Pub Date : 2024-07-04DOI: 10.1134/S0006297924060099
Elena V. Koroleva, Anastasiya L. Ermolinskaya, Zhanna V. Ignatovich, Yury V. Kornoushenko, Alesia V. Panibrat, Vladimir I. Potkin, Alexander M. Andrianov
Despite significant progress made over the past two decades in the treatment of chronic myeloid leukemia (CML), there is still an unmet need for effective and safe agents to treat patients with resistance and intolerance to the drugs used in clinic. In this work, we designed 2-arylaminopyrimidine amides of isoxazole-3-carboxylic acid, assessed in silico their inhibitory potential against Bcr-Abl tyrosine kinase, and determined their antitumor activity in K562 (CML), HL-60 (acute promyelocytic leukemia), and HeLa (cervical cancer) cells. Based on the analysis of computational and experimental data, three compounds with the antitumor activity against K562 and HL-60 cells were identified. The lead compound efficiently suppressed the growth of these cells, as evidenced by the low IC50 values of 2.8 ± 0.8 μM (K562) and 3.5 ± 0.2 μM (HL-60). The obtained compounds represent promising basic structures for the design of novel, effective, and safe anticancer drugs able to inhibit the catalytic activity of Bcr-Abl kinase by blocking the ATP-binding site of the enzyme.
{"title":"Design, in silico Evaluation, and Determination of Antitumor Activity of Potential Inhibitors Against Protein Kinases: Application to BCR-ABL Tyrosine Kinase","authors":"Elena V. Koroleva, Anastasiya L. Ermolinskaya, Zhanna V. Ignatovich, Yury V. Kornoushenko, Alesia V. Panibrat, Vladimir I. Potkin, Alexander M. Andrianov","doi":"10.1134/S0006297924060099","DOIUrl":"10.1134/S0006297924060099","url":null,"abstract":"<p>Despite significant progress made over the past two decades in the treatment of chronic myeloid leukemia (CML), there is still an unmet need for effective and safe agents to treat patients with resistance and intolerance to the drugs used in clinic. In this work, we designed 2-arylaminopyrimidine amides of isoxazole-3-carboxylic acid, assessed <i>in silico</i> their inhibitory potential against Bcr-Abl tyrosine kinase, and determined their antitumor activity in K562 (CML), HL-60 (acute promyelocytic leukemia), and HeLa (cervical cancer) cells. Based on the analysis of computational and experimental data, three compounds with the antitumor activity against K562 and HL-60 cells were identified. The lead compound efficiently suppressed the growth of these cells, as evidenced by the low IC<sub>50</sub> values of 2.8 ± 0.8 μM (K562) and 3.5 ± 0.2 μM (HL-60). The obtained compounds represent promising basic structures for the design of novel, effective, and safe anticancer drugs able to inhibit the catalytic activity of Bcr-Abl kinase by blocking the ATP-binding site of the enzyme.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 6","pages":"1094 - 1108"},"PeriodicalIF":2.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1134/S000629792406004X
Ismail Alsalloum, Vitalii S. Moskaliuk, Ilya A. Rakhov, Daria V. Bazovkina, Alexander V. Kulikov
Tyrosine hydroxylase (TH) catalyzes hydroxylation of L-tyrosine to L-3,4-dihydroxyphenylalanine, the initial and rate-limiting step in the synthesis of dopamine, noradrenaline, and adrenaline. Mutations in the human TH gene are associated with hereditary motor disorders. The common C886T mutation identified in the mouse Th gene results in the R278H substitution in the enzyme molecule. We investigated the impact of this mutation on the TH activity in the mouse midbrain. The TH activity in the midbrain of Mus musculus castaneus (CAST) mice homozygous for the 886C allele was higher compared to C57BL/6 and DBA/2 mice homozygous for the 886T allele. Notably, this difference in the enzyme activity was not associated with changes in the Th gene mRNA levels and TH protein content. Analysis of the TH activity in the midbrain in mice from the F2 population obtained by crossbreeding of C57BL/6 and CAST mice revealed that the 886C allele is associated with a high TH activity. Moreover, this allele showed complete dominance over the 886T allele. However, the C886T mutation did not affect the levels of TH protein in the midbrain. These findings demonstrate that the C886T mutation is a major genetic factor determining the activity of TH in the midbrain of common laboratory mouse strains. Moreover, it represents the first common spontaneous mutation in the mouse Th gene whose influence on the enzyme activity has been demonstrated. These results will help to understand the role of TH in the development of adaptive and pathological behavior, elucidate molecular mechanisms regulating the activity of TH, and explore pharmacological agents for modulating its function.
{"title":"The C886T Mutation in the Th Gene Reduces the Activity of Tyrosine Hydroxylase in the Mouse Brain","authors":"Ismail Alsalloum, Vitalii S. Moskaliuk, Ilya A. Rakhov, Daria V. Bazovkina, Alexander V. Kulikov","doi":"10.1134/S000629792406004X","DOIUrl":"10.1134/S000629792406004X","url":null,"abstract":"<p>Tyrosine hydroxylase (TH) catalyzes hydroxylation of L-tyrosine to L-3,4-dihydroxyphenylalanine, the initial and rate-limiting step in the synthesis of dopamine, noradrenaline, and adrenaline. Mutations in the human <i>TH</i> gene are associated with hereditary motor disorders. The common C886T mutation identified in the mouse <i>Th</i> gene results in the R278H substitution in the enzyme molecule. We investigated the impact of this mutation on the TH activity in the mouse midbrain. The TH activity in the midbrain of <i>Mus musculus castaneus</i> (CAST) mice homozygous for the 886C allele was higher compared to C57BL/6 and DBA/2 mice homozygous for the 886T allele. Notably, this difference in the enzyme activity was not associated with changes in the <i>Th</i> gene mRNA levels and TH protein content. Analysis of the TH activity in the midbrain in mice from the F2 population obtained by crossbreeding of C57BL/6 and CAST mice revealed that the 886C allele is associated with a high TH activity. Moreover, this allele showed complete dominance over the 886T allele. However, the C886T mutation did not affect the levels of TH protein in the midbrain. These findings demonstrate that the C886T mutation is a major genetic factor determining the activity of TH in the midbrain of common laboratory mouse strains. Moreover, it represents the first common spontaneous mutation in the mouse <i>Th</i> gene whose influence on the enzyme activity has been demonstrated. These results will help to understand the role of TH in the development of adaptive and pathological behavior, elucidate molecular mechanisms regulating the activity of TH, and explore pharmacological agents for modulating its function.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 6","pages":"1024 - 1030"},"PeriodicalIF":2.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S000629792406004X.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1134/S0006297924060117
Andrey N. Anisenko, Anastasiia A. Nefedova, Igor I. Kireev, Marina B. Gottikh
Integration of the DNA copy of HIV-1 genome into the cellular genome results in series of damages, repair of which is critical for successful replication of the virus. We have previously demonstrated that the ATM and DNA-PK kinases, normally responsible for repairing double-strand breaks in the cellular DNA, are required to initiate the HIV-1 DNA postintegrational repair, even though integration does not result in DNA double-strand breaks. In this study, we analyzed changes in phosphorylation status of ATM (pSer1981), DNA-PK (pSer2056), and their related kinase ATR (pSer428), as well as their targets: Chk1 (pSer345), Chk2 (pThr68), H2AX (pSer139), and p53 (pSer15) during the HIV-1 DNA postintegrational repair. We have shown that ATM and DNA-PK, but not ATR, undergo autophosphorylation during postintegrational DNA repair and phosphorylate their target proteins Chk2 and H2AX. These data indicate common signaling mechanisms between the double-strand DNA break repair and postintegrational repair of HIV-1 DNA.
摘要HIV-1基因组的DNA拷贝整合到细胞基因组中会导致一系列损伤,修复这些损伤对病毒的成功复制至关重要。我们以前曾证实,通常负责修复细胞 DNA 双链断裂的 ATM 激酶和 DNA-PK 激酶需要启动 HIV-1 DNA 整合后修复,尽管整合不会导致 DNA 双链断裂。在这项研究中,我们分析了 ATM(pSer1981)、DNA-PK(pSer2056)及其相关激酶 ATR(pSer428)的磷酸化状态变化以及它们的靶标:Chk1(pSer345)、Chk2(pThr68)、H2AX(pSer139)和 p53(pSer15)。我们已经证明,ATM 和 DNA-PK(而非 ATR)在 DNA 整合后修复过程中会发生自身磷酸化,并使其靶蛋白 Chk2 和 H2AX 磷酸化。这些数据表明,HIV-1 DNA 的双链 DNA 断裂修复和整合后修复之间存在共同的信号机制。
{"title":"Post-Integrational DNA Repair of HIV-1 Is Associated with Activation of the DNA-PK and ATM Cellular Protein Kinases and Phosphorylation of Their Targets","authors":"Andrey N. Anisenko, Anastasiia A. Nefedova, Igor I. Kireev, Marina B. Gottikh","doi":"10.1134/S0006297924060117","DOIUrl":"10.1134/S0006297924060117","url":null,"abstract":"<p>Integration of the DNA copy of HIV-1 genome into the cellular genome results in series of damages, repair of which is critical for successful replication of the virus. We have previously demonstrated that the ATM and DNA-PK kinases, normally responsible for repairing double-strand breaks in the cellular DNA, are required to initiate the HIV-1 DNA postintegrational repair, even though integration does not result in DNA double-strand breaks. In this study, we analyzed changes in phosphorylation status of ATM (pSer1981), DNA-PK (pSer2056), and their related kinase ATR (pSer428), as well as their targets: Chk1 (pSer345), Chk2 (pThr68), H2AX (pSer139), and p53 (pSer15) during the HIV-1 DNA postintegrational repair. We have shown that ATM and DNA-PK, but not ATR, undergo autophosphorylation during postintegrational DNA repair and phosphorylate their target proteins Chk2 and H2AX. These data indicate common signaling mechanisms between the double-strand DNA break repair and postintegrational repair of HIV-1 DNA.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 6","pages":"1122 - 1132"},"PeriodicalIF":2.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1134/S0006297924060051
Alla S. Dashkova, Vladimir I. Kovalev, Alina V. Chaplygina, Daria Yu. Zhdanova, Natalia V. Bobkova
Alzheimer’s disease (AD) is a severe neurodegenerative condition affecting millions worldwide. Prevalence of AD correlates with increased life expectancy and aging population in the developed countries. Considering that AD is a multifactorial disease involving various pathological processes such as synaptic dysfunction, neuroinflammation, oxidative stress, and improper protein folding, a comprehensive approach targeting multiple pathways may prove effective in slowing the disease progression. Cellular therapy and its further development in the form of cell vesicle and particularly mitochondrial transplantation represent promising approaches for treating neurodegeneration. The use of synaptosomes, due to uniqueness of their contents, could mark a new stage in the development of comprehensive therapies for neurodegenerative diseases, particularly AD. Synaptosomes contain unique memory mitochondria, which differ not only in size but also in functionality compared to the mitochondria in the neuronal soma. These synaptosomal mitochondria actively participate in cellular communication and signal transmission within synapses. Synaptosomes also contain other elements such as their own protein synthesis machinery, synaptic vesicles with neurotransmitters, synaptic adhesion molecules, and microRNAs – all crucial for synaptic transmission and, consequently, cognitive processes. Complex molecular ensemble ensures maintenance of the synaptic autonomy of mitochondria. Additionally, synaptosomes, with their affinity for neurons, can serve as an optimal platform for targeted drug delivery to nerve cells. This review discusses unique composition of synaptosomes, their capabilities and advantages, as well as limitations of their suggested use as therapeutic agents for treating neurodegenerative pathologies, particularly AD.
{"title":"Unique Properties of Synaptosomes and Prospects for Their Use for the Treatment of Alzheimer’s Disease","authors":"Alla S. Dashkova, Vladimir I. Kovalev, Alina V. Chaplygina, Daria Yu. Zhdanova, Natalia V. Bobkova","doi":"10.1134/S0006297924060051","DOIUrl":"10.1134/S0006297924060051","url":null,"abstract":"<p>Alzheimer’s disease (AD) is a severe neurodegenerative condition affecting millions worldwide. Prevalence of AD correlates with increased life expectancy and aging population in the developed countries. Considering that AD is a multifactorial disease involving various pathological processes such as synaptic dysfunction, neuroinflammation, oxidative stress, and improper protein folding, a comprehensive approach targeting multiple pathways may prove effective in slowing the disease progression. Cellular therapy and its further development in the form of cell vesicle and particularly mitochondrial transplantation represent promising approaches for treating neurodegeneration. The use of synaptosomes, due to uniqueness of their contents, could mark a new stage in the development of comprehensive therapies for neurodegenerative diseases, particularly AD. Synaptosomes contain unique memory mitochondria, which differ not only in size but also in functionality compared to the mitochondria in the neuronal soma. These synaptosomal mitochondria actively participate in cellular communication and signal transmission within synapses. Synaptosomes also contain other elements such as their own protein synthesis machinery, synaptic vesicles with neurotransmitters, synaptic adhesion molecules, and microRNAs – all crucial for synaptic transmission and, consequently, cognitive processes. Complex molecular ensemble ensures maintenance of the synaptic autonomy of mitochondria. Additionally, synaptosomes, with their affinity for neurons, can serve as an optimal platform for targeted drug delivery to nerve cells. This review discusses unique composition of synaptosomes, their capabilities and advantages, as well as limitations of their suggested use as therapeutic agents for treating neurodegenerative pathologies, particularly AD.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 6","pages":"1031 - 1044"},"PeriodicalIF":2.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1134/S0006297924060087
Olga D. Novikova, Tatyana V. Rybinskaya, Elena A. Zelepuga, Vladimir N. Uversky, Nataliya Yu. Kim, Ekaterina A. Chingizova, Ekaterina S. Menchinskaya, Valentina A. Khomenko, Dmitriy K. Chistyulin, Olga Yu. Portnyagina
The work presents results of the in vitro and in silico study of formation of amyloid-like structures under harsh denaturing conditions by non-specific OmpF porin of Yersinia pseudotuberculosis (YpOmpF), a membrane protein with β-barrel conformation. It has been shown that in order to obtain amyloid-like porin aggregates, preliminary destabilization of its structure in a buffer solution with acidic pH at elevated temperature followed by long-term incubation at room temperature is necessary. After heating at 95°C in a solution with pH 4.5, significant conformational rearrangements are observed in the porin molecule at the level of tertiary and secondary structure of the protein, which are accompanied by the increase in the content of total β-structure and sharp decrease in the value of characteristic viscosity of the protein solution. Subsequent long-term exposure of the resulting unstable intermediate YpOmpF at room temperature leads to formation of porin aggregates of various shapes and sizes that bind thioflavin T, a specific fluorescent dye for the detection of amyloid-like protein structures. Compared to the initial protein, early intermediates of the amyloidogenic porin pathway, oligomers, have been shown to have increased toxicity to the Neuro-2aCCL-131™ mouse neuroblastoma cells. The results of computer modeling and analysis of the changes in intrinsic fluorescence during protein aggregation suggest that during formation of amyloid-like aggregates, changes in the structure of YpOmpF affect not only the areas with an internally disordered structure corresponding to the external loops of the porin, but also main framework of the molecule, which has a rigid spatial structure inherent to β-barrel.
{"title":"Formation of Amyloid-Like Conformational States of β-Structured Membrane Proteins on the Example of OMPF Porin from the Yersinia pseudotuberculosis Outer Membrane","authors":"Olga D. Novikova, Tatyana V. Rybinskaya, Elena A. Zelepuga, Vladimir N. Uversky, Nataliya Yu. Kim, Ekaterina A. Chingizova, Ekaterina S. Menchinskaya, Valentina A. Khomenko, Dmitriy K. Chistyulin, Olga Yu. Portnyagina","doi":"10.1134/S0006297924060087","DOIUrl":"10.1134/S0006297924060087","url":null,"abstract":"<p>The work presents results of the <i>in vitro</i> and <i>in silico</i> study of formation of amyloid-like structures under harsh denaturing conditions by non-specific OmpF porin of <i>Yersinia pseudotuberculosis</i> (YpOmpF), a membrane protein with β-barrel conformation. It has been shown that in order to obtain amyloid-like porin aggregates, preliminary destabilization of its structure in a buffer solution with acidic pH at elevated temperature followed by long-term incubation at room temperature is necessary. After heating at 95°C in a solution with pH 4.5, significant conformational rearrangements are observed in the porin molecule at the level of tertiary and secondary structure of the protein, which are accompanied by the increase in the content of total β-structure and sharp decrease in the value of characteristic viscosity of the protein solution. Subsequent long-term exposure of the resulting unstable intermediate YpOmpF at room temperature leads to formation of porin aggregates of various shapes and sizes that bind thioflavin T, a specific fluorescent dye for the detection of amyloid-like protein structures. Compared to the initial protein, early intermediates of the amyloidogenic porin pathway, oligomers, have been shown to have increased toxicity to the Neuro-2aCCL-131™ mouse neuroblastoma cells. The results of computer modeling and analysis of the changes in intrinsic fluorescence during protein aggregation suggest that during formation of amyloid-like aggregates, changes in the structure of YpOmpF affect not only the areas with an internally disordered structure corresponding to the external loops of the porin, but also main framework of the molecule, which has a rigid spatial structure inherent to β-barrel.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 6","pages":"1079 - 1093"},"PeriodicalIF":2.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1134/S0006297924060014
Milana A. Kulakova, Georgy P. Maslakov, Liudmila O. Poliushkevich
The evolution of major taxa is often associated with the emergence of new gene families. In all multicellular animals except sponges and comb jellies, the genomes contain Hox genes, which are crucial regulators of development. The canonical function of Hox genes involves colinear patterning of body parts in bilateral animals. This general function is implemented through complex, precisely coordinated mechanisms, not all of which are evolutionarily conserved and fully understood. We suggest that the emergence of this regulatory complexity was preceded by a stage of cooperation between more ancient morphogenetic programs or their individual elements. Footprints of these programs may be present in modern animals to execute non-canonical Hox functions. Non-canonical functions of Hox genes are involved in maintaining terminal nerve cell specificity, autophagy, oogenesis, pre-gastrulation embryogenesis, vertical signaling, and a number of general biological processes. These functions are realized by the basic properties of homeodomain protein and could have triggered the evolution of ParaHoxozoa and Nephrozoa subsequently. Some of these non-canonical Hox functions are discussed in our review.
{"title":"Irreducible Complexity of Hox Gene: Path to the Canonical Function of the Hox Cluster","authors":"Milana A. Kulakova, Georgy P. Maslakov, Liudmila O. Poliushkevich","doi":"10.1134/S0006297924060014","DOIUrl":"10.1134/S0006297924060014","url":null,"abstract":"<p>The evolution of major taxa is often associated with the emergence of new gene families. In all multicellular animals except sponges and comb jellies, the genomes contain Hox genes, which are crucial regulators of development. The canonical function of Hox genes involves colinear patterning of body parts in bilateral animals. This general function is implemented through complex, precisely coordinated mechanisms, not all of which are evolutionarily conserved and fully understood. We suggest that the emergence of this regulatory complexity was preceded by a stage of cooperation between more ancient morphogenetic programs or their individual elements. Footprints of these programs may be present in modern animals to execute non-canonical Hox functions. Non-canonical functions of Hox genes are involved in maintaining terminal nerve cell specificity, autophagy, oogenesis, pre-gastrulation embryogenesis, vertical signaling, and a number of general biological processes. These functions are realized by the basic properties of homeodomain protein and could have triggered the evolution of ParaHoxozoa and Nephrozoa subsequently. Some of these non-canonical Hox functions are discussed in our review.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 6","pages":"987 - 1001"},"PeriodicalIF":2.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0006297924060014.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1134/S0006297924060026
Aksinya N. Uvarova, Elena A. Tkachenko, Ekaterina M. Stasevich, Elina A. Zheremyan, Kirill V. Korneev, Dmitry V. Kuprash
Currently, numerous associations between genetic polymorphisms and various diseases have been characterized through the Genome-Wide Association Studies. Majority of the clinically significant polymorphisms are localized in non-coding regions of the genome. While modern bioinformatic resources make it possible to predict molecular mechanisms that explain influence of the non-coding polymorphisms on gene expression, such hypotheses require experimental verification. This review discusses the methods for elucidating molecular mechanisms underlying dependence of the disease pathogenesis on specific genetic variants within the non-coding sequences. A particular focus is on the methods for identification of transcription factors with binding efficiency dependent on polymorphic variations. Despite remarkable progress in bioinformatic resources enabling prediction of the impact of polymorphisms on the disease pathogenesis, there is still the need for experimental approaches to investigate this issue.
摘要 目前,通过全基因组关联研究(Genome-Wide Association Studies),已经确定了许多基因多态性与各种疾病之间的关联。大多数具有临床意义的多态性位于基因组的非编码区。虽然现代生物信息学资源使预测非编码多态性对基因表达影响的分子机制成为可能,但这些假设需要实验验证。本综述讨论了阐明疾病发病机制依赖于非编码序列中特定基因变异的分子机制的方法。其中特别关注鉴定转录因子与多态性变异的结合效率的方法。尽管生物信息学资源在预测多态性对疾病发病机制的影响方面取得了重大进展,但仍需要通过实验方法来研究这一问题。
{"title":"Methods for Functional Characterization of Genetic Polymorphisms of Non-Coding Regulatory Regions of the Human Genome","authors":"Aksinya N. Uvarova, Elena A. Tkachenko, Ekaterina M. Stasevich, Elina A. Zheremyan, Kirill V. Korneev, Dmitry V. Kuprash","doi":"10.1134/S0006297924060026","DOIUrl":"10.1134/S0006297924060026","url":null,"abstract":"<p>Currently, numerous associations between genetic polymorphisms and various diseases have been characterized through the Genome-Wide Association Studies. Majority of the clinically significant polymorphisms are localized in non-coding regions of the genome. While modern bioinformatic resources make it possible to predict molecular mechanisms that explain influence of the non-coding polymorphisms on gene expression, such hypotheses require experimental verification. This review discusses the methods for elucidating molecular mechanisms underlying dependence of the disease pathogenesis on specific genetic variants within the non-coding sequences. A particular focus is on the methods for identification of transcription factors with binding efficiency dependent on polymorphic variations. Despite remarkable progress in bioinformatic resources enabling prediction of the impact of polymorphisms on the disease pathogenesis, there is still the need for experimental approaches to investigate this issue.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 6","pages":"1002 - 1013"},"PeriodicalIF":2.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0006297924060026.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1134/S0006297924060075
Natalia V. Belosludtseva, Mikhail V. Dubinin, Konstantin N. Belosludtsev
Voltage-dependent anion channels (VDAC1-3) of the outer mitochondrial membrane are a family of pore-forming β-barrel proteins that carry out controlled “filtration” of small molecules and ions between the cytoplasm and mitochondria. Due to the conformational transitions between the closed and open states and interaction with cytoplasmic and mitochondrial proteins, VDACs not only regulate the mitochondrial membrane permeability for major metabolites and ions, but also participate in the control of essential intracellular processes and pathological conditions. This review discusses novel data on the molecular structure, regulatory mechanisms, and pathophysiological role of VDAC proteins, as well as future directions in this area of research.
{"title":"Pore-Forming VDAC Proteins of the Outer Mitochondrial Membrane: Regulation and Pathophysiological Role","authors":"Natalia V. Belosludtseva, Mikhail V. Dubinin, Konstantin N. Belosludtsev","doi":"10.1134/S0006297924060075","DOIUrl":"10.1134/S0006297924060075","url":null,"abstract":"<p>Voltage-dependent anion channels (VDAC1-3) of the outer mitochondrial membrane are a family of pore-forming β-barrel proteins that carry out controlled “filtration” of small molecules and ions between the cytoplasm and mitochondria. Due to the conformational transitions between the closed and open states and interaction with cytoplasmic and mitochondrial proteins, VDACs not only regulate the mitochondrial membrane permeability for major metabolites and ions, but also participate in the control of essential intracellular processes and pathological conditions. This review discusses novel data on the molecular structure, regulatory mechanisms, and pathophysiological role of VDAC proteins, as well as future directions in this area of research.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 6","pages":"1061 - 1078"},"PeriodicalIF":2.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1134/S0006297924060130
Naima N. Niyazova, Irada M. Huseynova
Water shortage induces physiological, biochemical, and molecular alterations in plant leaves that play an essential role in plant adaptive response. The effects of drought and post-drought rewatering on the activity of antioxidant enzymes and levels of H2O2, phenolic compounds, ascorbic acid, and proline were studied in six local tomato (Solanum lycopersicum L.) varieties. The contents of H2O2 and ascorbic acid increased in all drought-exposed tomato plants and then decreased upon rewatering. The level of phenolic compounds also decreased in response to water shortage and then recovered upon rehydration, although the extent of this response was different in different varieties. The activities of ascorbate peroxidase (APX) and guaiacol peroxidase (POX) and the content of proline significantly increased in the drought-stressed plants and then decreased when the plants were rewatered. The activities of 8 constitutive APX isoforms and 2 constitutive POX isoforms varied upon exposure to drought and were observed after rewatering in all studied varieties. The information on the response of tomato plants to drought and subsequent rewatering is of great importance for screening and selection of drought-tolerant varieties, as well as for development of strategies for increasing plant productivity under adverse environmental conditions.
{"title":"The Antioxidant Defense System of Tomato (Solanum lycopersicum L.) Varieties under Drought Stress and upon Post-Drought Rewatering","authors":"Naima N. Niyazova, Irada M. Huseynova","doi":"10.1134/S0006297924060130","DOIUrl":"10.1134/S0006297924060130","url":null,"abstract":"<p>Water shortage induces physiological, biochemical, and molecular alterations in plant leaves that play an essential role in plant adaptive response. The effects of drought and post-drought rewatering on the activity of antioxidant enzymes and levels of H<sub>2</sub>O<sub>2</sub>, phenolic compounds, ascorbic acid, and proline were studied in six local tomato (<i>Solanum lycopersicum</i> L.) varieties. The contents of H<sub>2</sub>O<sub>2</sub> and ascorbic acid increased in all drought-exposed tomato plants and then decreased upon rewatering. The level of phenolic compounds also decreased in response to water shortage and then recovered upon rehydration, although the extent of this response was different in different varieties. The activities of ascorbate peroxidase (APX) and guaiacol peroxidase (POX) and the content of proline significantly increased in the drought-stressed plants and then decreased when the plants were rewatered. The activities of 8 constitutive APX isoforms and 2 constitutive POX isoforms varied upon exposure to drought and were observed after rewatering in all studied varieties. The information on the response of tomato plants to drought and subsequent rewatering is of great importance for screening and selection of drought-tolerant varieties, as well as for development of strategies for increasing plant productivity under adverse environmental conditions.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 6","pages":"1146 - 1157"},"PeriodicalIF":2.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1134/S0006297924060038
Aleksei A. Popov, Irina O. Petruseva, Olga I. Lavrik
Damages of various origin accumulated in the genomic DNA can lead to the breach of genome stability, and are considered to be one of the main factors involved in cellular senescence. DNA repair systems in mammalian cells ensure effective damage removal and repair of the genome structure, therefore, activity of these systems is expected to be correlated with high maximum lifespan observed in the long-lived mammals. This review discusses current results of the studies focused on determination of the DNA repair system activity and investigation of the properties of its key regulatory proteins in the cells of long-lived rodents and bats. Based on the works discussed in the review, it could be concluded that the long-lived rodents and bats in general demonstrate high efficiency in functioning and regulation of DNA repair systems. Nevertheless, a number of questions around the study of DNA repair in the cells of long-lived rodents and bats remain poorly understood, answers to which could open up new avenues for further research.
摘要 基因组 DNA 中积累的各种来源的损伤会导致基因组稳定性受到破坏,被认为是细胞衰老的主要因素之一。哺乳动物细胞中的 DNA 修复系统可确保有效清除损伤和修复基因组结构,因此,这些系统的活性预计与长寿哺乳动物的最长寿命相关。这篇综述讨论了目前的研究成果,这些研究的重点是确定 DNA 修复系统的活性以及调查长寿啮齿动物和蝙蝠细胞中其关键调控蛋白的特性。根据综述中讨论的工作,可以得出结论:长寿啮齿类动物和蝙蝠在 DNA 修复系统的运作和调节方面普遍表现出很高的效率。尽管如此,围绕长寿啮齿类动物和蝙蝠细胞中 DNA 修复研究的一些问题仍然鲜为人知,这些问题的答案将为进一步的研究开辟新的途径。
{"title":"Activity of DNA Repair Systems in the Cells of Long-Lived Rodents and Bats","authors":"Aleksei A. Popov, Irina O. Petruseva, Olga I. Lavrik","doi":"10.1134/S0006297924060038","DOIUrl":"10.1134/S0006297924060038","url":null,"abstract":"<p>Damages of various origin accumulated in the genomic DNA can lead to the breach of genome stability, and are considered to be one of the main factors involved in cellular senescence. DNA repair systems in mammalian cells ensure effective damage removal and repair of the genome structure, therefore, activity of these systems is expected to be correlated with high maximum lifespan observed in the long-lived mammals. This review discusses current results of the studies focused on determination of the DNA repair system activity and investigation of the properties of its key regulatory proteins in the cells of long-lived rodents and bats. Based on the works discussed in the review, it could be concluded that the long-lived rodents and bats in general demonstrate high efficiency in functioning and regulation of DNA repair systems. Nevertheless, a number of questions around the study of DNA repair in the cells of long-lived rodents and bats remain poorly understood, answers to which could open up new avenues for further research.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 6","pages":"1014 - 1023"},"PeriodicalIF":2.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0006297924060038.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}