Pub Date : 2024-11-22DOI: 10.1007/s10528-024-10955-7
Sandhya Tripathi, Chellapilla Bharadwaj, Maloti Hembram, Neeraj Kumar, Aravind K Konda, B Mondal, N C Gupta, G P Dixit, K R Soren
DNA polymorphisms QTL analysis in crops is a valuable tool to study the genetic basis of complex traits in agricultural plants. Candidate gene for abiotic (salinity) stress was spotted in the QTL region spanning CaLG03 and CaLG06 in our previous study. In continuity to the same, we have picked up QTL-associated Cicer arietinum RD22 (CaRD22) gene which belongs to BURP-domain-containing group of proteins (BURPs) and studied its expression patterns in salinity-tolerant (ICCV10) and susceptible (DCP92-3) genotypes of chickpea. Earlier, few systematic categorizations of BURPs including RD22 gene were reported, but no QTL driven functional prediction w.r.t salinity stress is known so far. Here, a couple of in silico approaches were utilized followed by lab validation to speculate the features of RD22 BURP gene particularly Ca_23903 in Chickpea. A complete set of fifteen BURP genes located on chromosome 2, 4, 5, 6, 7, 8, and Scaffold 653 were studied. Motif analysis, gene structure study, phylogenetic analysis, cis-element analysis in promoter regions, and co-expression network analysis were performed in addition to the quantitative expression analysis. Expression profiling of RD22 gene and other interacting gene partners were performed in root and shoot tissues exposed to salt stress (200 mM). The findings predict the behavior of BURP genes specifically RD22 subtype during salinity conditions emphasizing their implications in associated physiological processes.
{"title":"Delving into the BURP Super family: A Comprehensive QTL-Assisted Study on RD22 genes and its Role in Salinity Stress Tolerance in Chickpea.","authors":"Sandhya Tripathi, Chellapilla Bharadwaj, Maloti Hembram, Neeraj Kumar, Aravind K Konda, B Mondal, N C Gupta, G P Dixit, K R Soren","doi":"10.1007/s10528-024-10955-7","DOIUrl":"https://doi.org/10.1007/s10528-024-10955-7","url":null,"abstract":"<p><p>DNA polymorphisms QTL analysis in crops is a valuable tool to study the genetic basis of complex traits in agricultural plants. Candidate gene for abiotic (salinity) stress was spotted in the QTL region spanning CaLG03 and CaLG06 in our previous study. In continuity to the same, we have picked up QTL-associated Cicer arietinum RD22 (CaRD22) gene which belongs to BURP-domain-containing group of proteins (BURPs) and studied its expression patterns in salinity-tolerant (ICCV10) and susceptible (DCP92-3) genotypes of chickpea. Earlier, few systematic categorizations of BURPs including RD22 gene were reported, but no QTL driven functional prediction w.r.t salinity stress is known so far. Here, a couple of in silico approaches were utilized followed by lab validation to speculate the features of RD22 BURP gene particularly Ca_23903 in Chickpea. A complete set of fifteen BURP genes located on chromosome 2, 4, 5, 6, 7, 8, and Scaffold 653 were studied. Motif analysis, gene structure study, phylogenetic analysis, cis-element analysis in promoter regions, and co-expression network analysis were performed in addition to the quantitative expression analysis. Expression profiling of RD22 gene and other interacting gene partners were performed in root and shoot tissues exposed to salt stress (200 mM). The findings predict the behavior of BURP genes specifically RD22 subtype during salinity conditions emphasizing their implications in associated physiological processes.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ovarian cancer (OC) is a challenging cancer frequently detected at advanced stages. Regulatory B cells (Breg cells) can impair antitumor immunity in patients with OC. The imbalanced serum soluble CD40/CD40L pathway is associated with ovarian tumors. This study aimed to explore the mechanisms involving CD40/CD40L signaling through which Breg cells promote the progression of OC. Breg cells were isolated from peripheral blood samples of 20 patients with OC and 20 healthy controls and identified by flow cytometry. Then, the soluble CD40L concentration in peripheral blood serum of OC patients and healthy volunteers was measured by enzyme-linked immunosorbent assay (ELISA), and we found that the serum soluble CD40L level markedly increased and the proportion of Breg cells was positively correlated with CD40L level in peripheral blood of OC patients. Besides, Breg cells were isolated from spleens of female C57BL/6 WT mice and CD40-/- mice. Reverse transcription-quantitative polymerase chain reaction, cell counting kit-8 assays, colony formation assays, flow cytometry, Western blotting, wound healing assays, and Transwell assays were conducted to assess the in vitro effect of Breg cells and CD40. We found that Breg cells contributed to cell proliferation, migration, and invasion and suppressed cell apoptosis in OC via the CD40/CD40L pathway. Moreover, we established a xenograft tumor model in female nude BALB/c mice. Tumor size and weight were evaluated, and Western blotting and ELISA were conducted, and we found that Breg cells promoted tumor growth via CD40 signaling. In conclusion, this study demonstrates that Breg cells activated by the CD40/CD40L pathway promotes the aggressiveness of OC cells and tumor growth, indicating that targeting the CD40/CD40L pathway might represent a novel therapeutic option for OC treatment.
{"title":"The CD40/CD40L Pathway Regulates the Aggressiveness of Ovarian Cancer Cells via the Activation of Regulatory B Cells.","authors":"Shanshan Ma, Pengfei Chen, Suyang Guo, Liangliang Wang, Jialin Hu, Junjun Shao","doi":"10.1007/s10528-024-10945-9","DOIUrl":"https://doi.org/10.1007/s10528-024-10945-9","url":null,"abstract":"<p><p>Ovarian cancer (OC) is a challenging cancer frequently detected at advanced stages. Regulatory B cells (Breg cells) can impair antitumor immunity in patients with OC. The imbalanced serum soluble CD40/CD40L pathway is associated with ovarian tumors. This study aimed to explore the mechanisms involving CD40/CD40L signaling through which Breg cells promote the progression of OC. Breg cells were isolated from peripheral blood samples of 20 patients with OC and 20 healthy controls and identified by flow cytometry. Then, the soluble CD40L concentration in peripheral blood serum of OC patients and healthy volunteers was measured by enzyme-linked immunosorbent assay (ELISA), and we found that the serum soluble CD40L level markedly increased and the proportion of Breg cells was positively correlated with CD40L level in peripheral blood of OC patients. Besides, Breg cells were isolated from spleens of female C57BL/6 WT mice and CD40<sup>-/-</sup> mice. Reverse transcription-quantitative polymerase chain reaction, cell counting kit-8 assays, colony formation assays, flow cytometry, Western blotting, wound healing assays, and Transwell assays were conducted to assess the in vitro effect of Breg cells and CD40. We found that Breg cells contributed to cell proliferation, migration, and invasion and suppressed cell apoptosis in OC via the CD40/CD40L pathway. Moreover, we established a xenograft tumor model in female nude BALB/c mice. Tumor size and weight were evaluated, and Western blotting and ELISA were conducted, and we found that Breg cells promoted tumor growth via CD40 signaling. In conclusion, this study demonstrates that Breg cells activated by the CD40/CD40L pathway promotes the aggressiveness of OC cells and tumor growth, indicating that targeting the CD40/CD40L pathway might represent a novel therapeutic option for OC treatment.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bladder cancer (BC) is the most prevalent malignancy of the urinary tract and ranks among the most common tumors globally due to its high recurrence and fatality rates. Evidence suggests that long noncoding RNAs (lncRNAs) may serve as novel biomarkers for cancer therapy. The study aimed to investigate the functions of lncRNA fetal-lethal non-coding developmental regulatory RNA (FENDRR) in regulating malignant phenotypes of BC cell lines (T24 and RT-4) and the underlying mechanism. RT-qPCR was used to measure FENDRR, miR-18a-5p, and AF4/FMR2 family member 4 (AFF4) expression in BC tissue samples and cell lines. Subcellular fractionation assay and fluorescence in situ hybridization were conducted to determine the localization of FENDRR in T24 and RT-4 cell. EdU, sphere formation, Transwell invasion, and wound healing assays were carried out to detect the changes in BC cell proliferation, stemness, invasion, and migration in response to FENDRR or AFF4 dysregulation. Protein levels of epithelial-mesenchymal transition (EMT) markers were quantified by western blotting. The interaction between miR-18a-5p and FENDRR (or AFF4) was verified by luciferase reporter assays. Experimental results revealed that FENDRR expression was downregulated in BC tissue samples and cell lines, with primary localization in cytoplasm of T24 and RT-4 cells. FENDRR overexpression inhibited BC cell proliferation, migration, invasion, stemness, and EMT process. FENDRR was shown to bind with miR-18a-5p, and AFF4 is a direct target of miR-18a-5p. In addition, AFF4 knockdown partially counteracted the effect of FENDRR on malignant phenotypes of BC cells. In summary, FENDRR represses BC cell proliferation, migration, invasion, stemness, and EMT process by targeting the miR-18a-5p/AFF4 axis.
{"title":"FENDRR represses Bladder Cancer Cell Proliferation, Stemness, Migration, Invasion, and EMT Process by Targeting miR-18a-5p/AFF4 Axis.","authors":"Changyuan Dai, Qingwen Li, Lili Wang, Jiajun Zhang, Shuai Yang, Xiaole Zhang","doi":"10.1007/s10528-024-10944-w","DOIUrl":"https://doi.org/10.1007/s10528-024-10944-w","url":null,"abstract":"<p><p>Bladder cancer (BC) is the most prevalent malignancy of the urinary tract and ranks among the most common tumors globally due to its high recurrence and fatality rates. Evidence suggests that long noncoding RNAs (lncRNAs) may serve as novel biomarkers for cancer therapy. The study aimed to investigate the functions of lncRNA fetal-lethal non-coding developmental regulatory RNA (FENDRR) in regulating malignant phenotypes of BC cell lines (T24 and RT-4) and the underlying mechanism. RT-qPCR was used to measure FENDRR, miR-18a-5p, and AF4/FMR2 family member 4 (AFF4) expression in BC tissue samples and cell lines. Subcellular fractionation assay and fluorescence in situ hybridization were conducted to determine the localization of FENDRR in T24 and RT-4 cell. EdU, sphere formation, Transwell invasion, and wound healing assays were carried out to detect the changes in BC cell proliferation, stemness, invasion, and migration in response to FENDRR or AFF4 dysregulation. Protein levels of epithelial-mesenchymal transition (EMT) markers were quantified by western blotting. The interaction between miR-18a-5p and FENDRR (or AFF4) was verified by luciferase reporter assays. Experimental results revealed that FENDRR expression was downregulated in BC tissue samples and cell lines, with primary localization in cytoplasm of T24 and RT-4 cells. FENDRR overexpression inhibited BC cell proliferation, migration, invasion, stemness, and EMT process. FENDRR was shown to bind with miR-18a-5p, and AFF4 is a direct target of miR-18a-5p. In addition, AFF4 knockdown partially counteracted the effect of FENDRR on malignant phenotypes of BC cells. In summary, FENDRR represses BC cell proliferation, migration, invasion, stemness, and EMT process by targeting the miR-18a-5p/AFF4 axis.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Status epilepticus is a severe neurological emergency that often leads to long-term neuronal damage and functional impairment. Gastrodin is a compound widely used in traditional Chinese medicine with potential neuroprotective effects. This study aims to investigate the effects of GAS on neuroinflammation and injury caused by LiCl/pilocarpine-induced SE in young rats. SE in rats was induced using the LiCl/pilocarpine model. Morris water maze and Y-maze experiments were used for the behavioral test of rats. Enzyme-linked immunosorbent assay was utilized to quantify the levels of interleukin (IL)-1β, IL-6, and IL-8 levels, and biochemical kits assessed the levels of malondialdehyde, superoxide dismutase and glutathione peroxidase (GSH-px) in hippocampus tissues. Additionally, Western blot analysis was performed to evaluate the protein expression levels of p-p65, p65, p-IκBα and IκBα, which are key factors of the nuclear factor kappa B (NF-κB) signaling pathway. Compared to the control group, the SE group rats exhibited reduced learning and memory abilities. Markedly elevated levels of inflammatory factors (IL-1β, IL-6, and IL-8). The expression levels of p-p65 and p-IκBα were significantly upregulated, while IκBα levels were notably decreased. Following GAS treatment, the latency of seizure onset was significantly shortened, the incidence of SE was significantly reduced and the severity of nerve injury was alleviated. Additionally, both the inflammation levels and the oxidative stress were significantly decreased, primarily through inhibition NF-κB signaling pathway. These findings suggest that GAS may be a potential therapeutic agent for treating SE.
癫痫状态是一种严重的神经系统急症,通常会导致长期的神经元损伤和功能障碍。天麻素是一种广泛应用于传统中药的化合物,具有潜在的神经保护作用。本研究旨在探讨天麻素对氯化锂/匹罗卡品诱导的幼鼠 SE 所引起的神经炎症和损伤的影响。研究采用氯化锂/匹罗卡品模型诱导大鼠SE。大鼠行为测试采用莫里斯水迷宫和Y迷宫实验。酶联免疫吸附试验用于定量检测白细胞介素(IL)-1β、IL-6和IL-8的水平,生化试剂盒用于评估海马组织中丙二醛、超氧化物歧化酶和谷胱甘肽过氧化物酶(GSH-px)的水平。此外,还进行了 Western 印迹分析,以评估核因子卡巴 B(NF-κB)信号通路的关键因子 p-p65、p65、p-IκBα 和 IκBα 的蛋白表达水平。与对照组相比,SE 组大鼠的学习和记忆能力下降。炎症因子(IL-1β、IL-6 和 IL-8)水平明显升高。p-p65和p-IκBα的表达水平显著上调,而IκBα的水平则明显下降。经 GAS 治疗后,癫痫发作的潜伏期明显缩短,SE 的发生率明显降低,神经损伤的严重程度减轻。此外,主要通过抑制 NF-κB 信号通路,炎症水平和氧化应激均明显降低。这些研究结果表明,GAS 可能是治疗 SE 的一种潜在疗法。
{"title":"Gastrodin Attenuates Neuroinflammation and Injury in Young Rats with LiCl/Pilocarpine-Induced Status Epilepticus.","authors":"Jie Dai, Hai-Lin Shen, Jia Li, Yong Zhou, Zheng-Xie Dong, Xiang-Yang Zhu","doi":"10.1007/s10528-024-10971-7","DOIUrl":"https://doi.org/10.1007/s10528-024-10971-7","url":null,"abstract":"<p><p>Status epilepticus is a severe neurological emergency that often leads to long-term neuronal damage and functional impairment. Gastrodin is a compound widely used in traditional Chinese medicine with potential neuroprotective effects. This study aims to investigate the effects of GAS on neuroinflammation and injury caused by LiCl/pilocarpine-induced SE in young rats. SE in rats was induced using the LiCl/pilocarpine model. Morris water maze and Y-maze experiments were used for the behavioral test of rats. Enzyme-linked immunosorbent assay was utilized to quantify the levels of interleukin (IL)-1β, IL-6, and IL-8 levels, and biochemical kits assessed the levels of malondialdehyde, superoxide dismutase and glutathione peroxidase (GSH-px) in hippocampus tissues. Additionally, Western blot analysis was performed to evaluate the protein expression levels of p-p65, p65, p-IκBα and IκBα, which are key factors of the nuclear factor kappa B (NF-κB) signaling pathway. Compared to the control group, the SE group rats exhibited reduced learning and memory abilities. Markedly elevated levels of inflammatory factors (IL-1β, IL-6, and IL-8). The expression levels of p-p65 and p-IκBα were significantly upregulated, while IκBα levels were notably decreased. Following GAS treatment, the latency of seizure onset was significantly shortened, the incidence of SE was significantly reduced and the severity of nerve injury was alleviated. Additionally, both the inflammation levels and the oxidative stress were significantly decreased, primarily through inhibition NF-κB signaling pathway. These findings suggest that GAS may be a potential therapeutic agent for treating SE.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cervical cancer (CC) remains a real public health problem in low- and middle-income countries, where technical resources and competent personnel are insufficient. Persistent cervix infection by high-risk human papillomavirus (Hr-HPV) is the main cause of CC development. In the current study, we examined the distribution of Hr-HPV in the general healthy Malian population using cervicovaginal self- sampling. A total of 354 women were recruited, with a median age of 34 ± 11.37 years, IQR (27-43). We found that 100% of participants agreed to self-sample at the health center. For result announcement 99.2% expressed their preference to be contacted by cell phone. Furthermore, 100% of study participants showed their willingness to undergo confirmatory CC test in case of Hr-HPV test proved positive, and to receive treatment in the event of the presence of cervical lesions. The overall prevalence of Hr-HPV was 21.2% (95% CI: 17-25.8). HPV31/35/33/52/58 with 11.9% (95% CI: 8.7-15.7) and HPV39/68/56/66 with 5.9% (95% CI: 3.7-8.9) were the most common Hr-HPV subtypes. We noted that Hr-HPV genotypes were more prevalent among women under 25 years, 36.1% (N = 61). In addition, the distribution of Hr-HPV was statistically associated with age, W = 12,374, p = 0.015. Our data showed that 25.3% (N = 19) of Hr-HPV-positive women were tested positive by VIA/VILI. Among the 19 VIA/VILI-positive women, histological examination showed that 4 were CIN1, 4 were CIN2, and 2 were CIN3 grades. In addition, the median age of participants with CIN2 and CIN3 was statistically higher than the median of those with CIN1 grade, 25 years IQR (21-26.75) versus 50 years, IQR (40.25-55), W = 24, p = 0.009. In sum, end-users are very satisfied with the cervicovaginal self-sampling device for identifying HR-HPV genotypes as part of CC screening. In addition, it enables hospital practitioners to take the necessary action after triaging women according to their HR-HPV genotype.
{"title":"Distribution of High-Risk Human Papillomavirus in Self-Collected Cervicalvaginal Samples from the General Malian Population.","authors":"Bakarou Kamate, Yaya Kassogue, Brehima Diakite, Ban Traore, Kadidiatou Cisse, Fousseyni Diarra, Oumar Kassogue, Modibo Diarra, Aissata Coulibaly, Bourama Coulibaly, Aminata Maiga, Madani Ly, Hama Diallo, Sidi Boula Sissoko, Adama Seydou Sissoko, Cheick Bougadari Traore, Ibrahima Teguete, Sekou Bah, Guimogo Dolo, Demirkan Besim Gursel, Jane Holl, Lifang Hou, Mamoudou Maiga","doi":"10.1007/s10528-024-10949-5","DOIUrl":"https://doi.org/10.1007/s10528-024-10949-5","url":null,"abstract":"<p><p>Cervical cancer (CC) remains a real public health problem in low- and middle-income countries, where technical resources and competent personnel are insufficient. Persistent cervix infection by high-risk human papillomavirus (Hr-HPV) is the main cause of CC development. In the current study, we examined the distribution of Hr-HPV in the general healthy Malian population using cervicovaginal self- sampling. A total of 354 women were recruited, with a median age of 34 ± 11.37 years, IQR (27-43). We found that 100% of participants agreed to self-sample at the health center. For result announcement 99.2% expressed their preference to be contacted by cell phone. Furthermore, 100% of study participants showed their willingness to undergo confirmatory CC test in case of Hr-HPV test proved positive, and to receive treatment in the event of the presence of cervical lesions. The overall prevalence of Hr-HPV was 21.2% (95% CI: 17-25.8). HPV31/35/33/52/58 with 11.9% (95% CI: 8.7-15.7) and HPV39/68/56/66 with 5.9% (95% CI: 3.7-8.9) were the most common Hr-HPV subtypes. We noted that Hr-HPV genotypes were more prevalent among women under 25 years, 36.1% (N = 61). In addition, the distribution of Hr-HPV was statistically associated with age, W = 12,374, p = 0.015. Our data showed that 25.3% (N = 19) of Hr-HPV-positive women were tested positive by VIA/VILI. Among the 19 VIA/VILI-positive women, histological examination showed that 4 were CIN1, 4 were CIN2, and 2 were CIN3 grades. In addition, the median age of participants with CIN2 and CIN3 was statistically higher than the median of those with CIN1 grade, 25 years IQR (21-26.75) versus 50 years, IQR (40.25-55), W = 24, p = 0.009. In sum, end-users are very satisfied with the cervicovaginal self-sampling device for identifying HR-HPV genotypes as part of CC screening. In addition, it enables hospital practitioners to take the necessary action after triaging women according to their HR-HPV genotype.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1007/s10528-024-10953-9
Kimia Mirzakhani, Mehdi Heidari Horestani, Julia Kallenbach, Golnaz Atri Roozbahani, Aria Baniahmad
Clinical trials for prostate cancer (PCa) patients have implemented the bipolar androgen therapy (BAT) that includes the treatment with supraphysiological androgen level (SAL). SAL treatment induces cellular senescence in tumor samples of PCa patients and in various PCa cell lines, including castration-resistant PCa (CRPC), and is associated with enhanced phospho-AKT levels. Using an AKT inhibitor (AKTi), the SAL-mediated cell senescence is inhibited. Here, we show by RNA-seq analyses of two human PCa cell lines, that annexin A2 (ANXA2) expression is induced by SAL and repressed by co-treatment with AKTi. Higher ANXA2 expression is associated with better survival of PCa patients and suggests that ANXA2 is part of SAL-mediated tumor suppressive activity. ChIP-seq revealed that AR is recruited to the intronic regions of ANXA2 gene suggesting that ANXA2 is a novel direct AR target gene. Knockdown of ANXA2 shows that SAL-induced cellular senescence is mediated by ANXA2 and enhances the levels of phospho-AKT indicating an interaction between the AR, ANXA2 and AKT. Notably, we found that the level of heat shock protein HSP27, known to interact with ANXA2, is associated with cellular senescence. HSP27 level is induced by SAL but the induction is blunted by knockdown of ANXA2 suggesting a novel ANXA2-HSP27 pathway in PCa. This was confirmed using an HSP27 inhibitor that reduced the SAL-induced cellular senescence levels suggesting that ANXA2 upregulates HSP27 to mediate AR-signaling in SAL-induced cellular senescence. Thus, the data indicate ANXA2-HSP27 cross-talk as novel factors in the signaling by the AR-AKT pathway to mediate cellular senescence.
{"title":"The Novel Direct AR Target Gene Annexin A2 Mediates Androgen-Induced Cellular Senescence in Prostate Cancer Cells.","authors":"Kimia Mirzakhani, Mehdi Heidari Horestani, Julia Kallenbach, Golnaz Atri Roozbahani, Aria Baniahmad","doi":"10.1007/s10528-024-10953-9","DOIUrl":"https://doi.org/10.1007/s10528-024-10953-9","url":null,"abstract":"<p><p>Clinical trials for prostate cancer (PCa) patients have implemented the bipolar androgen therapy (BAT) that includes the treatment with supraphysiological androgen level (SAL). SAL treatment induces cellular senescence in tumor samples of PCa patients and in various PCa cell lines, including castration-resistant PCa (CRPC), and is associated with enhanced phospho-AKT levels. Using an AKT inhibitor (AKTi), the SAL-mediated cell senescence is inhibited. Here, we show by RNA-seq analyses of two human PCa cell lines, that annexin A2 (ANXA2) expression is induced by SAL and repressed by co-treatment with AKTi. Higher ANXA2 expression is associated with better survival of PCa patients and suggests that ANXA2 is part of SAL-mediated tumor suppressive activity. ChIP-seq revealed that AR is recruited to the intronic regions of ANXA2 gene suggesting that ANXA2 is a novel direct AR target gene. Knockdown of ANXA2 shows that SAL-induced cellular senescence is mediated by ANXA2 and enhances the levels of phospho-AKT indicating an interaction between the AR, ANXA2 and AKT. Notably, we found that the level of heat shock protein HSP27, known to interact with ANXA2, is associated with cellular senescence. HSP27 level is induced by SAL but the induction is blunted by knockdown of ANXA2 suggesting a novel ANXA2-HSP27 pathway in PCa. This was confirmed using an HSP27 inhibitor that reduced the SAL-induced cellular senescence levels suggesting that ANXA2 upregulates HSP27 to mediate AR-signaling in SAL-induced cellular senescence. Thus, the data indicate ANXA2-HSP27 cross-talk as novel factors in the signaling by the AR-AKT pathway to mediate cellular senescence.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1007/s10528-024-10970-8
Rashid Mir, Faisal H Altemani, Naseh A Algehainy, Mohammad A Alanazi, Imadeldin Elfaki, Badr A Alsayed, Mohammad Muzaffar Mir, Syed Khalid Mustafa, Mamdoh S Moawadh, Faris J Tayeb, Jaber Alfaifi, Sael M Alatawi, Mohammed Saad Alhiwety, Mohammad Fahad Ullah
<p><p>Covid-19 caused by SARS-CoV-2 virus has emerged as an immense burden and an unparalleled global health challenge in recorded human history. The clinical characteristics and risk factors of COVID-19 exhibit considerable variability, leading to a spectrum of clinical severity. Moreover, the likelihood of exposure to the virus may differ based on comorbidity status as comorbid illnesses have mechanisms that can considerably increase mortality by reducing the body's ability to withstand injury. The mammalian target of rapamycin (mTOR) pathway is essential for orchestrating innate immune cell defense, including cytokine production and is dysregulated in severe Coronavirus Disease 2019 (COVID-19) individuals. Through genome-wide, association studies, numerous genetic variants in the human host have been identified that have a significant impact on the immune response to SARS-CoV-2. To identify potentially significant genetic variants in Covid-19 patients that could affect the risk, severity, and clinical outcome of the infection, this study has used whole-exome sequencing (WES) on the 16 COVID-19 patients with varying comorbidities and severity of the disease including fatal outcomes. Among them, 8 patients made a full recovery and were discharged, while 8 patients unfortunately did not survive due to the severity of the illness and majority of them were males. The study identified 10,204 variants in the patients. From 1120 variants, which were chosen for novel variant analysis using mutation, function prediction tools to identify deleterious variants that could affect normal gene function, 116 variants of 57 genes were found to be deleterious. These variants were further classified as likely pathogenic and variants of uncertain significance. The data showed that among the likely pathogenic variants five genes were identified in connection to immune response whereas two were related to respiratory system. The common variants associated with the covid-19 phenotype showed the top 10 significant genes identified in this study such as ERCC2, FBXO5, HTR3D, FAIM, DNAH17, MTOR, IGHMBP2, ZNF530, QSER1, and FOXRED2 with variant rs1057079 of the MTOR gene representing the highest odds ratio (1.7, p = 8.7e-04). The mammalian target of rapamycin (mTOR) pathway variant rs1057079 was reported with high odds ratio, may orchestrate innate immune cell defense, including cytokine production, and is dysregulated. This study concluded that the mTOR signaling gene variant (rs1057079) is associated with different degrees of covid-19 severity and is essential for orchestrating innate immune cell defense including cytokine production. Inhibiting mTOR and its corresponding deleterious immune responses with medicinal approaches may provide a novel avenue for treating severe COVID-19 illness. Besides the PPI network exhibited a significantly high local clustering coefficient of 0.424 (p = 0.000536), suggesting the presence of tightly knit functional modules. These findings
{"title":"Identification of Novel Genomic Variants in COVID-19 Patients Using Whole-Exome Sequencing: Exploring the Plausible Targets of Functional Genomics.","authors":"Rashid Mir, Faisal H Altemani, Naseh A Algehainy, Mohammad A Alanazi, Imadeldin Elfaki, Badr A Alsayed, Mohammad Muzaffar Mir, Syed Khalid Mustafa, Mamdoh S Moawadh, Faris J Tayeb, Jaber Alfaifi, Sael M Alatawi, Mohammed Saad Alhiwety, Mohammad Fahad Ullah","doi":"10.1007/s10528-024-10970-8","DOIUrl":"10.1007/s10528-024-10970-8","url":null,"abstract":"<p><p>Covid-19 caused by SARS-CoV-2 virus has emerged as an immense burden and an unparalleled global health challenge in recorded human history. The clinical characteristics and risk factors of COVID-19 exhibit considerable variability, leading to a spectrum of clinical severity. Moreover, the likelihood of exposure to the virus may differ based on comorbidity status as comorbid illnesses have mechanisms that can considerably increase mortality by reducing the body's ability to withstand injury. The mammalian target of rapamycin (mTOR) pathway is essential for orchestrating innate immune cell defense, including cytokine production and is dysregulated in severe Coronavirus Disease 2019 (COVID-19) individuals. Through genome-wide, association studies, numerous genetic variants in the human host have been identified that have a significant impact on the immune response to SARS-CoV-2. To identify potentially significant genetic variants in Covid-19 patients that could affect the risk, severity, and clinical outcome of the infection, this study has used whole-exome sequencing (WES) on the 16 COVID-19 patients with varying comorbidities and severity of the disease including fatal outcomes. Among them, 8 patients made a full recovery and were discharged, while 8 patients unfortunately did not survive due to the severity of the illness and majority of them were males. The study identified 10,204 variants in the patients. From 1120 variants, which were chosen for novel variant analysis using mutation, function prediction tools to identify deleterious variants that could affect normal gene function, 116 variants of 57 genes were found to be deleterious. These variants were further classified as likely pathogenic and variants of uncertain significance. The data showed that among the likely pathogenic variants five genes were identified in connection to immune response whereas two were related to respiratory system. The common variants associated with the covid-19 phenotype showed the top 10 significant genes identified in this study such as ERCC2, FBXO5, HTR3D, FAIM, DNAH17, MTOR, IGHMBP2, ZNF530, QSER1, and FOXRED2 with variant rs1057079 of the MTOR gene representing the highest odds ratio (1.7, p = 8.7e-04). The mammalian target of rapamycin (mTOR) pathway variant rs1057079 was reported with high odds ratio, may orchestrate innate immune cell defense, including cytokine production, and is dysregulated. This study concluded that the mTOR signaling gene variant (rs1057079) is associated with different degrees of covid-19 severity and is essential for orchestrating innate immune cell defense including cytokine production. Inhibiting mTOR and its corresponding deleterious immune responses with medicinal approaches may provide a novel avenue for treating severe COVID-19 illness. Besides the PPI network exhibited a significantly high local clustering coefficient of 0.424 (p = 0.000536), suggesting the presence of tightly knit functional modules. These findings","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1007/s10528-024-10972-6
Visalakshi Chandra, M N Sheela, V Ravi, Bishal Gurung, Senthil Alias Sankar, J Sreekumar
The study aimed to estimate the genetic parameters and predict the genotypic values of postharvest physiological deterioration and root characteristics in cassava (Manihot esculentaCrantz) using restricted maximum likelihood (REML) and the best linear unbiased prediction (BLUP). A total of 76 cassava accessions were evaluated over two growing seasons. The evaluated traits included postharvest physiological deterioration response (PPD), root length (RL), root diameter (RD), root weight (RW), dry matter content (DMC), total starch content (TS) and total sugar content (TSU). All the traits had a higher phenotypic variance component than genetic or environmental variance, with genotypic variance making up a larger portion of the total phenotypic variance. Heritability estimates ranged from low to high, with high heritability values being recorded for dry matter content, PPD, and root diameter. The study discovered high genotypic coefficients of variation (CVg) for PPD, root weight and diameter, indicating strong genotypic variability beneficial for selection. As larger genetic effects than non-genetic effects lead to increased selection gains, the highest CVr values for dry matter content and PPD suggest the biggest probability of selection gain. Postharvest Physiological deterioration (PPD) had the highest genetic advance, indicating significant gain in the following generation. Thirty eight genotypes were selected as the most promising based on BLUP index, promoting improvement and genetic gain in several traits. The genotypes selected can be included in cassava breeding programs for PPD tolerance and other tuber traits.
{"title":"Genetic Parameters and Prediction of Genotypic Values for Postharvest Physiological Deterioration Tolerance and Root Traits in Cassava using REML/BLUP.","authors":"Visalakshi Chandra, M N Sheela, V Ravi, Bishal Gurung, Senthil Alias Sankar, J Sreekumar","doi":"10.1007/s10528-024-10972-6","DOIUrl":"https://doi.org/10.1007/s10528-024-10972-6","url":null,"abstract":"<p><p>The study aimed to estimate the genetic parameters and predict the genotypic values of postharvest physiological deterioration and root characteristics in cassava (Manihot esculentaCrantz) using restricted maximum likelihood (REML) and the best linear unbiased prediction (BLUP). A total of 76 cassava accessions were evaluated over two growing seasons. The evaluated traits included postharvest physiological deterioration response (PPD), root length (RL), root diameter (RD), root weight (RW), dry matter content (DMC), total starch content (TS) and total sugar content (TSU). All the traits had a higher phenotypic variance component than genetic or environmental variance, with genotypic variance making up a larger portion of the total phenotypic variance. Heritability estimates ranged from low to high, with high heritability values being recorded for dry matter content, PPD, and root diameter. The study discovered high genotypic coefficients of variation (CVg) for PPD, root weight and diameter, indicating strong genotypic variability beneficial for selection. As larger genetic effects than non-genetic effects lead to increased selection gains, the highest CVr values for dry matter content and PPD suggest the biggest probability of selection gain. Postharvest Physiological deterioration (PPD) had the highest genetic advance, indicating significant gain in the following generation. Thirty eight genotypes were selected as the most promising based on BLUP index, promoting improvement and genetic gain in several traits. The genotypes selected can be included in cassava breeding programs for PPD tolerance and other tuber traits.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Owing to the unique geography and the isolated environment, Guanling cattle, which is one of five local cattle breeds in Guizhou, China, has developed unique characteristics. The number of pure Guanling cattle decreased markedly because of the hybridization with foreign breeds. In the present study, the maternal genetic diversity of 58 Guanling bulls was assessed by whole mitochondrial genome sequencing. Genetic polymorphisms and phylogenetic analyses classified Guanling cattle into two main lineages, where 43.10% of Guanling cattle were closely related to the foreign breeds and 56.90% displayed distinct features in mitochondrial genomic diversity. PCA analysis further separated Guanling cattle into four populations, one of which was clustered with the foreign breeds. The result of the structure plot and genetic polymorphisms revealed high genetic diversity within two populations that have a long genetic distance from the foreign breeds. Overall, our findings suggest that the whole mitochondrial genome sequencing analysis is a useful and reliable tool to study maternal genetic diversity and to identify the pure population of Guanling cattle. The results will be beneficial to the breeding management of Guanling cattle.
{"title":"Maternal Genetic Diversity Analysis of Guanling Cattle by Mitochondrial Genome Sequencing.","authors":"Longxin Xu, Xin Wang, Hua Wang, Junda Wu, Wenzhang Zhou, Mengmeng Ni, Kaikai Zhang, Yuanfeng Zhao, Ruiyi Lin","doi":"10.1007/s10528-024-10973-5","DOIUrl":"https://doi.org/10.1007/s10528-024-10973-5","url":null,"abstract":"<p><p>Owing to the unique geography and the isolated environment, Guanling cattle, which is one of five local cattle breeds in Guizhou, China, has developed unique characteristics. The number of pure Guanling cattle decreased markedly because of the hybridization with foreign breeds. In the present study, the maternal genetic diversity of 58 Guanling bulls was assessed by whole mitochondrial genome sequencing. Genetic polymorphisms and phylogenetic analyses classified Guanling cattle into two main lineages, where 43.10% of Guanling cattle were closely related to the foreign breeds and 56.90% displayed distinct features in mitochondrial genomic diversity. PCA analysis further separated Guanling cattle into four populations, one of which was clustered with the foreign breeds. The result of the structure plot and genetic polymorphisms revealed high genetic diversity within two populations that have a long genetic distance from the foreign breeds. Overall, our findings suggest that the whole mitochondrial genome sequencing analysis is a useful and reliable tool to study maternal genetic diversity and to identify the pure population of Guanling cattle. The results will be beneficial to the breeding management of Guanling cattle.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1007/s10528-024-10964-6
Yan Yu, Zaijun Yang, Yichao Wu, Yuanyuan Jiang, Jinqiu Liao, Ruiwu Yang, Li Zhang
Tanshinones are abietane diterpenoid quinone compounds with diverse biological activities and pharmacological effects found in Salvia miltiorrhiza. Leveraging the high-density genetic map established through our prior research endeavors, we conducted a quantitative trait locus (QTL) analysis pertaining to the concentrations of three major tanshinone components, cryptotanshinone, tanshinone I, and tanshinone IIA, in S. miltiorrhiza. This extensive investigation was conducted across three distinct planting environments, ultimately identifying a comprehensive repertoire of 27 discernible QTLs. These QTLs were mapped onto four distinct linkage groups (LG), namely LG1, LG5, LG6, and LG7, which explained 3.11%-37.85% phenotypic variation. Candidate genes were projected based on consistent QTLs detected for each active ingredient in three environments. Nineteen putative candidate genes involved in the regulation of tanshinone biosynthesis were identified. These genes participate in primary metabolic and multiple branching terpenoid biosynthesis pathways, forming a complex regulatory network. Our findings have the potential to offer novel insights into advancing the understanding of the regulatory mechanisms governing tanshinone biosynthesis. Furthermore, these results establish crucial groundwork for gene discovery, marker-assisted selection breeding, and map-based cloning of functional genes associated with tanshinone content in S. miltiorrhiza.
{"title":"Quantitative Trait Locus Mapping and Candidate Gene Analysis of the Contents of Three Tanshinone Components in Salvia miltiorrhiza Bunge.","authors":"Yan Yu, Zaijun Yang, Yichao Wu, Yuanyuan Jiang, Jinqiu Liao, Ruiwu Yang, Li Zhang","doi":"10.1007/s10528-024-10964-6","DOIUrl":"https://doi.org/10.1007/s10528-024-10964-6","url":null,"abstract":"<p><p>Tanshinones are abietane diterpenoid quinone compounds with diverse biological activities and pharmacological effects found in Salvia miltiorrhiza. Leveraging the high-density genetic map established through our prior research endeavors, we conducted a quantitative trait locus (QTL) analysis pertaining to the concentrations of three major tanshinone components, cryptotanshinone, tanshinone I, and tanshinone IIA, in S. miltiorrhiza. This extensive investigation was conducted across three distinct planting environments, ultimately identifying a comprehensive repertoire of 27 discernible QTLs. These QTLs were mapped onto four distinct linkage groups (LG), namely LG1, LG5, LG6, and LG7, which explained 3.11%-37.85% phenotypic variation. Candidate genes were projected based on consistent QTLs detected for each active ingredient in three environments. Nineteen putative candidate genes involved in the regulation of tanshinone biosynthesis were identified. These genes participate in primary metabolic and multiple branching terpenoid biosynthesis pathways, forming a complex regulatory network. Our findings have the potential to offer novel insights into advancing the understanding of the regulatory mechanisms governing tanshinone biosynthesis. Furthermore, these results establish crucial groundwork for gene discovery, marker-assisted selection breeding, and map-based cloning of functional genes associated with tanshinone content in S. miltiorrhiza.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}