthermore, western blotting, and RT-qPCR assays were adopted to detect the expression levels of BBOX1-AS1, SRSF1, and EFNB2. The impact of BBOX1-AS1 and SRSF1 on EFNB2 mRNA stability was examined using the RNA stability assay. BBOX1-AS1 was highly expressed in human laryngeal carcinoma tissues and cell lines. BBOX1-AS1 knockdown suppressed the growth, proliferation, migration, and invasion of laryngeal carcinoma cells. BBOX1-AS1 maintained the stability of EFNB2 mRNA in laryngeal carcinoma cells by recruiting SRSF1. EFNB2 knockdown inhibited the growth and metastatic function of laryngeal carcinoma cells in vitro. EFNB2 overexpression reversed the influence of BBOX1-AS1 knockdown on laryngeal cancer tumorigenesis. BBOX1-AS1 maintained EFNB2 mRNA stability by recruiting SRSF1, thereby aggravating laryngeal carcinoma malignant phenotypes. BBOX1-AS1 might be a new theoretical target for the treatment of laryngeal carcinoma.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.1007/s10528-024-10876-5
Wei Wang, Fei Yao, Haiyuan Xing, Fan Yang, Li Yan
Spinal cord injury (SCI) involves neuronal apoptosis and axonal disruption, leading to severe motor dysfunction. Studies indicate that exosomes transport microRNAs (miRNAs) and play a crucial role in intercellular communication. This study aimed to explore whether the bone marrow mesenchymal stem cell (BMSCs)-exosomal miR-17-92 cluster can protect against SCI and to explain the underlying mechanisms. In vivo and in vitro SCI models were established and treated with control exosomes (con-exo) or exosomes derived from BMSCs transfected with miR-17-92 cluster plasmid (miR-17-92-exo). Rat BMSCs were isolated and positive markers were identified by flow cytometry. BMSC-derived exosomes were extracted and verified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting. The expression of the miR-17-92 cluster was validated by quantitative reverse transcription PCR (qRT-PCR). Spinal cord function, histopathological changes, apoptotic cells, and inflammatory cytokines release in spinal cord tissues were assessed using the Basso-Beattie-Bresnahan (BBB) score, hematoxylin and eosin (HE) staining, terminal deoxynucleotide transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining, enzyme-linked immunosorbent assay (ELISA), and qRT-PCR. In PC12 cells, cell proliferation, apoptosis, apoptosis-related proteins cleaved-Caspase3 expression, and inflammatory factors secretion were analyzed using a cell counting kit-8 (CCK8) assay, flow cytometry, western blotting, and ELISA. Our data revealed that the exosomes were successfully isolated from rat BMSCs. The BMSC-exosomal miR-17-92 cluster improved neural functional recovery after SCI, as evidenced by an increased BBB score, improved pathological damage, reduced neuronal apoptosis, and decreased inflammatory factors release. Additionally, miR-17-92-exo treatment significantly inhibited lipopolysaccharide (LPS)-induced reduction in cell viability, increase in cell apoptosis, and upregulation of inflammatory factors in PC12 cells. The exosomal miR-17-92 cluster derived from BMSCs improved functional recovery and exhibited neuroprotective effects in SCI by alleviating apoptosis and inflammation.
{"title":"Exosomal miR-17-92 Cluster from BMSCs Alleviates Apoptosis and Inflammation in Spinal Cord Injury.","authors":"Wei Wang, Fei Yao, Haiyuan Xing, Fan Yang, Li Yan","doi":"10.1007/s10528-024-10876-5","DOIUrl":"https://doi.org/10.1007/s10528-024-10876-5","url":null,"abstract":"<p><p>Spinal cord injury (SCI) involves neuronal apoptosis and axonal disruption, leading to severe motor dysfunction. Studies indicate that exosomes transport microRNAs (miRNAs) and play a crucial role in intercellular communication. This study aimed to explore whether the bone marrow mesenchymal stem cell (BMSCs)-exosomal miR-17-92 cluster can protect against SCI and to explain the underlying mechanisms. In vivo and in vitro SCI models were established and treated with control exosomes (con-exo) or exosomes derived from BMSCs transfected with miR-17-92 cluster plasmid (miR-17-92-exo). Rat BMSCs were isolated and positive markers were identified by flow cytometry. BMSC-derived exosomes were extracted and verified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting. The expression of the miR-17-92 cluster was validated by quantitative reverse transcription PCR (qRT-PCR). Spinal cord function, histopathological changes, apoptotic cells, and inflammatory cytokines release in spinal cord tissues were assessed using the Basso-Beattie-Bresnahan (BBB) score, hematoxylin and eosin (HE) staining, terminal deoxynucleotide transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining, enzyme-linked immunosorbent assay (ELISA), and qRT-PCR. In PC12 cells, cell proliferation, apoptosis, apoptosis-related proteins cleaved-Caspase3 expression, and inflammatory factors secretion were analyzed using a cell counting kit-8 (CCK8) assay, flow cytometry, western blotting, and ELISA. Our data revealed that the exosomes were successfully isolated from rat BMSCs. The BMSC-exosomal miR-17-92 cluster improved neural functional recovery after SCI, as evidenced by an increased BBB score, improved pathological damage, reduced neuronal apoptosis, and decreased inflammatory factors release. Additionally, miR-17-92-exo treatment significantly inhibited lipopolysaccharide (LPS)-induced reduction in cell viability, increase in cell apoptosis, and upregulation of inflammatory factors in PC12 cells. The exosomal miR-17-92 cluster derived from BMSCs improved functional recovery and exhibited neuroprotective effects in SCI by alleviating apoptosis and inflammation.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.1007/s10528-024-10877-4
Quzong Zhaxi, Luobu Gesang, Ju Huang, Yangzong Suona, Bai Ci, Zhuoga Danzeng, Rui Zhang, Binyun Liu
{"title":"Correction: Hypermethylation of BMPR2 and TGF-β Promoter Regions in Tibetan Patients with High-Altitude Polycythemia at Extreme Altitude.","authors":"Quzong Zhaxi, Luobu Gesang, Ju Huang, Yangzong Suona, Bai Ci, Zhuoga Danzeng, Rui Zhang, Binyun Liu","doi":"10.1007/s10528-024-10877-4","DOIUrl":"https://doi.org/10.1007/s10528-024-10877-4","url":null,"abstract":"","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1007/s10528-024-10869-4
Esrat Jahan, Tanoy Mazumder, Tarek Hasan, Khondoker Shahin Ahmed, Muhammed Amanat, Hemayet Hossain, Sumaiya Jannat Supty, Israt Jahan Liya, Md Sadikur Rahman Shuvo, A F M Shahid Ud Daula
The advent of the new coronavirus, leading to the SARS-CoV-2 pandemic, has presented a substantial worldwide health hazard since its inception in the latter part of 2019. The severity of the current pandemic is exacerbated by the occurrence of re-infection or co-infection with SARS-CoV-2. Hence, comprehending the molecular process underlying the pathophysiology of sepsis and discerning possible molecular targets for therapeutic intervention holds significant importance. For the first time, 31 metabolites were tentatively identified by GC-MS analysis from Alpinia malaccensis. On the other hand, five phenolic compounds were identified and quantified from the plant in HPLC-DAD analysis, including (-) epicatechin, rutin hydrate, rosmarinic acid, quercetin, and kaempferol. Nine GC-MS and five HPLC-identified metabolites had shown interactions with 45 and 30 COVID-19-associated human proteins, respectively. Among the proteins, PARP1, FN1, PRKCA, EGFR, ALDH2, AKR1C3, AHR, and IKBKB have been found as potential therapeutic targets to mitigate SARS-CoV-2 infection. KEGG pathway analysis also showed a strong association of FN1, EGFR, and IKBKB genes with SARS-CoV-2 viral replication and cytokine overexpression due to viral infection. Protein-protein interaction (PPI) analysis also showed that TP53, MMP9, FN1, EGFR, and NOS2 proteins are highly related to the genes involved in COVID-19 comorbidity. These proteins showed interaction with the plant phytoconstituents as well. As the study offers a robust network-based procedure for identifying biomolecules relevant to COVID-19 disease, A. malaccensis could be a good source of effective therapeutic agents against COVID-19 and related viral diseases.
{"title":"Metabolomic Approach to Identify the Potential Metabolites from Alpinia malaccensis for Treating SARS-CoV-2 Infection.","authors":"Esrat Jahan, Tanoy Mazumder, Tarek Hasan, Khondoker Shahin Ahmed, Muhammed Amanat, Hemayet Hossain, Sumaiya Jannat Supty, Israt Jahan Liya, Md Sadikur Rahman Shuvo, A F M Shahid Ud Daula","doi":"10.1007/s10528-024-10869-4","DOIUrl":"https://doi.org/10.1007/s10528-024-10869-4","url":null,"abstract":"<p><p>The advent of the new coronavirus, leading to the SARS-CoV-2 pandemic, has presented a substantial worldwide health hazard since its inception in the latter part of 2019. The severity of the current pandemic is exacerbated by the occurrence of re-infection or co-infection with SARS-CoV-2. Hence, comprehending the molecular process underlying the pathophysiology of sepsis and discerning possible molecular targets for therapeutic intervention holds significant importance. For the first time, 31 metabolites were tentatively identified by GC-MS analysis from Alpinia malaccensis. On the other hand, five phenolic compounds were identified and quantified from the plant in HPLC-DAD analysis, including (-) epicatechin, rutin hydrate, rosmarinic acid, quercetin, and kaempferol. Nine GC-MS and five HPLC-identified metabolites had shown interactions with 45 and 30 COVID-19-associated human proteins, respectively. Among the proteins, PARP1, FN1, PRKCA, EGFR, ALDH2, AKR1C3, AHR, and IKBKB have been found as potential therapeutic targets to mitigate SARS-CoV-2 infection. KEGG pathway analysis also showed a strong association of FN1, EGFR, and IKBKB genes with SARS-CoV-2 viral replication and cytokine overexpression due to viral infection. Protein-protein interaction (PPI) analysis also showed that TP53, MMP9, FN1, EGFR, and NOS2 proteins are highly related to the genes involved in COVID-19 comorbidity. These proteins showed interaction with the plant phytoconstituents as well. As the study offers a robust network-based procedure for identifying biomolecules relevant to COVID-19 disease, A. malaccensis could be a good source of effective therapeutic agents against COVID-19 and related viral diseases.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annonaceae is the largest family in Magnoliales, exhibiting the greatest diversity among and within genera. In this study, we conducted an analysis of repetitive sequences and codon usage bias in the previously acquired plastome of Miliusa glochidioides. Using a concatenated dataset of shared genes, we constructed the phylogenetic relationships among 27 Annonaceae species. The results showed that the size of the plastomes in the Annonaceae ranged from 159 to 202 kb, with the size of the inverted repeat region ranging from 40 to 65 kb. Within the plastome of M. glochidioides, we identified 42 SSRs, 36 tandem repeats, and 9 dispersed repeats. These SSRs consist of three nucleotide types and eight motif types, with a preference for A/T bases, primarily located in the large single-copy regions and intergenic spacers. Tandem and dispersed repeat sequences were predominantly detected in the IR region. Through codon usage bias analysis, we identified 30 high-frequency codons and 11 optimal codons. The plastome of M. glochidioides demonstrated relatively weak codon usage bias, favoring codons with A/T endings, primarily influenced by natural selection. Phylogenetic analysis revealed that all four subfamilies formed monophyletic groups, with Cananga odorata (Ambavioideae) and Anaxagorea javanica (Anaxagoreoideae) successively nested outside Annonoideae + Malmeoideae. These findings improve our understanding of the plastome of M. glochidioides and provide additional insights for studying plastome evolution in Annonaceae.
{"title":"Repetitive Sequences, Codon Usage Bias and Phylogenetic Analysis of the Plastome of Miliusa glochidioides.","authors":"Yangying Gan, Jingyao Ping, Xiaojing Liu, Caixia Peng","doi":"10.1007/s10528-024-10874-7","DOIUrl":"https://doi.org/10.1007/s10528-024-10874-7","url":null,"abstract":"<p><p>Annonaceae is the largest family in Magnoliales, exhibiting the greatest diversity among and within genera. In this study, we conducted an analysis of repetitive sequences and codon usage bias in the previously acquired plastome of Miliusa glochidioides. Using a concatenated dataset of shared genes, we constructed the phylogenetic relationships among 27 Annonaceae species. The results showed that the size of the plastomes in the Annonaceae ranged from 159 to 202 kb, with the size of the inverted repeat region ranging from 40 to 65 kb. Within the plastome of M. glochidioides, we identified 42 SSRs, 36 tandem repeats, and 9 dispersed repeats. These SSRs consist of three nucleotide types and eight motif types, with a preference for A/T bases, primarily located in the large single-copy regions and intergenic spacers. Tandem and dispersed repeat sequences were predominantly detected in the IR region. Through codon usage bias analysis, we identified 30 high-frequency codons and 11 optimal codons. The plastome of M. glochidioides demonstrated relatively weak codon usage bias, favoring codons with A/T endings, primarily influenced by natural selection. Phylogenetic analysis revealed that all four subfamilies formed monophyletic groups, with Cananga odorata (Ambavioideae) and Anaxagorea javanica (Anaxagoreoideae) successively nested outside Annonoideae + Malmeoideae. These findings improve our understanding of the plastome of M. glochidioides and provide additional insights for studying plastome evolution in Annonaceae.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1007/s10528-024-10868-5
Mona F Sokkar, Mona Hamdy, Mohamed B Taher, Heba El-Sayed, Eman Abdelmotaleb Bayomi, Khalda S Amr, Ghada Y El-Kamah
Iron loading is regarded as the primary cause of endocrine abnormalities in thalassemia major patients. Thus, the purpose of the current research was to explore the impact of thalassemia genotypes, hepcidin antimicrobial peptide (HAMP) and hereditary hemochromatosis (HFE) gene variants, and hepcidin expression on serum ferritin and endocrinal complications in thalassemia patients. The study comprised fifty beta-thalassemia cases and fifty age- and sex-matched controls. Genotyping of the Beta-globin gene (HBB), HAMP, and exon 2 of the HFE gene was performed using Sanger sequencing. C282Y (c.845G > A) variant of the HFE gene was determined by PCR-RFLP. Hepcidin mRNA expression was assessed by qRT-PCR. Biochemical and hormonal studies were done for all patients. Hypogonadism and short stature were found in 56% and 20% of the investigated cases, respectively. Molecular studies reported a statistically higher frequency of the HAMP variant c.-582A > G in thalassemic patients than controls. Significant downregulation of hepcidin expression was found in cases compared to healthy subjects that was significantly associated with short stature. Considering the thalassemia alleles, the IVSI.1G > A (β0) allele was statistically related to hypogonadism. Our results proposed that thalassemia genotypes and downregulated hepcidin expression were the potential risk factors for endocrinopathies in our cases. We also demonstrated an increased incidence of the HAMP promoter variant c.- 582A > G that might have a role in the pathogenesis of iron overload in thalassemic cases. Significant downregulation of hepcidin expression, that contributes to increased iron burden, could be used as a future therapeutic target in these patients.
{"title":"Genetic Correlation of HBB, HFE and HAMP Genes to Endocrinal Complications in Egyptian Beta Thalassemia Major Patients.","authors":"Mona F Sokkar, Mona Hamdy, Mohamed B Taher, Heba El-Sayed, Eman Abdelmotaleb Bayomi, Khalda S Amr, Ghada Y El-Kamah","doi":"10.1007/s10528-024-10868-5","DOIUrl":"https://doi.org/10.1007/s10528-024-10868-5","url":null,"abstract":"<p><p>Iron loading is regarded as the primary cause of endocrine abnormalities in thalassemia major patients. Thus, the purpose of the current research was to explore the impact of thalassemia genotypes, hepcidin antimicrobial peptide (HAMP) and hereditary hemochromatosis (HFE) gene variants, and hepcidin expression on serum ferritin and endocrinal complications in thalassemia patients. The study comprised fifty beta-thalassemia cases and fifty age- and sex-matched controls. Genotyping of the Beta-globin gene (HBB), HAMP, and exon 2 of the HFE gene was performed using Sanger sequencing. C282Y (c.845G > A) variant of the HFE gene was determined by PCR-RFLP. Hepcidin mRNA expression was assessed by qRT-PCR. Biochemical and hormonal studies were done for all patients. Hypogonadism and short stature were found in 56% and 20% of the investigated cases, respectively. Molecular studies reported a statistically higher frequency of the HAMP variant c.-582A > G in thalassemic patients than controls. Significant downregulation of hepcidin expression was found in cases compared to healthy subjects that was significantly associated with short stature. Considering the thalassemia alleles, the IVSI.1G > A (β<sup>0</sup>) allele was statistically related to hypogonadism. Our results proposed that thalassemia genotypes and downregulated hepcidin expression were the potential risk factors for endocrinopathies in our cases. We also demonstrated an increased incidence of the HAMP promoter variant c.- 582A > G that might have a role in the pathogenesis of iron overload in thalassemic cases. Significant downregulation of hepcidin expression, that contributes to increased iron burden, could be used as a future therapeutic target in these patients.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1007/s10528-024-10878-3
Tianyu Li, Shengping Zhong, Beihua Wen, Lihua Jiang, Man Zhang
Mitochondrial genome is an important molecular marker for exploring the phylogenetic relationships of species and revealing molecular evolution. In the present study, 5 mitogenomes of Chromodorididae (Chromodoris lochi, Chromodoris colemani, Chromodoris elisabethina, Chromodoris annae and Hypselodoris whitei) were systemically investigated. The lengths of the mitogenomes sequences were 14248 bp, 14257 bp, 14252 bp, 14254 bp and 14856 bp, respectively. Most protein-coding genes (PCGs) were initiated with the common ATG codon and terminated with the TAA and TAG. We calculated Ka/Ks values for all 13 PCGs of Chromodorididae species, all ratios were less than 1, indicating selection by purification. Phylogenetic relationships were constructed by Bayesian inference (BI) and maximum likelihood (ML) methods based on all complete genomes of 50 species, primarily from the family Chromodorididae (Doridina) and 2 outgroups. This phylogenetic tree provided further additional references for the classification of the suborder Doridina. Gene rearrangement suggested a more conserved pattern of gene sequences in the superfamily Chromodoridoidea. These results and newly sequenced will contribute to a better understanding of Chromodorididae and provide reference for further phylogenetic studies.
{"title":"Comparative Analysis of Complete Mitochondrial Genomes of Five Chromodorididae Species (Nudibranchia:Doridina).","authors":"Tianyu Li, Shengping Zhong, Beihua Wen, Lihua Jiang, Man Zhang","doi":"10.1007/s10528-024-10878-3","DOIUrl":"https://doi.org/10.1007/s10528-024-10878-3","url":null,"abstract":"<p><p>Mitochondrial genome is an important molecular marker for exploring the phylogenetic relationships of species and revealing molecular evolution. In the present study, 5 mitogenomes of Chromodorididae (Chromodoris lochi, Chromodoris colemani, Chromodoris elisabethina, Chromodoris annae and Hypselodoris whitei) were systemically investigated. The lengths of the mitogenomes sequences were 14248 bp, 14257 bp, 14252 bp, 14254 bp and 14856 bp, respectively. Most protein-coding genes (PCGs) were initiated with the common ATG codon and terminated with the TAA and TAG. We calculated Ka/Ks values for all 13 PCGs of Chromodorididae species, all ratios were less than 1, indicating selection by purification. Phylogenetic relationships were constructed by Bayesian inference (BI) and maximum likelihood (ML) methods based on all complete genomes of 50 species, primarily from the family Chromodorididae (Doridina) and 2 outgroups. This phylogenetic tree provided further additional references for the classification of the suborder Doridina. Gene rearrangement suggested a more conserved pattern of gene sequences in the superfamily Chromodoridoidea. These results and newly sequenced will contribute to a better understanding of Chromodorididae and provide reference for further phylogenetic studies.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1007/s10528-024-10873-8
Fazilet Yıldız Özdenoğlu, Demet Akdeniz Ödemiş, Seda Kılıç Erciyas, Şeref Buğra Tunçer, Büşra Kurt Gültaşlar, Ahmet Salduz, Sema Büyükkapu, Necat Vakur Olgaç, Rejin Kebudi, Hülya Yazıcı
Sarcomas are malignant tumors that may metastasize and the course of the disease is highly aggressive in children and young adults. Because of the rare incidence of sarcomas and the heterogeneity of tumors, there is a need for non-invasive diagnostic and prognostic biomarkers in sarcomas. The aim of the study was to investigate the level of miR-218-5p in peripheral blood and tumor tissue samples of Ewing's sarcoma, osteosarcoma, spindle cell sarcoma patients, and healthy controls, and assessed whether the corresponding molecule was a diagnostic and prognostic biomarker. The study was performed patients (n = 22) diagnosed and treated with Ewing's sarcoma and osteosarcoma and in a control group of 22 healthy children who were matched for age, gender, and ethnicity with the patient group. The expression level of miR-218-5p in RNA samples from peripheral blood and tissue samples were analyzed using the RT-PCR and the expression level of miR-218-5p was evaluated by comparison with the levels in patients and healthy controls. The expression level of miR-218-5p was found to be statistically higher (3.33-fold, p = 0.006) in pediatric patients with sarcomas and when the target genes of miR-218-5p were investigated using the bioinformatics tools, the miR-218-5p was found as an important miRNA in cancer. In this study, the miR-218-5p was shown for the first time to have been highly expressed in the peripheral blood and tumor tissue of sarcoma patients. The results suggest that miR-218-5p can be used as a diagnostic and prognostic biomarker in sarcomas and will be evaluated as an important therapeutic target.
{"title":"High Expression of miR-218-5p in the Peripheral Blood Stream and Tumor Tissues of Pediatric Patients with Sarcomas.","authors":"Fazilet Yıldız Özdenoğlu, Demet Akdeniz Ödemiş, Seda Kılıç Erciyas, Şeref Buğra Tunçer, Büşra Kurt Gültaşlar, Ahmet Salduz, Sema Büyükkapu, Necat Vakur Olgaç, Rejin Kebudi, Hülya Yazıcı","doi":"10.1007/s10528-024-10873-8","DOIUrl":"https://doi.org/10.1007/s10528-024-10873-8","url":null,"abstract":"<p><p>Sarcomas are malignant tumors that may metastasize and the course of the disease is highly aggressive in children and young adults. Because of the rare incidence of sarcomas and the heterogeneity of tumors, there is a need for non-invasive diagnostic and prognostic biomarkers in sarcomas. The aim of the study was to investigate the level of miR-218-5p in peripheral blood and tumor tissue samples of Ewing's sarcoma, osteosarcoma, spindle cell sarcoma patients, and healthy controls, and assessed whether the corresponding molecule was a diagnostic and prognostic biomarker. The study was performed patients (n = 22) diagnosed and treated with Ewing's sarcoma and osteosarcoma and in a control group of 22 healthy children who were matched for age, gender, and ethnicity with the patient group. The expression level of miR-218-5p in RNA samples from peripheral blood and tissue samples were analyzed using the RT-PCR and the expression level of miR-218-5p was evaluated by comparison with the levels in patients and healthy controls. The expression level of miR-218-5p was found to be statistically higher (3.33-fold, p = 0.006) in pediatric patients with sarcomas and when the target genes of miR-218-5p were investigated using the bioinformatics tools, the miR-218-5p was found as an important miRNA in cancer. In this study, the miR-218-5p was shown for the first time to have been highly expressed in the peripheral blood and tumor tissue of sarcoma patients. The results suggest that miR-218-5p can be used as a diagnostic and prognostic biomarker in sarcomas and will be evaluated as an important therapeutic target.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1007/s10528-024-10842-1
Hamid Sahebalam, Mohsen Gholizadeh, Hasan Hafezian
<p><p>The genomic evaluation process relies on the assumption of linkage disequilibrium between dense single-nucleotide polymorphism (SNP) markers at the genome level and quantitative trait loci (QTL). The present study was conducted with the aim of evaluating four frequentist methods including Ridge Regression, Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net, and Genomic Best Linear Unbiased Prediction (GBLUP) and five Bayesian methods including Bayes Ridge Regression (BRR), Bayes A, Bayesian LASSO, Bayes C, and Bayes B, in genomic selection using simulation data. The difference between prediction accuracy was assessed in pairs based on statistical significance (p-value) (i.e., t test and Mann-Whitney U test) and practical significance (Cohen's d effect size) For this purpose, the data were simulated based on two scenarios in different marker densities (4000 and 8000, in the whole genome). The simulated data included a genome with four chromosomes, 1 Morgan each, on which 100 randomly distributed QTL and two different densities of evenly distributed SNPs (1000 and 2000), at the heritability level of 0.4, was considered. For the frequentist methods except for GBLUP, the regularization parameter λ was calculated using a five-fold cross-validation approach. For both scenarios, among the frequentist methods, the highest prediction accuracy was observed by Ridge Regression and GBLUP. The lowest and the highest bias were shown by Ridge Regression and GBLUP, respectively. Also, among the Bayesian methods, Bayes B and BRR showed the highest and lowest prediction accuracy, respectively. The lowest bias in both scenarios was registered by Bayesian LASSO and the highest bias in the first and the second scenario were shown by BRR and Bayes B, respectively. Across all the studied methods in both scenarios, the highest and the lowest accuracy were shown by Bayes B and LASSO and Elastic Net, respectively. As expected, the greatest similarity in performance was observed between GBLUP and BRR ( <math><mrow><mi>d</mi> <mo>=</mo> <mn>0.007</mn></mrow> </math> , in the first scenario and <math><mrow><mi>d</mi> <mo>=</mo> <mn>0.003</mn></mrow> </math> , in the second scenario). The results obtained from parametric t and non-parametric Mann-Whitney U tests were similar. In the first and second scenario, out of 36 t test between the performance of the studied methods in each scenario, 14 ( <math><mrow><mi>P</mi> <mo><</mo> <mo>.</mo> <mn>001</mn></mrow> </math> ) and 2 ( <math><mrow><mi>P</mi> <mo><</mo> <mo>.</mo> <mn>05</mn></mrow> </math> ) comparisons were significant, respectively, which indicates that with the increase in the number of predictors, the difference in the performance of different methods decreases. This was proven based on the Cohen's d effect size, so that with the increase in the complexity of the model, the effect size was not seen as very large. The regularization parameters in frequentist methods should be optimized by cro
基因组评估过程依赖于在基因组水平上密集的单核苷酸多态性(SNP)标记与数量性状位点(QTL)之间存在连锁不平衡的假设。本研究旨在利用模拟数据评估基因组选择中的四种频繁主义方法(包括岭回归、最小绝对收缩和选择操作器(LASSO)、弹性网和基因组最佳线性无偏预测(GBLUP))和五种贝叶斯方法(包括贝叶斯岭回归(BRR)、贝叶斯A、贝叶斯LASSO、贝叶斯C和贝叶斯B)。根据统计显著性(p 值)(即 t 检验和 Mann-Whitney U 检验)和实际显著性(Cohen's d效应大小),成对评估了预测准确性之间的差异。模拟数据包括一个有 4 条染色体的基因组,每条染色体上有 1 个摩尔根,其中有 100 个随机分布的 QTL 和两种不同密度的均匀分布的 SNP(1000 和 2000),遗传率水平为 0.4。除 GBLUP 外,其他频数法的正则化参数 λ 均采用五倍交叉验证方法计算。在这两种情况下,在频繁主义方法中,岭回归和 GBLUP 的预测准确率最高。偏差最小和最大的分别是岭回归和 GBLUP。同样,在贝叶斯方法中,Bayes B 和 BRR 的预测准确率分别最高和最低。贝叶斯 LASSO 在两种情况下的偏差最小,BRR 和 Bayes B 分别在第一种和第二种情况下偏差最大。在两种场景下的所有研究方法中,准确度最高和最低的分别是贝叶斯 B 和 LASSO 以及 Elastic Net。不出所料,GBLUP 和 BRR 的性能相似度最高(第一种情况下,d = 0.007;第二种情况下,d = 0.003)。参数 t 检验和非参数 Mann-Whitney U 检验的结果相似。在第一种和第二种方案中,所研究方法在每种方案中的性能之间进行的 36 次 t 检验中,分别有 14 次 ( P . 001 ) 和 2 次 ( P . 05 ) 比较具有显著性,这表明随着预测因子数量的增加,不同方法的性能差异会减小。根据 Cohen's d 效应量可以证明这一点,因此,随着模型复杂度的增加,效应量并不很大。在基因组评估中使用频繁法之前,应通过交叉验证方法优化频繁法的正则化参数。
{"title":"Investigating the Performance of Frequentist and Bayesian Techniques in Genomic Evaluation.","authors":"Hamid Sahebalam, Mohsen Gholizadeh, Hasan Hafezian","doi":"10.1007/s10528-024-10842-1","DOIUrl":"https://doi.org/10.1007/s10528-024-10842-1","url":null,"abstract":"<p><p>The genomic evaluation process relies on the assumption of linkage disequilibrium between dense single-nucleotide polymorphism (SNP) markers at the genome level and quantitative trait loci (QTL). The present study was conducted with the aim of evaluating four frequentist methods including Ridge Regression, Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net, and Genomic Best Linear Unbiased Prediction (GBLUP) and five Bayesian methods including Bayes Ridge Regression (BRR), Bayes A, Bayesian LASSO, Bayes C, and Bayes B, in genomic selection using simulation data. The difference between prediction accuracy was assessed in pairs based on statistical significance (p-value) (i.e., t test and Mann-Whitney U test) and practical significance (Cohen's d effect size) For this purpose, the data were simulated based on two scenarios in different marker densities (4000 and 8000, in the whole genome). The simulated data included a genome with four chromosomes, 1 Morgan each, on which 100 randomly distributed QTL and two different densities of evenly distributed SNPs (1000 and 2000), at the heritability level of 0.4, was considered. For the frequentist methods except for GBLUP, the regularization parameter λ was calculated using a five-fold cross-validation approach. For both scenarios, among the frequentist methods, the highest prediction accuracy was observed by Ridge Regression and GBLUP. The lowest and the highest bias were shown by Ridge Regression and GBLUP, respectively. Also, among the Bayesian methods, Bayes B and BRR showed the highest and lowest prediction accuracy, respectively. The lowest bias in both scenarios was registered by Bayesian LASSO and the highest bias in the first and the second scenario were shown by BRR and Bayes B, respectively. Across all the studied methods in both scenarios, the highest and the lowest accuracy were shown by Bayes B and LASSO and Elastic Net, respectively. As expected, the greatest similarity in performance was observed between GBLUP and BRR ( <math><mrow><mi>d</mi> <mo>=</mo> <mn>0.007</mn></mrow> </math> , in the first scenario and <math><mrow><mi>d</mi> <mo>=</mo> <mn>0.003</mn></mrow> </math> , in the second scenario). The results obtained from parametric t and non-parametric Mann-Whitney U tests were similar. In the first and second scenario, out of 36 t test between the performance of the studied methods in each scenario, 14 ( <math><mrow><mi>P</mi> <mo><</mo> <mo>.</mo> <mn>001</mn></mrow> </math> ) and 2 ( <math><mrow><mi>P</mi> <mo><</mo> <mo>.</mo> <mn>05</mn></mrow> </math> ) comparisons were significant, respectively, which indicates that with the increase in the number of predictors, the difference in the performance of different methods decreases. This was proven based on the Cohen's d effect size, so that with the increase in the complexity of the model, the effect size was not seen as very large. The regularization parameters in frequentist methods should be optimized by cro","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}